
Figure 8. Analysis of motor function in DA-depleted VGLUT3 KO mice. A, Representative TH immunoreactivity across the striatum in WT (top) and KO (bottom) mice (left). Images were converted
to binary data after subtraction of background. Total percentage of TH loss in the ipsilateral side of the dorsal striatum compared with contralateral controls from a subset of KO (red) and WT (black)
mice used in (B; n 	 3 KO and 4 WT mice; right). Data are presented as the mean 
 SEM and were analyzed by Student’s t test. B, Spontaneous rotations in either the CW or CCW direction in the
open field for VGLUT3 KO (red) and WT (black) mice (n	11 mice per genotype; top). Rotations prelesion during the sleep cycle (left); rotations postlesion during the sleep cycle (center left); rotations
prelesion during the awake cycle (center right); rotations postlesion during the awake cycle (right). Data were analyzed by 2-way ANOVA genotype � day with a Bonferroni post hoc test.
Weight-bearing paw contacts while rearing in a cylinder for VGLUT3 KO (red) and WT (black) mice (n 	 10 and 11 mice for KO and WT, respectively; bottom). Contacts prelesion during the sleep cycle
(left); contacts postlesion during the sleep cycle (center left); contacts prelesion during the awake cycle (center right); contacts postlesion during the awake cycle (right). C, Spontaneous rotations
in either the CW or CCW direction during a 15 min session in the open field for Vglut3 fl/fl;Chat IRESCre/� (blue) mice and Vglut3 fl/fl (black) littermates (left). Weight-bearing paw contacts while rearing
for Vglut3 fl/fl;Chat IRESCre/� (blue) mice and Vglut3 fl/fl (black) littermates (n 	 5 and 6 for cKO and controls, respectively; right). B, C, Data are presented as the mean 
 SEM and were analyzed by
2-way ANOVA genotype � time with a Bonferroni post hoc test. n.s., Not significant; *p � 0.05, **p � 0.01, ***p � 0.001.
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2005). In this mutant, the defect appears to originate within the
DA neurons themselves. Per1 KO mice demonstrate decreased
DA levels and display an ADHD-like phenotype (Huang et al.,
2015). Zebrafish mutants of Per1b show behaviors similar to the
Per1 KO mice. Consistent with the behaviors, Per1b was shown to
regulate the DA-related genes, monoamine oxidase and DA � hy-
droxylase, as well as DA neuron development (Huang et al.,
2015).

Only a few mouse mutants, like the VGLUT3 KO, exhibit a
circadian-dependent locomotor phenotype without an overt re-

lationship to altered circadian gene expression. For example,
mice lacking the orphan G-protein-coupled receptor GPR88
show nocturnal hyperlocomotor activity due to deletion of the
receptor in striatal output neurons, which produces an increase
in the excitability of the neurons (Quintana et al., 2012). In this
case, the increase in MSN activity appears to be sufficient to elicit
the hyperactivity, but the basis for the circadian dependence is
still not clear. One possibility is that controls on the locomotor
circuit are simply less restrictive during the waking cycle, with
fewer regulatory mechanisms in place to suppress activity, as op-

Figure 9. L-dopa-induced dyskinesias in VGLUT3 KO and WT littermates. A, Time course of experimental design. B, LID scores for VGLUT3 KO (red) and WT (black) littermates. Mean LID scores after
injection of 1 mg/kg L-dopa (top left); 2 mg/kg L-dopa (top right); 3 mg/kg L-dopa (bottom left); or 2 weeks after initial 3 mg/kg data collection (n 	 4 female and 2 males and n 	 1 female and
3 males for KO and WTs, respectively; bottom right). Data were analyzed by 2-way ANOVA genotype � time with a Bonferroni post hoc test. C, Median LID scores for each dose of L-dopa (1–3 mg/kg)
across the 80 min testing period. D, Maximum LID scores observed for each dose of L-dopa (1 to 3 mg/kg) across the 80 min testing period. E, LID scores for Vglut3 fl/fl;Chat IRESCre/� (blue) and
Vglut3 fl/fl (black) littermates (n 	 7 and 5 for cKO and control littermates, respectively). Mean LID scores from 3 d of testing every 20 min (80 min total) after injection of 1 mg/kg L-dopa (top left);
2 mg/kg L-dopa (top right); 3 mg/kg L-dopa (bottom left); or 2 weeks after initial 3 mg/kg data collection (bottom right). B, E, Data are presented as the mean 
 SEM and were analyzed by 2-way
ANOVA genotype � time with a Bonferroni post hoc test. n.s., Not significant; *p � 0.05.
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posed to the sleep cycle, where the maintenance of a low activity
state is desired. In the case of VGLUT3, our data suggest that the
transporter normally acts to suppress DA levels and locomotor
activity. This regulatory mechanism could itself be circadian in
nature or it may be constant but constrained by additional mech-
anisms during the sleep cycle. Another factor that could influence
the observed phenotypes is the sex of the animals. However,
we observed no difference between male and female mice in the
upregulation of the DA system, such as hyperlocomotion, or in
the preservation of motor function after DA depletion. Future
work to identify the cell population(s) responsible for the hyper-
dopaminergic phenotypes could provide insight into its apparent
circadian dependence.

