3-25-2015

Trigger Finger Release Performed Wide Awake: Prospective Comparison of Local Anesthetics

Constantinos Ketonis, MD, PhD
Rothman Institute at Thomas Jefferson University, Constantinos.Ketonis@jefferson.edu

Nayoung Kim, BS
Rothman Institute at Thomas Jefferson University, nayoung.kim@jefferson.edu

Frederic Liss, MD
Rothman Institute at Thomas Jefferson University

Benjamin Zmistowski, MD
Rothman Institute of Orthopedics, Thomas Jefferson University Hospital, Benjamin.Zmistowski@jefferson.edu

Jonas L. Matzon, MD
Rothman Institute of Orthopedics, Thomas Jefferson University Hospital, jonas.matzon@rothmaninstitute.com

See next page for additional authors

Let us know how access to this document benefits you

Follow this and additional works at: http://jdc.jefferson.edu/rothinsposters

Part of the Orthopedics Commons

Recommended Citation
Ketonis, MD, PhD, Constantinos; Kim, BS, Nayoung; Liss, MD, Frederic; Zmistowski, MD, Benjamin; Matzon, MD, Jonas L.; Leinberry, MD, Charles; Wang, MD, PhD, Mark L.; Jones, MD, Christopher; Kirkpatrick, MD, William; and Ilyas, MD, Asif M, "Trigger Finger Release Performed Wide Awake: Prospective Comparison of Local Anesthetics" (2015). Rothman Institute Conference Posters. Paper 17.
http://jdc.jefferson.edu/rothinsposters/17

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University’s Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in
Authors
Constantinos Ketonis, MD, PhD; Nayoung Kim, BS; Frederic Liss, MD; Benjamin Zmistowski, MD; Jonas L. Matzon, MD; Charles Leinberry, MD; Mark L. Wang, MD, PhD; Christopher Jones, MD; William Kirkpatrick, MD; and Asif M Ilyas, MD

This poster is available at Jefferson Digital Commons: http://jdc.jefferson.edu/rothinsposters/17
Trigger Finger Release Performed Wide Awake: Prospective
Comparison of Local Anesthetics

Constantinos Ketonis, MD, PhD(n); Nancy Kwon, BS (n); Frederic Liss, MD (2,5-Pacira); Benjamin Zmistowski, MD (n); Jonas L. Matzon, MD (n); William Kirkpatrick, MD (n); Asif Ilyas, MD (7-Jaypee Medical Publishers)

Investigation performed at the Rothman Institute at Thomas Jefferson University, Philadelphia, PA.

INTRODUCTION

Trigger finger (TF) is one of the most common conditions treated by hand surgeons with a lifetime risk up to 10% in patients with diabetes. If conservative management fails, surgical treatment is undertaken, with or without sedation and a tourniquet, via a small incision to release the A1 pulley. A number of local anesthetics are readily available including Lidocaine, Ropivacaine and Marcaine as well as encapsulated formulations thereof such as Exparel. Since it’s approval in 2011, there have been numerous reports of successfully achieving prolonged pain relief with locally injected Exparel after various procedures, but to the best of our knowledge there have been no reports of its use in ambulatory hand surgery. In this study we prospectively evaluated the efficacy of Lidocaine, Marcaine, or bupivacaine with post-operative Exparel in controlling pain, opioid usage, and adverse reactions following TF surgery.

MATERIALS AND METHODS

After obtaining institutional review board (IRB) approval, all consecutive patients scheduled to undergo single digit TF surgery were invited to participate. All procedures were performed under local anesthesia without sedation by one of seven fellowship-trained hand surgeons. The technique for injection was that of a single volar injection at the level of the A1 pulley with a volume of 5-10ml of local anesthetic delivered subcutaneously and superficial to the flexor tendon sheath. The injectate consisted of either a) 1% Lidocaine, b) 0.5% Marcaine, or 0.5% bupivacaine with post-operative Exparel into the closed surgical site. Patients were instructed to record their medication use, their pain levels using a Visual Analog Scale (VAS) scoring system and any adverse reactions experienced. An analysis of variance was used to detect significant differences between groups.

RESULTS

Patients were contacted on POD 3 and asked about their pain levels over POD 0-3. On POD 0 patients in the Lidocaine group reported the most pain. On POD 1 this difference was maintained with the Lidocaine group at 3.73 as compared to the Marcaine and Exparel groups at 2.90 (p=0.116) and 2.33 (p=0.003), respectively. Only the Exparel group maintained significance on POD 2. In contrast, on POD 2 and POD 3 the differences were more subtle and did not reach statistical significance.

The percentage of patients reporting any adverse reaction at any time in the first 3 days after surgery was significantly lower in the Exparel group (16%) as compared to the Marcaine 13% (p = 0.017) and Lidocaine 10% (p=0.133) group. The most common reactions reported included dry mouth, nausea, lack of energy and itching (p=0.133) group. The most common reactions reported included dry mouth, nausea, lack of energy and itching (p=0.133) group. The most common reactions reported included dry mouth, nausea, lack of energy and itching (p=0.133) group. The most common reactions reported included dry mouth, nausea, lack of energy and itching (p=0.133) group. The most common reactions reported included dry mouth, nausea, lack of energy and itching (p=0.133) group. The most common reactions reported included dry mouth, nausea, lack of energy and itching.

