2015

The Predictive Value of the Proliferation Marker Ki-67 in Patients with Fulminant Hepatic Failure

Ashesh P. Shah, MD
Thomas Jefferson University, ashesh.shah@jefferson.edu

Upasana Joneja, MD
Thomas Jefferson University Hospital, Philadelphia, PA, upasana.joneja@jefferson.edu

David Walls, MD
Thomas Jefferson University Hospital, david.wall@jefferson.edu

John Farber, MD
Center for Translational Medicine, Cardiology Division, Thomas Jefferson University, John.Farber@jefferson.edu

Let us know how access to this document benefits you

Follow this and additional works at: http://jdc.jefferson.edu/pacbresidentposters

Part of the [Medical Anatomy Commons](http://jdc.jefferson.edu/medicalanatomycommons), [Medical Cell Biology Commons](http://jdc.jefferson.edu/medicalcellbiologycollections), and the [Medical Pathology Commons](http://jdc.jefferson.edu/medicalpathologycommons)

Recommended Citation

http://jdc.jefferson.edu/pacbresidentposters/18
INTRODUCTION

In the United States, acute liver failure (ALF) affects an estimated 2,000 people per year and accounts for 6% of all liver transplants. Without transplantation, however, less than 50% of patients survive with medical management alone. Early identification of patients with survivable AFL is important to guiding their management and early referral to transplantation.

Studies have shown that the current prognostic scoring systems used for FHF, including the King’s College Criteria (KCC) and the Model for End-Stage Liver Disease (MELD), have poor sensitivity and negative predictive value for predicting outcome, highlighting a need for more accurate predictive models.

Ki-67 is a well-established marker of cellular proliferation but its expression in FHF as a surrogate marker of liver regeneration has not been studied as a tool to predict outcome in these patients.

In this pilot study, we sought to determine the predictive value of Ki-67 expression in patients with FHF and its potential for improving the accuracy of current predictive models.

METHODS

A retrospective analysis was performed on patients admitted to Thomas Jefferson University Hospital (Philadelphia, PA) with ALF between 2000 and 2014 who underwent liver biopsies as part of their management. Under IRB approval, the surgical pathology database at TJUH was searched for biopsies with the keywords “confluent”, “submassive”, or “massive hepatic necrosis”. The identified liver biopsies and medical records were reviewed, and all patients with confirmed confluent hepatic necrosis and acute liver failure were selected. Thirty patients were identified as meeting inclusion criteria and constituted the study.

The medical records of all 30 patients were reviewed and the demographic, laboratory, and clinical outcome data (survival with or without liver transplantation) were obtained.

The liver biopsies were sectioned and immunohistochemical staining for Ki-67 was performed. Ki-67 expression was assessed by an independent pathologist and categorized as either proliferative (numerous Ki-67 positive hepatocytes) or non-proliferative (few if any positive cells).

The clinical information obtained was used to calculate MELD scores and determine if KCC were met. Ki-67 expression, MELD score and KCC were correlated with the patient outcomes.

RESULTS

The medical records of all 30 patients were reviewed and the demographic, laboratory, and clinical outcome data (survival with or without liver transplantation) were obtained.

The results of this study show that the evaluation of liver biopsies for Ki-67 activity provides a useful adjunct to established criteria in determining the prognosis of patients with fulminant liver failure.

Larger studies should be performed to determine the true import of Ki-67 activity in such patients.