November 2009

Frontismatter, Preface, Table of Contents, and List of Illustrations

Let us know how access to this document benefits you

Follow this and additional works at: http://jdc.jefferson.edu/regional_anatomy

Part of the History of Science, Technology, and Medicine Commons

Recommended Citation

http://jdc.jefferson.edu/regional_anatomy/1

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Regional anatomy McClellan, George 1896 Vol. 1 by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
REGIONAL ANATOMY

IN ITS RELATION TO

MEDICINE AND SURGERY.

BY

GEORGE McCLELLAN, M.D.,

LECTURER ON DESCRIPTIVE AND REGIONAL ANATOMY AT THE PENNSYLVANIA SCHOOL OF ANATOMY, PROFESSOR OF ANATOMY AT THE PENNSYLVANIA ACADEMY OF THE FINE ARTS, MEMBER OF THE ASSOCIATION OF AMERICAN ANATOMISTS, ACADEMY OF NATURAL SCIENCES, ACADEMY OF SURGERY, COLLEGE OF PHYSICIANS, ETC., OF PHILADELPHIA.

ILLUSTRATED FROM PHOTOGRAPHS TAKEN BY THE AUTHOR OF HIS OWN DISSECTIONS, EXPRESSLY DESIGNED AND PREPARED FOR THIS WORK, AND COLORED BY HIM AFTER NATURE.

"L'anatomie n'est pas telle qu'on l'enseigne dans les écoles."—Bichat.

IN TWO VOLUMES.

VOL. I.

THIRD EDITION.

(Ninth Thousand.)

JEFFERSON

PHILADELPHIA.

PUBLISHED BY THE EDITOR.

1880.
TO THE MEMORY

OF MY FATHER,

JOHN H. B. McCLELLAN, M.D.,

AND OF MY GRANDFATHER,

GEORGE McCLELLAN, M.D.
PREFACE TO THE SECOND EDITION.

That five thousand copies of Regional Anatomy have already been disposed of in America and England, and that the text is in progress of translation into French and German, are gratifying proofs of its favorable reception by the profession.

In venturing to present a second edition the author takes occasion to acknowledge the many kindly notices and reviews which have been bestowed upon his work.

The text has been thoroughly revised, and the reproduction of the illustrations from the original stones has received unremitting care from the lithographers, whose experience has enabled them to overcome some of the difficulties of producing the desired colors on the steam press, so that it is believed in this respect their work will be found to excel that of the first edition.

The stones from which the illustrations of the brain are now presented have mostly been re-drawn from the original photographs.

No one can more fully realize the shortcomings of the work than does the author, who assures his readers that he will at all times be grateful for any suggestions which may occur to them as likely to render his effort more complete and thereby assist him in his chief aim, the advancement of the knowledge of anatomy.

Broad and Spruce Streets,
Philadelphia, May, 1894.
There has been a great deal said of the importance of anatomical knowledge, which is universally conceded to be the foundation of the study of medicine.

As a teacher of anatomy, I have used all my influence to impress this on the minds of students, assuring them that the best book on anatomy is, and always will be, the body itself.

In the curricula of the colleges and universities this is emphasized by a compulsory course in the dissecting-room, and each candidate for a degree is obliged to dissect three parts—the head, and the extremities, with contiguous portions of the trunk—at least once. From the knowledge gained by these dissections, and from lectures and textbooks, a student is supposed to acquire the information necessary to enable him to work intelligently and beneficially in his profession. He is expected to learn anatomy from his three parts.

Considering the facts that the first part is generally wasted in acquiring the methods of using the instruments; that all the parts are seldom carefully injected with proper preservative; that the student rarely has the opportunity of seeing the viscera of the cranium, thorax, and abdomen in situ, much less of examining them and noting their size or structure and their relative positions to one another and to the cavities which contain them; and that often the value of the opportunity is not estimated until it is lost, it cannot be a matter of wonder that students look upon anatomy as one of their chief difficulties, and that only a few continue its study after graduation. There are many practical obstacles in the way of obtaining better and more abundant material for such research; but, after some years' experience, I am forced to acknowledge that, even if these obstacles were overcome, the distaste for the actual labor of dissecting, which, besides being exacting, is associated with much that is revolting, and even hazardous to health, would deter many students from gaining that practical knowledge from personal observation which would enable them to recognize the different tissues by the sense of touch as well as by the sense of sight.

In a crowded lecture-room only those who are very near can see the demonstrations so as really to profit by them. Extempore drawings are of great value in awakening and retaining the interest of students, whose memories are often overtasked, and have an advantage over the most carefully prepared diagrams, models, or preparations; but there
cannot be any means of illustration equal to the real thing in teaching, and the best substitute is that which aims at producing the most realistic impressions. Such illustrations have been attempted in the plates for the present work.

