8-20-2013

Technology in Practice: Promoting Participation in Patients with High Level of Spinal Cord Injury

Morgan Gill
Thomas Jefferson University

Kate Nuschke
Thomas Jefferson University

Kaitlin O'Sullivan
Thomas Jefferson University

Casey Puvogel
Thomas Jefferson University

Alex Sagnor
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/createday

Recommended Citation

Gill, Morgan; Nuschke, Kate; O'Sullivan, Kaitlin; Puvogel, Casey; and Sagnor, Alex, "Technology in Practice: Promoting Participation in Patients with High Level of Spinal Cord Injury" (2013). *Collaborative Research and Evidence shared Among Therapists and Educators (CREATE Day)*. Paper 4.
https://jdc.jefferson.edu/createday/4

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Collaborative Research and Evidence shared Among Therapists and Educators (CREATE Day) by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Technology in Practice: Promoting Participation in Patients with High Level Spinal Cord Injury
Morgan Gill, Kate Nuschke, Kaitlen O’Sullivan, Casey Puvogel, Alex Sagnor
Contact: keosull@gmail.com
Faculty Mentor: Teal Benevides, MS, OTR/L
Presented in Partial Fulfillment of the Master of Science in Occupational Therapy degree at Thomas Jefferson University

Objectives: At the conclusion of this presentation, the learner will be able to:
- Evaluate different modes of technology used to improve participation in daily occupations with individuals with high-level spinal cord injury (SCI)
- Integrate current evidence into clinical practice
- Discuss implications for future practice, research, and education

PICO: Does the use of technology in individuals with cervical and thoracic level spinal cord injuries improve participation in daily occupations?

Methods:

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical SCI, thoracic SCI, tetraplegia, quadriplegia</td>
<td>FES, robotic, OT, eye gaze, hand, grasp, neuroprostheses, technology</td>
<td>Function, participation, social, leisure, work, ADL, occupation, driving, QOL, self-care, activity, upper limb, upper extremity</td>
</tr>
</tbody>
</table>

Search Limitations: English language, human subjects, adolescents and adults, published 2000-2013

Databases Used: PubMed and CINAHL

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Cervical and thoracic level injuries</td>
<td>- Paraplegia</td>
</tr>
<tr>
<td>- Upper extremity interventions</td>
<td>- Co-morbid physical disabilities</td>
</tr>
<tr>
<td>- Functional electrical stimulation (FES)</td>
<td>- Only incomplete injuries</td>
</tr>
<tr>
<td>- Neuroprostheses</td>
<td>- Interventions related to mobility</td>
</tr>
<tr>
<td>- Electronic aids to daily living (EADL)</td>
<td>- Pediatric populations</td>
</tr>
<tr>
<td>- Functional activity</td>
<td></td>
</tr>
</tbody>
</table>

Final Article Count Based on Inclusion & Exclusion Criteria: 14

Qualitative article critical review form: Letts et al., 2007
Quantitative article critical review form: Law et al., 1998

Results & Clinical Significance:

Surface FES
- Improved performance in communication management, home management, grooming, and feeding1,10,11
- Improved performance in leisure participation3,10
- Research conflicts on ease of home use3,10

Implanted FES
- Improved participation in feeding and grooming7,12,13,14
- Improved participation in communication and home management7,12,13,15
- Improved performance satisfaction in meaningful activities7,12,13,14,15

EADL
- Increased independence in ADLs, leisure participation and comfort in the home4,6,16
- Improved perception of self-efficacy, competency, adaptability, and self-esteem4,16
- Reduced caregiver utilization and/or paid assistance5,8,16

ASIBOT
- Improved participation in drinking and brushing teeth17

Tooth-click technology
- TC provided faster and more reliable clicks than speech recognition
- Persons with tetraplegia performed better with TC/OHM than TC/GHM- explanation is unknown18
Implications:

<table>
<thead>
<tr>
<th>Practice</th>
<th>Research</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Implementation of implanted and surface FES in individuals with spinal cord injuries increase participation in ADLs</td>
<td>- Higher level of research to support use of technology in rehabilitation</td>
<td>- Explore training options to use various types of technology in practice</td>
</tr>
<tr>
<td>- Use of surface FES, implanted FES, and EADLs increases participation in IADLs</td>
<td>- Exploration of additional types of technology</td>
<td>- Provide patient and caregiver education on available technology</td>
</tr>
</tbody>
</table>

References

