A Preliminary Report of Percutaneous Craniofacial Osteoplasty in a Rat Calvarium

William J. Parkes, MD
Thomas Jefferson University

Jewel Greywoode, MD
Thomas Jefferson University

Brian J. O'Hara, MD
Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA

Ryan N. Heffelfinger, MD
Thomas Jefferson University

Howard Krein, MD, PhD
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/otograndrounds

Part of the *Medical Anatomy Commons, Medical Cell Biology Commons, Medical Pathology Commons*

Let us know how access to this document benefits you

Recommended Citation

https://jdc.jefferson.edu/otograndrounds/16

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's [Center for Teaching and Learning (CTL)]. The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Otolaryngology - Head and Neck Surgery Presentations and Grand Rounds by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
A Preliminary Report of Percutaneous Craniofacial Osteoplasty in a Rat Calvarium

William J Parkes, MD1; Jewel Greywoode, MD1; Brian J O'Hara, MD2; Ryan H Helffelfinger, MD1; Howard Krein, MD, PhD1
Thomas Jefferson University Departments of 1Otolaryngology- Head & Neck Surgery and 2Pathology, Anatomy & Cell Biology

INTRODUCTION

Objective: To evaluate the potential for injectable, permanent bone augmentation by assessing the biocompatibility and bioactivity of subperiosteal hydroxylapatite (Radiesse) deposition in a rat model.

Methods: Fourteen adult Sprague Dawley rats were injected in the parietal skull with hydroxylapatite (n=10) or a carrier gel control (n=4), using a subperiosteal injection technique on the right and a subcutaneous injection technique on the left. At 13, 6, and 12 months, 3 rats (1 negative control, 2 variables) were sacrificed. Results: The inflammatory response was limited in all specimens. The odds ratio, p values and 95% confidence intervals were calculated using Fisher’s conditional maximum likelihood estimation. The potential for new bone formation was determined by examining and comparing separate samples of the HA and injectable. No statistically significant difference was identified in the rate of bone formation between the two groups. The plane of injection seems to be critical in any effort to induce osteoactivity. New bone formation was seen in all specimens. The marginal effect of HA, however, was not significant.

RESULTS

Histologic data are summarized in Table 1. Multinucleated giant cells were often present (Figure 2), and may have contributed to osteoactivity. No evidence was obtained to support the conclusion that the trauma of periosteal disruption was significant. In an attempt to analyze the effect of the injection plane, subperiosteal injections were compared to all other combinations of injection sites, and subperiosteal injection was more efficacious and associated with significantly higher new bone formation in the rat calvaria than the aggregate of all other combinations of injection sites.

CONCLUSIONS

Minor deformities of the craniofacial skeleton can be quite bothersome aesthetically to patients. Radiesse provides an intriguing solution as it is considered a non-migratory and biocompatible constituent, HA, has been used for over 2 decades in other formulations for open craniofacial reconstruction. It is approved for the treatment of HIV related facial lipoatrophy and moderate to deep nasolabial folds, Radiesse is well-established in facial plastic surgery for soft tissue augmentation. Over the years, various studies have confirmed its safety, longevity and biocompatibility (specifically the degradable, plastic-elastic degradation). This study suggests the potential for new bone formation at the bony interface and the biocompatibility of injectable HA. The potential for injectable HA can be osteointegrated and used to inject the material directly onto the underlying bone. Unfortunately, our technique for periosteal disruption was not optimal, and further study on a larger scale is warranted to better elucidate the stimulus for the new bone formation. Radiesse has been used for over 2 decades in other formulations for open craniofacial reconstruction. It is approved for the treatment of HIV related facial lipoatrophy and moderate to deep nasolabial folds. Radiesse is well-established in facial plastic surgery for soft tissue augmentation. Over the years, various studies have confirmed its safety, longevity and biocompatibility (specifically the degradable, plastic-elastic degradation). This study suggests the potential for new bone formation at the bony interface and the biocompatibility of injectable HA. The potential for injectable HA can be osteointegrated and used to inject the material directly onto the underlying bone. Unfortunately, our technique for periosteal disruption was not optimal, and further study on a larger scale is warranted to better elucidate the stimulus for the new bone formation. Radiesse has been used for over 2 decades in other formulations for open craniofacial reconstruction. It is approved for the treatment of HIV related facial lipoatrophy and moderate to deep nasolabial folds. Radiesse is well-established in facial plastic surgery for soft tissue augmentation. Over the years, various studies have confirmed its safety, longevity and biocompatibility (specifically the degradable, plastic-elastic degradation). This study suggests the potential for new bone formation at the bony interface and the biocompatibility of injectable HA. The potential for injectable HA can be osteointegrated and used to inject the material directly onto the underlying bone. Unfortunately, our technique for periosteal disruption was not optimal, and further study on a larger scale is warranted to better elucidate the stimulus for the new bone formation.