Regional Anatomy, or the anatomy of the different regions of the body individually considered, in the relations of their parts to one another, as they are naturally found, is really the most direct method of studying the subject. It is also the most useful form of anatomical research, and, although it may at first sight seem more difficult because it presents a complex in the place of a simple object, such as was demonstrated in the old method of considering the bones, the ligaments, the muscles, the vessels, and the nerves as so many distinct structures, the greater interest soon growing from the evidence of its practical usefulness fully compensates for the effort required.

The interest which my classes have shown in this treatment of anatomy has led me to undertake this work. It is largely the result of information acquired by dissecting, and of clinical observations in hospital and private practice. In its preparation I have consulted such ancient and modern books on anatomy as I could obtain, and have gleaned from them much information which suggested many of the dissections showing relations of structures. No quotation from or direct reference to these works, however, is introduced in the text, which has also, for the sake of clearness, been kept free from notes.

Assuming some previous knowledge of the bones on the part of the reader, I have exercised the privilege of adopting such modifications in the nomenclature as may render certain parts more easily comprehended, but have retained such names and terms as have an historic association, believing that they add to the interest and fasten themselves on the memory, rather than detract from the mastery of so difficult a study. It is to be regretted that anatomy loses much in consequence of the want of a definite nomenclature. The suggestions of modern writers as to technical terms, if accompanied by a corresponding clearness of description, might be of benefit to the student; but, while not underrating the importance of scientific exactness of expression, I am of the opinion that the ordinary student’s attention soon wears of technicality, whether written or spoken, and I have therefore made use of such terms in my text as experience has shown to be most easily understood and remembered. Anatomy, to be of use, must be made a practical and not a theoretical study. It is difficult enough pro re nata, and, if hard, need not be dry.

Should the present book fulfil its mission, it will be by presenting the matter in a new form, which it is hoped will prove interesting and useful, alike to the practitioner and to the student who intends to practise. The plates are expressly prepared to illustrate and verify the descriptions, and are as faithful representations of the dissections as they could be made. It should be borne in mind, however, that no true picture of the actual subject will have the distinct demarcation and clearness of a diagram, any more than the representation of a natural landscape indicates mountains, rivers, and boundary lines with the exactness of a map. Diagrams will therefore always be useful to the student in showing him what he ought to see, but such illustrations as are here attempted
should be valuable in enabling him to recognize things as they actually are. These representations are intended to meet the need both of the beginner in dissecting, who is appalled by the want of correspondence between that which he actually sees and that which he has been led to expect by diagrams or description, and of those whose time is too gravely occupied by the pressure of professional duties to warrant their dissecting for themselves. Accuracy has been the chief object, and I have relied upon the unfailing precision of the camera to present the true relations of the parts, which were in each case left in situ, only the adipose and connective tissues being removed, to give distinct impressions. Much thought, time, and expense have been given to the photographic details, such as the arrangement of the light to modify the shadows, the exposure and development of the negatives, and the subsequent printing and toning of the pictures to get the desired effect for the application of the water-colors. The coloring of the originals from which the plates were made on stone, under my personal supervision, was a study from nature, with perhaps some excess of tint or shade, as might be expected where the paints were mixed and applied with more enthusiasm than artistic skill.

The dissections, in all about three hundred, were invariably the work of my own scalpel, and were all done upon subjects selected as best showing the normal relations of the parts, without pathological change, while such facts as seem valuable regarding the condition or modes of preparation are mentioned in the description of every plate. Each figure is also accompanied by a separate and complete explanatory table,—every number being placed in regular order, so that any object may be readily found.

To Messrs. Lippincott Company, the publishers, my thanks are due for the warmth with which they have entered into my undertaking, for the strong sympathy and interest they have shown in my work, and for the care which they have taken to present the text to the reader in a clear and attractive form.

To Messrs. Armstrong & Co., of Boston, I am indebted for their painstaking fac-simile reproductions of my systematized views of dissections, which preserve the photographic accuracy and the realistic effect of the coloring of the originals, and which not only ought to render this an acceptable text-book, but should also awaken a keener interest in the study of Regional Anatomy.

GEORGE McCLELLAN.

PHILADELPHIA, October, 1890.
CONTENTS OF VOLUME I.

THE REGION OF THE HEAD pages 1-60
Surface-Form and Landmarks of the Skull.—Bones of the Head.—Sutures.—Tables of the Skull.—Diploic Structures.—Fontanelles.—Foramina.—Scalp.—Scalp Hair.—Arteries of the Scalp.—Veins of the Scalp.—Lymphatic Vessels of the Scalp.—Nerves of the Scalp.—Occipito-Frontalis Muscle.—Aponeurosis of the Scalp.—Epicanium.—Peri­cranium.—Temporal Fascia.—Thickness of the Skull-Cap.—Dura Mater.—Pachy­lonian Bodies.—Tentorium.—Falx Cerebri.—Falx Cerebelli.—Arteries of the Dura Mater.—Arachnoid.—Cerebro-Spinal Fluid.—Pia Mater.—Arteries of the Brain.—The Brain.—Lobes of the Cerebrum.—Primary Fissures of the Hemispheres.—Secondary Fissures of the Hemispheres.—Fissure of Rolando.—Sylvian Fissure.—Parieto-Occip­ital Fissure.—Hippocampal Fissure.—Transverse Fissure.—Interparietal Fissure.—Convolutions of the Brain.—Cranio-Cerebral Topography.—Base of the Cerebrum.—Cranial Nerves.—Medulla Oblongata.—Pons Varolii.—Cerebellum.—Fourth Ven­tricle.—Aqueduct of Sylvius.—Third Ventricle.—Foramen of Monro.—Lateral Ventricles.—Fornix.—Septum Lucidum.—Fifth Ventricle.—Corpus Striatum.—Optic Thalamus.—Corpus Callosum.—Diverging Fibres of the Medullary Structure.