The normal locomotor activity and DA release in the dorsal
striatum of mice lacking VGLUT3 specifically in cholinergic neu-
rons was somewhat surprising given previous results showing
that loss of VGLUT3 from CINs decreases cholinergic signaling
(Gras et al., 2008; Nelson et al., 2014). Classic theories positioned
DA and ACh as antagonists of one another and DA does inhibit
CIN firing through activation of D2 receptors (DeBoer et al.,
1996). However, recent studies suggest that ACh enhances DA
release by activating nicotinic receptors on DA terminals (Exley
et al., 2008; Exley et al., 2012; Threlfell et al., 2012). Therefore,
decreasing ACh release, which occurs when VGLUT3 is deleted
from CINs (Gras et al., 2008; Nelson et al., 2014), would be ex-
pected to attenuate DA release, perhaps resulting in hypoloco-
motor behavior. This prediction is based on in vitro recordings,
whereas the in vivo circuitry is likely more complicated, thus
raising the possibility of other behavior outcomes. Indeed, Guz-
man et al. (2011) reported no change in locomotor activity when
VAChT was deleted specifically from CINs and suggested that the
CIN-mediated glutamate release might be important instead.
Our data now show definitively that the hyperlocomotor pheno-
type of the VGLUT3 KO mice has its origins in a noncholinergic
neuron population(s) and that abolishing glutamate release and
attenuating ACh release by CINs (and possibly basal forebrain
cholinergic neurons) does not alter baseline locomotor activity.

The deletion of VGLUT3 specifically in cholinergic neurons
does, however, alter two other behaviors: the prepulse inhibition
of startle and habituation to a novel environment with repeated
exposures. Disruption of PPI is often is a symptom of a schizo-
phrenic state and decreased numbers of cholinergic interneurons
have been observed in the striatum of schizophrenics (Holt et al.,
1999). Mice with VAChT deleted in striatum or knocked down
globally show no change in PPI (Guzman et al., 2011; Schmid et
al., 2011). Interestingly, PPI was impaired in the Vglut3 fl/fl;
Chat IRESCre/� mice, but not the Vglut3 fl/fl;Chat Cre(G)/� mice,
which have elevated levels of VAChT and thus possibly increased
ACh release, suggesting that either glutamate or ACh signaling by
CINs is sufficient to maintain normal PPI.

Increased locomotor activity is usually reflected by an increase
in rearing behavior. However, VGLUT3 KO mice do not demon-
strate a robust increase in rearing behavior at night, when
locomotor activity is greatly enhanced. Moreover, during the
daytime, both KO and Vglut3 fl/fl;Chat IRESCre/� mice demonstrate
a decrease in rearing activity, which increases over repeated daily
exposures to the novel environment. Therefore it seems that loss
of VGLUT3 from cholinergic neurons mediates the suppression
of rearing; however, other modulatory systems, such as seroto-
nergic neurons, may also play a role (Amilhon et al., 2010).

Changes in MSN spine density are a common feature of ma-
nipulations that alter DA levels, for example, with repeated co-
caine use or in Parkinson’s disease. Here, we show that the MSN
spine density changes in concert with the circadian cycle. Spines
are increased in the dorsal and ventral striatum during the night,
when DA levels are elevated, and then return to baseline levels
during the day. Electrophysiological recordings show that the
enhanced spines are likely immature, consistent with their dy-
namic nature. Repeated cocaine administration increases the for-
mation of unstable dendritic spines in ventral MSNs, which
contain only NMDA and not AMPA receptors and are thus re-
ferred to as silent synapses (Huang et al., 2009; Brown et al., 2011;
Lee and Dong, 2011; Zhang et al., 2012; Lee et al., 2013). A sub-
sequent long-term absence of cocaine triggers silent synapses to
mature. It thus seems possible that the circadian-dependent in-
crease in DA in the VGLUT3 KO promotes the formation of
transient, immature synapses that never experience the right con-
ditions to mature.

