Dosimetric Advantages of Active Tracking and Dynamic Dose Delivery

I. Buzurovic
Thomas Jefferson University and Hospitals

K. Huang
Thomas Jefferson University and Hospitals

M. Werner-Wasik
Thomas Jefferson University and Hospitals

T. Biswas
Thomas Jefferson University and Hospitals

J. M. Galvin
Thomas Jefferson University and Hospitals

Follow this and additional works at: https://jdc.jefferson.edu/bodinejournal

Recommended Citation
DOI: https://doi.org/10.29046/TBJ.003.1.008
Available at: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/9
Dosimetric Advantages of Active Tracking and Dynamic Dose Delivery

Authors

This accepted abstract is available in Bodine Journal: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/9
Dosimetric Advantages of Active Tracking and Dynamic Dose Delivery

Buzurovic, I., Huang, K., Werner-Wasik, M., Biswas, T., Galvin, J.M., Dicker, A., Yu, Y., Podder, T.
Department of Radiation Oncology, Thomas Jefferson University and Hospitals, Philadelphia, PA

Purpose
To investigate dosimetric effect of tumor tracking. To evaluate changes of treatment volumes when tracking is applied.

Method and Materials
Tumors in thorax region incur significant amount of motion and deformation due to respiratory and cardiac cycles. In this study, volumetric and dosimetric effect of tumor motion tracking have been investigated. We have analyzed data for ten patients who were diagnosed with lung cancer. In order to make dosimetry comparison, the treatment plan was made for each of ten phases of tumor motion. The dosimetric and volumetric effects were analyzed for two groups of tumor motion. In the first group tumor motion was up to 1.5 cm, whereas for the second the motion was up to 2.5 cm.

Results
It was observed that during respiratory cycle GTV was changed from 1-3 cm³ for GTVs around 20 cm³, 5 cm³ for GTVs around 50 cm³, and 20 cm³ for GTVs of 100 cm³ and above, depending on tumor position and respiratory cycle itself. When active tracking was applied and tumor motion was up to 1.5 cm, irradiated PTV was from 20-30% less for medium size tumors and more than 50% for small size tumors. For tumor motion range up to 2.5 cm, irradiated PTV was two times smaller when tracking is applied. It was noticed that V20 with tracking was from 2-15% less of V20 without tracking, for tumor motion up to 1.5 cm. For tumors within motion range from 2.2 cm to 2.5 cm, V20 with tracking was from 11-30% less comparing to one without tracking. Calculating dose it was concluded that 20% of healthy lung approximately receives from 2 Gy to 6 Gy less when tumor tracking technique was used.

Conclusion
Implementation of real-time tracking techniques can minimize irradiation to healthy tissues and improve sparing of critical organs. Consequently, quality of patient treatment potentially can be improved.

Acknowledgement: Study supported by Elekta, Ltd.