THE REGION OF THE EAR pages 60-79
Pinna, or Auricle.—Cartilages of the Auricle.—Ligaments and Muscles of the Auricle.—Arteries, Veins, and Nerves of the Auricle.—Auditory Meatus.—Membrana Tym­pani.—Tympanum, or Middle Ear.—Ossicles.—Facial Nerve within the Temporal Bone.—Internal Ear, or Labyrinth.—Organ of Corti.—Auditory Nerve.—Auditory Artery and Auditory Vein.

THE ORBITAL REGION AND THE EYE pages 79-107
Walls of the Orbits.—Eyebrows.—Eyelids.—Muscles of the Eyelids.—Lachrymal Gland.—Conjunctiva.—Cornea.—Sclerotic Coat.—Muscles of the Eyeball.—Capsule of Tenon.—Sensory Nerves of the Orbit.—Ophthalmic or Ciliary Ganglion.—Ophthalmic Ar­tery.—Optic Nerve.—Choroid Coat.—Ciliary Muscles.—Iris.—Pupil.—Aqueous Humor.—Crystalline Lens.—Vitreous Body.—Retina.—Porus Opticus.

THE REGION OF THE NOSE AND THE NASAL CAVITIES . pages 107-116
Nasal Bones.—Cartilaginous Framework of the Nose.—Muscles in connection with the Nose.—Arteries, Veins, and Lymphatics of the Nose.—Nerves of the Nose.—Nasal Fosse or Cavities.—Infundibulum.—Nasal Meatuses.—Nasal Duct.—Schniederian Mucoa Membrane and Olfactory Cells.—Anterior and Posterior Nares.—Vessels of the Nasal Cavities.—Olfactory Nerves.
CONTENTS.

THE REGION OF THE FACE pages 116-130
 Landmarks of the Face.—Skin of the Face.—Muscles of the Face.—Arteries of the Face.
 —Sensory Nerves of the Face.—Branches of the Trifacial Nerve of the Face.—Motor Nerves of the Face.

THE REGION OF THE PAROTID GLAND pages 130-136

THE DEEP STRUCTURES OF THE FACE pages 136-148
 Landmarks.—Temporo-Maxillary Joint.—Pterygoid Muscles.—Branches of the Internal Maxillary Artery and Vein.—Sphenopalatine or Meckel’s Ganglion.—Branches of the Inferior Maxillary Nerve.—Otic Ganglion.—Superior Maxillary Bones.—Antra of Highmore.—Palatine Canals and Foramina.—The Incisive Bone in relation to Cleft Palate.

THE REGION OF THE MOUTH pages 148-175
 Lips.—Coronary Arteries.—Buccal Glands.—Gums and Teeth.—Cavity of the Mouth.—Hard Palate.—Soft Palate.—Pillars of the Palate.—Muscles of the Palate.—Vessels and Nerves of the Palate.—Tongue.—Papillae.—Muscles of the Tongue.—Sublingual Salivary Gland.—Submaxillary Salivary Gland.—Hyoid Bone.—Lingual Artery.—Exposure of the Lingual Artery for Ligation.—Motor Nerve (Hypoglossal) to the Tongue.—Sensory Nerves (Lingual and Glosso-Pharyngeal) to the Tongue.—Submaxillary Ganglion.—Lymphatic Vessels to the Tongue.—Fauces.—Tonsils.—Pharynx.—Muscles of the Pharynx.—Eustachian Tube.

THE REGION OF THE LARYNX pages 175-187
 Cartilages of the Larynx.—Thyroid, Cricoid, and Arytenoid.—Epiglottis.—Vocal Cords.—Glottis.—Intrinsic Muscles of the Larynx.—Extrinsic Muscles of the Larynx.—Nerves and Vessels of the Larynx.

THE REGION OF THE NECK pages 187-240
CONTENTS.

THE REGION OF THE THORAX ... pages 240-320

THE DIAPHRAGM ... pages 320-323
Ligamenta Arcuata.—Openings in the Diaphragm.—Vessels and Nerves of the Diaphragm.

