Creating a model antigen system to test the mechanism of GCC-specific tolerance

Patrick Ihejirika
Lincoln University, Patrick.ihejirika@lincoln.edu

Follow this and additional works at: https://jdc.jefferson.edu/summerrcancerimmunotherapy

Part of the Pharmacy and Pharmaceutical Sciences Commons

Let us know how access to this document benefits you

Recommended Citation

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Summer Training Program in Cancer Immunotherapy by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
CREATING A MODEL ANTIGEN SYSTEM TO TEST THE MECHANISM OF GCC-SPECIFIC TOLERANCE

- Patrick Ihejirika
Cancer Cases and Deaths

Leading New Cancer Cases and Deaths – 2012 Estimates

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated New Cases*</td>
<td>Estimated New Cases*</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td>241,740 (29%)</td>
<td>Breast</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>116,420 (14%)</td>
<td>Lung & bronchus</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>73,420 (9%)</td>
<td>Colon & rectum</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>55,600 (7%)</td>
<td>Uterine corpus</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>44,250 (5%)</td>
<td>Thyroid</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>40,250 (5%)</td>
<td>Melanoma of the skin</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>38,160 (4%)</td>
<td>Non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>28,540 (3%)</td>
<td>Kidney & renal pelvis</td>
</tr>
<tr>
<td>Leukemia</td>
<td>26,830 (3%)</td>
<td>Ovary</td>
</tr>
<tr>
<td>Pancreas</td>
<td>22,090 (3%)</td>
<td>Pancreas</td>
</tr>
<tr>
<td>All sites</td>
<td>848,170 (100%)</td>
<td>All sites</td>
</tr>
</tbody>
</table>

	Male	Female	
	Estimated Deaths	Estimated Deaths	
Lung & bronchus	87,750 (29%)	Breast	72,590 (26%)
Prostate	28,170 (9%)	Lung & bronchus	39,510 (14%)
Colon & rectum	26,470 (9%)	Colon & rectum	25,220 (9%)
Pancreas	18,850 (6%)	Pancreas	18,540 (7%)
Liver & intrahepatic bile duct	13,980 (5%)	Ovary	15,500 (6%)
Leukemia	13,500 (4%)	Leukemia	10,040 (4%)
Esophagus	12,040 (4%)	Non-Hodgkin lymphoma	8,620 (3%)
Urinary bladder	10,510 (3%)	Liver & intrahepatic bile duct	6,570 (2%)
Non-Hodgkin lymphoma	10,320 (3%)	Brain & other nervous system	5,980 (2%)
Kidney & renal pelvis	8,650 (3%)	All sites	275,370 (100%)

*Excludes basal and squamous cell skin cancers and in situ carcinoma except urinary bladder.

©2012, American Cancer Society, Inc., Surveillance Research
The main treatment options include:
Surgery, chemo-, radiation, biological therapy.

All treatments present a risk of side effects

Current standard of care: FOLFOX, FOLFIRI, etc

✓ Developed in 1980
✓ Minimal response rate
✓ Prognosis: 5 year survival rate of 63%
Colorectal Cancer Immunotherapy

Meta-analysis of clinical trials reveal a very weak clinical response rate (<1%) for active specific immunotherapy procedures currently available for colorectal cancer

Failure is due to the lack of molecularly defined tumor-associated antigens that can be reliably considered:

• Tumor-specific
• Sufficiently immunogenic
• Shared among different patients

<table>
<thead>
<tr>
<th>Colorectal Cancer TAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutant Self Proteins</td>
</tr>
<tr>
<td>K-ras p53</td>
</tr>
<tr>
<td>Oncofetal / Cancer Testis Antigens</td>
</tr>
<tr>
<td>βhCG Gastrin 5T4</td>
</tr>
<tr>
<td>Overexpressed Self Antigens</td>
</tr>
<tr>
<td>p53 MUC1 SART</td>
</tr>
<tr>
<td>Sialyl-Tn Her2/neu ART</td>
</tr>
<tr>
<td>Survivin CD55 Ep-CAM</td>
</tr>
<tr>
<td>Carcinoembryonic Antigen (CEA)</td>
</tr>
<tr>
<td>Tissue-Specific Differentiation Antigens</td>
</tr>
<tr>
<td>?</td>
</tr>
</tbody>
</table>
Guanylyl Cyclases