DISCUSSION

To the best of our knowledge this is the first report on the comparative efficacy of local anesthetics in ambulatory hand surgery specifically comparing Lidocaine, Marcaine, and Exparel. Our results suggest that patients treated with Marcaine attain better pain control than those treated with Lidocaine on POD 0-1, but only patients that receive Exparel maintain the lowest pain levels through POD 0-3. More importantly, this is achieved while using little to no opioid medications and with less adverse reactions than with Lidocaine or Marcaine alone. In agreement with what has been reported in other series, Exparel generally appears to make most of the difference in pain perception in the first 1-2 days after surgery. Overall, pain following trigger finger release surgery performed wide awake and without a tourniquet is low. However, longer pain relief, decreased opioid consumption, and a better adverse reaction profile is a goal that physicians and patients strive to achieve. More studies are needed to validate both the efficacy and cost of Exparel versus other local anesthetic agents in patients undergoing more extensive and painful hand and orthopaedic surgical procedures.

FIGURES 1 - 5

OPIOID CONSUMPTION: PERCENT OF PATIENT USAGE

On POD 0, 58% (p=0.01) and 59% (p=0.004) of patients that received Marcaine and Lidocaine, respectively, used opioids for pain control as compared to 27% of patients in the Exparel group.

At POD 2 the percentage of patients using opioids continued to decrease in all groups and converged to about 15% by POD 3.

ADVERSE EFFECTS

The percentage of patients reporting any adverse reaction at any time in the first 3 days after surgery was significantly lower in the Exparel group (16%) as compared to the Marcaine 13% (p = 0.017) and Lidocaine 10% (p=0.133) group. The most common reactions reported included dry mouth, nausea, lack of energy and itching whereas the least common reactions were dizziness, coughing and a sensation of bloating.

PAIN-FREE PATIENTS WITHOUT OPIOIDS

An analysis of patients that were deemed pain-free (VAS score ≤2) while also not using any opioid medication revealed that on POD 2, 50% of patients that received Exparel were pain-free without requiring opioids, which was statistically higher than Lidocaine 16% (p=0.002) and Marcaine at 21% (p=0.017). This trend continued on POD 1 with Exparel at 47% (p=0.047), Marcaine at 40% and Lidocaine at 32% (p=0.118). By POD 2-3, the patients in this category converged with no statistical differences.

OPIOID CONSUMPTION: NUMBER OF TABLETS

A similar trend is seen when the average total number of opioid tablets consumed by each group is analyzed. The only statistically different pill consumption was observed on POD 0 where opioid users in the lidocaine group consumed an average of 1.62 pills as compared to 1.08 (p=0.214) and 0.70 (p=0.013) pills in the Marcaine and Exparel group, respectively. Total pill consumption on POD 1-3 was similar in all groups.

PAIN FREE PATIENTS WITHOUT OPIOIDS

An analysis of patients that were deemed pain-free (VAS score ≤2) while also not using any opioid medication revealed that on POD 2, 50% of patients that received Exparel were pain-free without requiring opioids, which was statistically higher than Lidocaine 16% (p=0.002) and Marcaine at 21% (p=0.017). This trend continued on POD 1 with Exparel at 47% (p=0.047), Marcaine at 40% and Lidocaine at 32% (p=0.118). By POD 2-3, the patients in this category converged with no statistical differences.

FIGURES 1 - 5

OPIOID CONSUMPTION: PERCENT OF PATIENT USAGE

On POD 0, 58% (p=0.01) and 59% (p=0.004) of patients that received Marcaine and Lidocaine, respectively, used opioids for pain control as compared to 27% of patients in the Exparel group.

At POD 2 the percentage of patients using opioids continued to decrease in all groups and converged to about 15% by POD 3.

ADVERSE EFFECTS

The percentage of patients reporting any adverse reaction at any time in the first 3 days after surgery was significantly lower in the Exparel group (16%) as compared to the Marcaine 13% (p = 0.017) and Lidocaine 10% (p=0.133) group. The most common reactions reported included dry mouth, nausea, lack of energy and itching whereas the least common reactions were dizziness, coughing and a sensation of bloating.

PAIN-FREE PATIENTS WITHOUT OPIOIDS

An analysis of patients that were deemed pain-free (VAS score ≤2) while also not using any opioid medication revealed that on POD 2, 50% of patients that received Exparel were pain-free without requiring opioids, which was statistically higher than Lidocaine 16% (p=0.002) and Marcaine at 21% (p=0.017). This trend continued on POD 1 with Exparel at 47% (p=0.047), Marcaine at 40% and Lidocaine at 32% (p=0.118). By POD 2-3, the patients in this category converged with no statistical differences.

OPIOID CONSUMPTION: NUMBER OF TABLETS

A similar trend is seen when the average total number of opioid tablets consumed by each group is analyzed. The only statistically different pill consumption was observed on POD 0 where opioid users in the lidocaine group consumed an average of 1.62 pills as compared to 1.08 (p=0.214) and 0.70 (p=0.013) pills in the Marcaine and Exparel group, respectively. Total pill consumption on POD 1-3 was similar in all groups.

PAIN FREE PATIENTS WITHOUT OPIOIDS

An analysis of patients that were deemed pain-free (VAS score ≤2) while also not using any opioid medication revealed that on POD 2, 50% of patients that received Exparel were pain-free without requiring opioids, which was statistically higher than Lidocaine 16% (p=0.002) and Marcaine at 21% (p=0.017). This trend continued on POD 1 with Exparel at 47% (p=0.047), Marcaine at 40% and Lidocaine at 32% (p=0.118). By POD 2-3, the patients in this category converged with no statistical differences.