THE REGION OF THE SHOULDER ... pages 323-337
Shoulder-Girdle.—Clavicle.—Scapula.—Muscles of the Scapula.—Upper End of the Humerus.—Shoulder-Joint.—Capsular Ligament.—Tendons of the Muscles in relation to the Shoulder-Joint.—Bursa in relation to the Shoulder-Joint.—The Deltoid Muscle and its Insertion.—Grouping of the Muscles in effecting the Various Movements of the Shoulder.—Dislocations of the Shoulder.—Fractures at the Shoulder.—Relations of the Parts in Amputation at the Shoulder.

THE REGION OF THE AXILLA ... pages 337-348
Axillary Folds.—Axillary Fascia.—Cervico-Axillary Passage.—Relations of the Cutaneous Branches of the Intercostal Nerves to the Axilla.—Axillary Artery and its Branches.—Axillary Veins.—Brachial or Axillary Plexus of Nerves.—Lymphatic Glands of the Axilla.
CONTENTS

THE REGION OF THE ARM pages 348-362
Lower Portion of the Humerus.—Epicondyles and Supra-Condyloid Ridges.—Surface-Marking.—Skin.—Bicipital Depressions.—Deep Fascia of the Arm.—Hiatus Semilunaris.—Biceps Muscle.—Brachialis Anticus Muscle.—Triceps Muscle.—Branchial Artery and its Branches.—Operation for Ligating the Brachial Artery.—Vene Comites of the Brachial Artery.—Branches of the Brachial Plexus in the Arm.—Median Nerve.—Musculo-Cutaneous Nerve.—Ulnar Nerve.—Internal Cutaneous Nerve, and Musculo-Spiral Nerve.—Fractures of the Shaft of the Humerus.—Relations of the Parts in Amputation through the Middle of the Arm.—Ossification of the Humerus.

THE REGION OF THE ELBOW pages 362-372
Upper Ends of the Ulna and Radius.—Elbow-Joint.—Superior Radio-Ulnar Joint.—Skin over the Front of the Elbow.—Superficial Veins at the Bend of the Elbow.—Bursa about the Elbow.—Dislocation at the Elbow.—Fractures at the Elbow.—Relations of the Parts in Amputation at the Elbow.—Resection of the Elbow.

THE REGION OF THE FOREARM pages 372-396
Shafts and Lower Ends of the Radius and Ulna.—Inferior Radio-Ulnar Joint.—Interosseous Ligament.—Humero-Ulnar Shaft.—The Skin over the Forearm.—Superficial Radial Vein.—Cutaneous Nerves of the Forearm.—Deep Fascia of the Forearm.—Muscles of the Forearm.—Radial Artery and its Branches.—Ulnar Artery and its Branches.—Median Nerve in the Forearm.—Branches of the Musculo-Spiral Nerve in the Forearm.—Fractures of the Bones in the Forearm.—Development of the Radius and Ulna.—Relations of the Parts in Amputation through the Middle of the Forearm.

THE REGION OF THE WRIST AND THE HAND pages 396-418
Carpal Bones.—Radio-Carpal or Wrist Joint.—Triangular Fibro-Cartilage.—Synovial Membrane.—Ligaments of the Wrist.—Movements at the Wrist-Joint.—Metacarpal Bones.—Phalanges.—Metacarpal-Phalangeal Joint.—Interosseous Muscles.—Dorsal Aponeurosis of the Fingers.—Joint of the Thumb with the Trapeziun.—Muscles of the Ball of the Thumb.—Muscles of the Ball of the Little Finger.—Surface-Markings of the Wrist and Hand.—Skin over the Wrist.—Superficial Veins and Nerves.—Posterior Annular Ligament.—Skin over the Back of the Hand.—Superficial Veins of the Hand.—Branches of the Radial Nerve.—Radial Artery passing between the First and Second Metacarpal Bones to enter the Palm.—Branches of the Ulnar Nerve.—Palm of the Hand.—Thenar Eminence.—Hypothenar Eminence.—Linea Vitalis.—Linea Cephalica.—Linea Mensalis.—Linea Hepatica.—Plica Interdigitalis.—Subcutaneous Tissue of the Palm.—Palmar Fascia.—Anterior Annular Ligament.—Superficial Arterial Palmar Arch.—Deep Arterial Palmar Arch.—Wounds of the Palm.—Distribution on the Fingers of the Ulnar Nerve.—Distribution of the Median Nerve on the Fingers.—Superficial Lymphatic Vessels of the Palmar and Dorsal Surfaces of the Hand.—Nails.—Growth of the Nails.—Relation of the Parts in Amputations of the Fingers.—Development of the Bones of the Wrist and Hand.
LIST OF ILLUSTRATIONS TO VOLUME I.

PLATE 1.
The landmarks of the skeleton of the regions of the head, face, and neck, on the right side, with their relations to the surface coverings.

PLATE 2.

Figure 1.
Skull showing a topographical survey of the relations of the sutures and eminences to the principal fissures of the brain, and the approximate lower level line of the cerebrum.

Figure 2.
The left side of a skull, with the parietal bone removed, showing the subjacent convolutions of the left cerebral hemisphere (stripped of their membranes), with a topographical survey of the motor area of the opercular region thus exposed.