<table>
<thead>
<tr>
<th>Guanylyl Cyclases</th>
<th>Isoforms</th>
<th>Ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natriuretic Peptide Receptors</td>
<td>GCA, GCB</td>
<td>ANP, BNP, CNP</td>
</tr>
<tr>
<td>Intestinal Peptide Receptor</td>
<td>GCC, ST</td>
<td>Guanylin, Uroguanylin</td>
</tr>
<tr>
<td>Orphan Receptors</td>
<td>GCD, GCE, GCF, GCG</td>
<td></td>
</tr>
<tr>
<td>Soluble</td>
<td>sGC</td>
<td>NO</td>
</tr>
</tbody>
</table>
Mucosa-Restricted GCC Expression

Swensen et al. 1996. Biochemical and Biophysical Research Communications, 225: 1009-1014

S Schulz et al, unpublished data

E Lin et al, unpublished data

Anti-Tumor Immunity
Predicted CD4 Tolerance Mechanism

Central Tolerance
- Thymus gland
- Deletion
- Treg

Peripheral Tolerance
- Deletion
- Treg
- Anergy

T cell precursor

Mature

Naive

Effector Response
Model System

- Thymus
- GCC TCR Tg
- Equivalent to GCC TCR Tg
- OT-II TCR Tg
- Inducible Antigen Tg
- Equivalent to GCC TCR Tg
<table>
<thead>
<tr>
<th>signal sequence</th>
<th>HA Tag</th>
<th>Ova_{257-264}</th>
<th>Ova_{329-337}</th>
<th>Tac</th>
<th>Transmembrane domain</th>
</tr>
</thead>
</table>

B16

B16-Tac

6μm slice
Tac FACS

Extracellular

Intracellular

Anti-HA

Anti-Tac

Anti-HA

Anti-Tac
Epitopes and surface expression
Creating GCC-based model antigen

Steps:

- cloning different epitopes and signal sequences into GCC:
 - Bip and Prp

- clone the constructs into mammalian expression plasmid (retrovirus)

- create cell lines expressing the constructs by infecting them with retrovirus containing our constructs

- test the new cell lines for 1) Chimeric antigen expression, 2) Chimeric antigen subcellular location, 3) epitope presentation

- work with Dr Eisenlohr’s lab to see how different signal sequences and model epitopes affect our new model antigen.
Overhang PCR

(a) PCR #1
Primers a + b, c + d

AB
CD

PCR #2
Primers a + d

a
AB
CD

AD
Insert into expression vector sequence to verify mutation

(b) PCR #1
Primers a + b, c + d

AB
CD

PCR #2
Primers a + d

a
AB
CD

Chimeric AD
Insert into expression vector sequence to ensure accurate junction
PCR Epitopes and GCC

BipS BipT PrpS PrpT TGCC

SGCC
Overhang PCR

b

PCR #1
Primers a + b + c + d

PCR #2
Primers a + d

Insert into expression vector sequence to ensure accurate junction

Chimeric AD

AB
CD

AD

Bip-S
S-GCC
Bip-S-GCC
Screening pENTR clones
Cutting inserts out

- Sequenced pENTR clones
- Cut inserts out with NotI and SalI
- Cut pMSCV-Puro with NotI and SalI
- Ligated inserts with pMSCV-Puro
- Transformed bacteria
- Screened colonies
Results

![Image of a gel electrophoresis result with labeled lanes and bands indicating Bip and Prp proteins. Lanes 8-11 show a positive result (+).]
Summary/Future Goal

- Create stable cell lines expressing the constructs by target cell lines with retrovirus containing our constructs.

- Test the new cell lines for 1) chimeric antigen expression, 2) define the subcellular location or our antigen, 3) quantify epitope presentation.

- Work with Dr. Eisenlohr’s lab to see how different signal sequences and model epitopes affect our new model antigen.
Thank You!

- Thomas Jefferson University:
 - Elizabeth Rappaport MD
 - Scott Waldman MD/PhD
 - Adam Snook PhD
 - Michael Magee
 - Bo Xiang
 - Laurence Eisenlohr VMD, PhD
- St. Joseph University
- Audrey Fritzinger