3-27-2015

Burden of Periprosthetic Joint Infection and its Treatment on Kidney Function

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/rothinsposters

Part of the Orthopedics Commons

Recommended Citation
http://jdc.jefferson.edu/rothinsposters/13
Burden of Periprosthetic Joint Infection and its Treatment on Kidney Function

Pouya Alijanipour MD, Snir Heller MD, Camilo Restrepo MD, Collin Ackerman BS, Edward J. Filippone MD, William J. Hozack MD.
Investigation performed at the Rothman Institute at Thomas Jefferson University, Philadelphia, PA.

INTRODUCTION

Patients with periprosthetic joint infection (PJI) are subjected to several potentially nephrotoxic conditions such as acute and chronic systemic inflammatory reactions, multiple surgical procedures and noxious antibiotics. This study aims to investigate 1) the incidence and severity of kidney injury in patients undergoing surgical treatment for PJI, 2) whether the number of surgeries affects renal function in PJI patients and 3) the potential risk factors for kidney injury.

MATERIALS AND METHODS

We retrospectively collected data on 3185 consecutive patients who underwent revision arthroplasty due to PJI (282) or aseptic (2903) failure during 2000-2011. Baseline and postoperative serum creatinine (Cr) levels were used to define kidney injury, based on the RIFLE (Risk, Injury, Failure, Loss and End-stage kidney disease) criteria and clinically important minimum rise in serum Cr level (>0.3 mg/dl). Patients with preexisting renal disease (baseline Cr level >1.2 mg/dl) were excluded. PJI was defined using criteria recently proposed by International Consensus Group on PJI.

RESULTS

Based on the mean of the three highest creatinine values, the incidence of kidney injury in PJI and aseptic groups was 26% (72/282) and 7% (98/2903), respectively (p<0.001). The distribution of RIFLE criteria is demonstrated in the table 1. Based on the final post-treatment Cr values, the incidence of clinically significant minimum rise in Cr level was significantly higher in PJI group (165/282, 23%) compared to aseptic group (153/2903, 5%; p<0.001). There was weak trend for the influence of number of surgeries on the incidence of post-treatment residual kidney injury (Spearman’s rho= 0.13, p=0.03). In multivariate analysis, accumulative intravenous vancomycin dosage (p<0.01), intraoperative volume repletion (p=0.049), and estimated blood loss (p=0.08) were associated with RIFLE classification (Figures 1-3). The demographic factors, Charlson comorbidity index, use of spacer, duration of surgery, perioperative anemia, transfusion, anticoagulation method and implant type (cemented versus non-cemented) did not have any association.

DISCUSSION

The risk of sustaining clinically significant kidney injury in patients with PJI who undergo revision surgery is increased compared with patients undergoing aseptic revision arthroplasty. This difference does not seem to be fully explained by the increased number of surgical procedures in PJI patients. Increased need for intraoperative volume repletion due to blood loss and intravenous vancomycin administration are significant risk factors for acute kidney injury following septic revision surgery. Recognition of potential risk factors for such adverse effect should lead to implementation of appropriate nephron-protective strategies, such as adequate intraoperative hydration and meticulous adjustment of postoperative vancomycin dosage, in PJI patients.

REFERENCES