PLATE 3.

Figure 1.
The base of the skull seen from within, showing the exits of the cranial nerves. The dura mater lining the fossae of the skull is retained, surrounding and forming sheaths for all the nerves which are left in situ after the removal of the brain. (From a female head aged twenty-one years.)

Figure 2.
The distribution of the branches of the trifacial (or fifth cranial) nerve, and their relation to the branches of the internal maxillary artery.

Figure 3.
The posterior view of an adult European skull (the norma occipitalis). Showing remarkable Wormian bones (or ossa triqueta). Nos. 4 and 13.

Figure 4.
The right side of a skull of an adult male, with the outer table rasped away, to show the diploic veins.

Figure 5.
Oblique section through the left temporal bone, to show the tympanic cavity and mastoid cells on one side, and on the other the membrana tympani, the ossicles, and the Eustachian tube.
LIST OF ILLUSTRATIONS TO VOLUME I.

PLATE 4.

Figure 1.
The right hemisphere of the cerebrum removed, to show the falx cerebri and tentorium of the dura mater, and the relations of the great sinuses and their tributaries. (From same head as in Plates 9 and 10.)

Figure 2.
The posterior third of the skull and its scalp removed, to show the posterior view of the dura mater, and the confluence of the lateral and occipital sinuses with the superior longitudinal sinus. Also the posterior segments of the cervical vertebrae are removed, to show the continuation of the dura mater of the brain with that of the spinal cord, the ganglions on the posterior roots of the cervical nerves, and the course of the vertebral arteries through the vertebral foramina.

PLATE 5.

Figure 1.
The pia mater, with its vessels ramifying over the convolutions on the upper surface of the hemispheres. The longitudinal sinus in position, with clusters of the Pacchionian granules within it and upon either side.

Figure 2.
The base of the skull, with the cerebellum retained in the occipital fossae. Portions of the orbital roofs are removed, to show the nerves and muscles passing to the eyeballs.

Figure 3.
The base of the brain, showing the anastomosis of the arteries called the circle of Willis. (From an adult male.)

PLATE 6.

Figure 1.
The upper surface of the brain of a white man about forty-five years of age, in sound condition and normal in general conformation, size, and weight. The right hemisphere is larger than the left, the longitudinal fissure not being in the middle of the cerebral mass. The pia mater has been removed, to demonstrate the surface-markings.

Figure 2.
The under surface of the same brain as in Figure 1, showing the superficial origins of the cranial nerves. The pia mater is removed from the cerebrum, although retained over the cerebellum.

PLATE 7.

Figure 1.
The convolutions and fissures on the external surface of the right hemisphere. (From same brain as in Plate 6.)

Figure 2.
The convolutions and fissures on the external surface of the left hemisphere. (From same brain as in Plate 6.)

PLATE 8.

Figure 1.
The convolutions and fissures of the inner surface of the left hemisphere of the cerebrum, and median section through the base of the brain, cerebellum, pons Varolii, and medulla oblongata. (From same brain as in Plates 6 and 7.)
The convolutions and fissures of the inner surface of the *right* hemisphere of the cerebrum, and median section through the base of the brain, cerebellum, pons Varolli, and medulla oblongata. (From same brain as in Plates 6 and 7.)

N.B.—All the figures representing the brain are from recent healthy specimens in a perfectly natural state, which were prepared and photographed shortly after death, the tissues being unaltered by chemical reagents.

PLATE 9.

Figure 1.
The right side of the head, with the scalp removed, to show the topographical survey of the skull in its relations to the brain. The temporal muscle and its fascia have also been removed, to show their ridges.

Figure 2.
The right side of the head, with the skull removed, showing the dura mater and the main branches of the great meningeal artery. This also illustrates the contiguous relations of the tissues of the scalp to the tables of the skull in their surgical application, and especially to the operation of trephining.

PLATE 10.

Figure 1.
The dura mater removed, to show the vessels of the pia mater over the cortical surface of the right hemisphere. (From same head as in Plate 9.)

Figure 2.
The pia mater removed from the right hemisphere to show the surface-markings of the fissures and convolutions, and a topographical survey of the subdivisions of the motor area of the opercular region according to the most recent investigations of the centres of function of the cortical surface of the cerebrum. (From same head as in Figure 1.)

N.B.—The figures on Plates 9 and 10 were taken in succession from the head of an adult male in remarkable physical health, and represent the structures in their normal condition and position. Comparison of the series will demonstrate the perplexities attending the study of cerebral localization, and the parts to be encountered in cerebral surgery.

PLATE 11.

Figure 1.
Transverse (coronal) section through the head just in front of the ears, passing through the basilar part of the occipital bone below and the bregma above, showing the section of the brain, *in situ*, at the middle of the lateral ventricles. (The figure represents the parts as seen from before.)

Figure 2.
Horizontal section of the head, with the brain in position, showing the lateral ventricles and adjacent parts.

Figure 3.
Antero-posterior section of the head, with the brain in position, through the middle of the right hemisphere. The orbital muscles are seen in relation to the eyeball.