One of our most striking findings is the absence of motor deficits
in VGLUT3 KO mice in a model of Parkinson’s disease. The
Vglut3 fl/fl;Chat IRESCre/� mice did not show this effect, indicating that
the loss of VGLUT3 from cholinergic neurons is not sufficient to
ameliorate the motor symptoms. A likely candidate is instead the
increased DA release that occurs in the dorsal striatum of the global
KO during the waking cycle, although, curiously, motor behaviors
were also normal during the day. DA depletion is known to produce
a decrease in MSN spine density that is compensated for by an in-
crease in the strength of cortical and thalamic glutamatergic inputs
(Villalba and Smith, 2013). It is thus intriguing to speculate that the
increased density of immature spines in the global KO is translated
into an increase in mature spines upon DA depletion, thus providing
a mechanism for the improved motor symptoms throughout the
circadian cycle.

The VGLUT3 KO mice also showed a marked attenuation of
L-dopa dyskinesias. A number of mechanisms have been reported
to attenuate this unwanted motor behavior, including the abla-
tion and inhibition of striatal cholinergic interneurons (Won et
al., 2014; Lim et al., 2015), as well as disruption of D1 MSN
signaling with a conditional KO of DARPP-32 (Bateup et al.,
2010). Our findings show a trend toward a contribution by

Table 1. Summary of results for phenotypes tested (top) in global and conditional Vglut3 KO lines (left)

Genotype
Locomotor
activity

DA
release

Tissue
content

pTH
levels

VAChT
levels

Spine
density

Rearing
habituation

Pre-pulse
inhibition of
startle

Parkinsonian
motor deficits

L-Dopa
induced
dyskinesias

Vglut3 �/� Increased
(night)

Increased
(night)

Increased
(night)

Increased
(night)

N.T. Increased
(night)

Increased
(day)

N.T. Decreased
(day/night)

Decreased

Vglut3 fl/fl; ChAT IRESCre/� N.E. N.E. N.E. N.T. N.E. N.E. Increased
(day)

Decreased N.E. Trending
decrease

Vglut3 fl/fl; Chat Cre(G)/� N.E. N.T. N.T. N.T. Increased N.T. N.T. N.E. N.T. N.T.

Results are indicated as “increased” or “decreased” and are defined as a difference in amplitude, value, or frequency compared to control littermates. “night” or “day” indicates the limb of the circadian cycle when the phenotype occurs, and
some occur across the circadian cycle (night/day). If not specified, mice were tested during the day.

N.E. 	 no significant effect of genotype observed; N.T. 	 not tested.
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VGLUT3 expressed by CINs, but additional work is required to
fully understand the contribution of CIN-mediated signaling and
other VGLUT3-mediated signaling mechanisms to the develop-
ment and expression of LID.

In conclusion, our work here shows that VGLUT3 profoundly
regulates the activity of the midbrain DA system in a circadian-
dependent manner. This modulation will have a broad impact on
behavior because the circadian-dependent regulation of the basal
ganglia affects many aspects of brain function, including addic-
tion, psychiatric conditions, and movement disorders (Edgar and
McClung 2013). In addition, the development of mice with a
cholinergic-specific deletion of VGLUT3 now allows us to rule
out the prevailing hypothesis that VGLUT3 in CINs affects DA
release in the dorsal striatum and baseline locomotor activity.
Finally, we demonstrate that the transporter strongly influences
mechanisms of neural plasticity that underlie motor deficits and
L-dopa-mediated dyskinesias in a Parkinson’s disease model.
These novel findings open new avenues for further experimental
investigation and the development of better treatment options.

References
Amilhon B, Lepicard E, Renoir T, Mongeau R, Popa D, Poirel O, Miot S, Gras

C, Gardier AM, Gallego J, Hamon M, Lanfumey L, Gasnier B, Giros B, El
Mestikawy S (2010) VGLUT3 (vesicular glutamate transporter type 3)
contributes to the regulation of serotonergic transmission and anxiety.
J Neurosci 30:2198 –2210. CrossRef Medline

Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M,
Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A,
Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WK, Simola
N, Morelli M, Groc L, et al. (2015) Pathophysiology of L-dopa-induced
motor and non-motor complications in Parkinson’s disease. Prog Neu-
robiol 132:96 –168. CrossRef Medline

Bateup HS, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier DJ, Fisone G,
Nestler EJ, Greengard P (2010) Distinct subclasses of medium spiny
neurons differentially regulate striatal motor behaviors. Proc Natl Acad
Sci U S A 107:14845–14850. CrossRef Medline

Bello EP, Mateo Y, Gelman DM, Noaín D, Shin JH, Low MJ, Alvarez VA,
Lovinger DM, Rubinstein M (2011) Cocaine supersensitivity and en-
hanced motivation for reward in mice lacking dopamine D2 autorecep-
tors. Nat Neurosci 14:1033–1038. CrossRef Medline

Brown TE, Lee BR, Mu P, Ferguson D, Dietz D, Ohnishi YN, Lin Y, Suska A,
Ishikawa M, Huang YH, Shen H, Kalivas PW, Sorg BA, Zukin RS, Nestler
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