PLATE 12.

Median anterio-posterior vertical section through the head, face, and neck of a powerfully-built man, thirty years of age.
The relations of the great vessels and nerves at the base of the skull to the posterior wall of the pharynx.

The face laid open on the left side, to show the relations of the salivary glands and the vessels and nerves to the tongue.

The posterior wall of the pharynx opened, to show the larynx and the relations of the palate and tonsils from behind.

The lower jaw removed, to show the palate, the tonsils, the fauces, and the tongue extended.

Transverse section of the neck of a negro (male), aged thirty years, from the fifth cervical vertebra behind to the cricoid cartilage in front.

Transverse section at the root of the neck (same as Figure 1) on a level with the first dorsal vertebra.

N.B.—These sections were made on a recent well-developed cadaver, placed in the horizontal position, without any freezing or hardening agent, and the plates represent the relations of the parts absolutely as they were.

Anterior view of the muscles of the face of a well-developed man, aged thirty-five years, showing the delicate interlacing of the fibres about the corners of the eyelids and mouth. This dissection was made with especial care to demonstrate the anatomy of expression in its application to the facial markings now considered characteristic of disorders pertaining to mental, nervous, digestive, and respiratory functions.

N.B.—The platysma muscles have been removed from their attachment at the outer corners of the mouth, where they form the laughing muscles of Santorini. The vessels and nerves have also been removed, as they are shown in other plates, in order to give a clearer idea of the interdependence of the facial muscles.

Dissection of the superficial muscles of the right side of the head, face, neck, thorax, and arm. (From a well-developed male, aged thirty-five years.) The superficial lymphatic glands and vessels of the face and neck are drawn on the photograph (after notes of many dissections), to show their arrangement and position.

The skin removed on the left side of the neck, to show the platysma myoides muscle and the usual position of the great external jugular vein.

The superficial fascia removed from the left side of the face, together with the platysma myoides muscle from the neck, to show the superficial vessels and nerves in these regions, and especially the superficial relations of the parotid gland.
LIST OF ILLUSTRATIONS TO VOLUME I

PLATE 19.
The parotid gland removed from the left side of the face, to show the branches of the facial nerve, and the fascia removed from the posterior cervical triangle, to show more clearly the superficial cervical plexus of nerves.

PLATE 20.
Dissection of the vessels and nerves of the scalp and face on the left side, and the sternomastoid muscle removed from its sternal and clavicular attachments, to display the deep cervical plexus of nerves. The fascial slip to the centre of the omo-hyoid muscle is also removed, to show the relations of the common carotid artery and the internal jugular vein.

PLATE 21.
Deep dissection of the head and neck on the right side, to show the temporal muscle uncovered by its fascia, and the relative positions of the deep cervical and the brachial plexuses of nerves.

PLATE 22.
Figure 1.
Dissection of the back of the neck, to show the superficial muscles and the nerves and arteries in the occipital triangles.

Figure 2.
The deep parotid region. The malar bone and ramus of the lower maxillary bone have been removed, to show the parts beneath, involving the internal maxillary artery (or deep facial artery).

PLATE 23.
Figure 1.
The skin removed from the anterior region of the neck, to show the platysma myoides muscle and the superficial cervical veins.

Figure 2.
The anterior cervical muscles in relation to the veins, arteries, and nerves. The median raphé has been cut through, and the anterior thyroid muscles separated, to display the vessels over the larynx and trachea.

PLATE 24.
Figure 1.
The anterior region of the neck. The sternothyroid and sterno-hyoid muscles are removed, to show the thyroid body in position. (Same as Plate 23.)

Figure 2.
The anterior region of the neck. The isthmus of the thyroid body is divided, and the two lobes drawn to either side, to expose the depth of the trachea at the root of the neck, and its relation to the deep transverse thyroid veins. (Same as Plate 23.)

N.B.—The dissections represented in Plates 23 and 24 were made upon a thick, short-necked, well-developed male subject, aged thirty-five years, to demonstrate the parts especially concerned in the operations of laryngotomy and tracheotomy.

PLATE 25.
Figure 1.
Deep dissection of the root of the neck. The thyroid body and omo-hyoid muscle are hooked aside, to show the vessels and nerves, and the clavicle is detached from the sternum.

Figure 2.
Deep dissection of the root of the neck. (Same as Figure 1, the veins being removed.)
LIST OF ILLUSTRATIONS TO VOLUME I.

PLATE 26.
Figure 1.
The sternum and costal cartilages removed to show the anterior mediastinum, and particularly the relations of the pleura to the pericardium.

Figure 2.
Dissection of the vascular system of the fetus (at five months and a half).
N.B.—The injection was introduced by the umbilical vein, and the photograph represents the actual size.

Figure 3.
Dissection of a child, three weeks after birth, showing especially the relations of the thymus gland and the supra-renal capsules.

Figure 4.
Photograph of a preparation (in the author's cabinet), showing a remarkable disposition of the heart and independent origins of all the great vessels from the root of the aorta.
N.B.—This specimen was removed from the body of a young man, aged twenty-seven years, who died from phthisis. There is no arch to the aorta, and the position of the heart, when discovered, was vertical within the thorax, as shown in the figure. There is only one auricle and one ventricle. No other abnormality of the arteries was found in the body.

PLATE 27.
Topographical survey of the front of the body of a well-developed adult male, with especial reference to the accuracy of the relations of the thoracic and abdominal viscera to the external surface coverings.

PLATE 28.
Front view of a natural (ligamentous) skeleton of a European male, aged thirty-eight years, showing the landmarks with their relations to the surface covering.

PLATE 29.
The anterior wall of the thorax and upper part of the abdomen removed, to show the relations of the heart, lungs, diaphragm, liver, stomach, and spleen to the ribs and their sternal cartilages. The lungs are inflated (as in full inspiration), to indicate the so-called area of the heart's dulness. (From a male subject, about forty years old, with normal condition of the organs.)
N.B.—The subject upon which this dissection was made presented the rare anomaly of a distinct eighth true rib on either side. This is well shown in the plate.

PLATE 30.
The lungs inflated, so as to demonstrate the approximation of their edges over the heart, as in full inspiration.
N.B.—This and the succeeding plates (31, 32, and 33) were taken from a male subject, about thirty-two years of age, who died from choking. The lungs were absolutely healthy. The pleura were removed in the dissection.

PLATE 31.
The relations of the lungs, in moderate distention, to the pericardium, as in ordinary breathing. Also the great vessels and nerves at the root of the neck. The sternum and costal cartilages are removed.
LIST OF ILLUSTRATIONS TO VOLUME I.

PLATE 32.
The relations of the lungs, partially distended (as in tranquil respiration), to the pericardium. Also the vessels and nerves at the root of the neck.

PLATE 33.
The relations of the lungs, when completely collapsed, to the heart. Also the deeper relations of the vessels and nerves at the root of the neck. The pericardium is removed, and the ribs sawn through at their middle, to give a better view into the cavity of the thorax. The clavicles also are removed.

PLATE 34.
Preparation to show the relations of the heart within the pericardium.
N.B.—The ribs are cut away, so as to give an unrestricted view.

PLATE 35.
Preparation to show the relations of the heart and the great vessels at the root of the neck. The pericardium is opened and held aside.

PLATE 36.
Dissection of the pneumogastric nerve on the left side, and its relations to the phrenic and sympathetic nerves. (From a female, aged thirty-seven years.)

PLATE 37.
The posterior mediastinum, exposed on the right side by removing the ribs near their angles and drawing forward the heart and lungs, to demonstrate the entrance of the vena azygos major into the superior vena cava, and the distribution of the right pneumogastric and phrenic nerves.

PLATE 38.
The posterior mediastinum and its contents, as seen on removal of the dorsal vertebrae (from the second to the ninth) with portions of their contiguous ribs. The lungs are expanded, so as to show their proper relations posteriorly.

PLATE 39.
View of the thoracic organs from behind, the dorsal vertebrae (from the second to the tenth) with portions of their contiguous ribs removed. The lungs are displaced, to show the relations of the heart.

PLATE 40.
The normal position and relations of the thoracic aorta, seen from behind, the lungs being removed, to show their roots.

PLATE 41.
Figure 1.
The thorax of a young female, with the second, third, fourth, fifth, and sixth ribs removed on the left side, and the left lung drawn aside, to show the relations of the root of the lung and the apex of the heart to the diaphragm.

Figure 2.
Transverse section through the thorax of an adult male, on a level with the lower borders of the third ribs anteriorly and through the body of the eighth dorsal vertebra posteriorly, seen from below.
PLATE 42.
Dissection of the vascular system in a child eight months old, showing the principal arteries and veins in their proper relations and positions.

PLATE 43.
Figure 1.
The front view of the heart removed from the body, with the roots of the great vessels arising from the aorta.

Figure 2.
Section of the right auricle and ventricle, to show the interior of their cavities.

Figure 3.
The posterior view of the heart in relation to the thoracic aorta.

Figure 4.
The posterior walls of the left auricle and ventricle removed, to show the interior of their cavities.

PLATE 44.
Figure 1.
Dissection of the anterior thoracic region, showing the superficial fascia and mammary glands on the left side and the great pectoral muscle on the right. The arms are drawn upward and outward, to bring the axillary borders into prominence and expose their relations to the vessels and lymphatic glands; of importance in operations upon the breast. (From a female, aged twenty-four years.)

Figure 2.
Dissection of the muscles of the shoulder and axilla on the right side. The lymphatic glands and vessels are superposed upon the photograph (from notes of many observations), to show their proper relations.

PLATE 45.
Figure 1.
Dissection of the right axillary space and inner side of the arm, to show the relations of the vessels and nerves.

Figure 2.
Deep dissection of the right axilla and inner side of the arm. The deltoid and pectoralis major and minor muscles are detached and reflected, to show the intricate relations of the brachial plexus of nerves to the artery and veins.

PLATE 46.
Figure 1.
The anterior view of the right elbow and forearm of an adult male, with the superficial fascia carefully removed, to show the relations of the superficial veins and nerves.

Figure 2.
Deeper dissection of same arm as Figure 1. The bicipital fascia and the superficial flexor muscles are removed, while most of the superficial veins are retained, to preserve their relations.

PLATE 47.
Figure 1.
The radial border of the forearm and elbow, showing the relations of the superficial veins—the superficial fascia being carefully removed—to the muscles and tendons.
LIST OF ILLUSTRATIONS TO VOLUME I.

Figure 2.
The anterior view of the left elbow, to show particularly the bicipital fascia in relation to the superficial veins and the deep vessels and nerves.

Figure 3.
Dissection of the veins on the back of the hand and forearm, with their relations to the underlying tendons and nerves.

PLATE 48.

Figure 1.
Dissection of the palm of the right hand, showing the superficial layer of the palmar fascia.

Figure 2.
Dissection of the palm of the right hand. The superficial layer of the palmar fascia is hooked aside, to show the deep layer of the fascia and the superficial palmar arterial arch.

Figure 3.
Dissection of the palm of the right hand, showing the position of the superficial arterial arch and the relations of its digital branches to the nerves and flexor tendons.

Figure 4.
Dissection of the palm of the right hand. The tendons are cut away, to show the deep palmar arterial arch and its relations, etc.

PLATE 49.

Figure 1.
Dissection of the muscles of the right forearm and hand in pronation, to show the relations of the extensor tendons of the thumb to the radial artery.

Figure 2.
Dissection of the muscles and tendons of the back of the right forearm and hand in extension.

Figure 3.
Dissection of the tendons of the back of the left hand, showing the relations of the nerves and arteries.

PLATE 50.

Figure 1.
The relations of the structures involved in the operation of trephining the skull, as in a case of cortical epilepsy. The disk of bone has been removed and the pia mater partially detached, to expose the convolutions on the right hemisphere, supposed to include the centre of the movements of the hand, and especially of the thumb.

Figure 2.
Amputation at the left shoulder-joint by the oval-flap method (of Larrey), showing the relations of the parts exactly as they appear after the completion of the operation.

PLATE 51.

Figure 1.
Amputation through the middle of the left arm by the antero-posterior oval-flap method, showing the proper relations of the vessels and nerves to the humerus, in a well-developed man, aged forty-eight years.
LIST OF ILLUSTRATIONS TO VOLUME I.

Figure 2.
Amputation at the left elbow-joint by the antero-posterior flap method (of Dupuytren), showing the relations of the severed structures immediately after the completion of the operation. The olecranon process of the ulna is retained, to preserve the function of extension of the triceps muscle.

Figure 3.
Amputation through the middle of the left forearm by the antero-posterior oval-flap method, showing the relations of the severed structures on completion of the operation.

PLATE 52.

Figure 1.
The second phalangeal joint of the middle finger of the left hand laid open by an oval incision, as for the anterior flap of an amputation at this joint, to show the relations of the bone surfaces and the adjacent vessels.

Figure 2.
The metacarpo-phalangeal joint of the middle finger of the left hand opened, as in the first stage of an amputation (by the lateral-flap method) of the finger, to show the appearance of the ends of the bones at this joint. The position of the joint, on the dorsal surface, before the incisions were made, can be judged by comparison with the adjacent fingers.

Figure 3.
Amputation at the carpo-metacarpal joint of the thumb of the left hand (by the flap method), showing the relative positions of the structures severed in the operation.

Figure 4.
The wrist-joint of the right hand laid open by an oval incision, as for the dorsal flap in amputation at this joint, showing especially the appearance of the articulation between the lower end of the radius and the semilunar and scaphoid bones.

Figure 5.
Vertical section through the articulations at the wrist-joint of the right hand, to show the synovial membranes and the cancellous structure and arrangement of the carpal bones.

Figure 6.
The left elbow-joint laid open posteriorly, as in the process of resection or excision of this articulation, to show the relations of the opposing bones and the adjacent structures.

PLATE 53.

Figure 1.
Topographical survey of the right side of the head, face, and neck, with especial adaptation to cranio-cerebral study, the localization of the areas of distribution of the sensory nerves, and spots where electrical stimulation produces reflex contractions of some of the muscles in these regions. Also the landmarks for the operations of tracheotomy and of laryngotomy.

Figure 2.
The left hand in the position of pronation, showing a topographical survey of the areas of distribution of the sensory nerves on the back of the hand and fingers, and spots where electrical stimulation produces reflex contraction of some of the muscles.

Figure 3.
The right hand in the position of supination, showing a topographical survey of the areas of distribution of the sensory nerves on the palm of the hand and anterior surface of the fingers, and spots where some of the muscles may be caused to contract by electrical stimulation. Also the surface-markings on the palm of the hand in relation to the arterial arches.