ESRD and endoAVF: A giant leap forward

Alison Tan, MD
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/fmlectures

Part of the Family Medicine Commons, and the Primary Care Commons

Let us know how access to this document benefits you

Recommended Citation
https://jdc.jefferson.edu/fmlectures/429

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Family & Community Medicine Presentations and Grand Rounds by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
ESRD and endoAVF
A giant leap forward

Allison Tan, MD
Assistant Professor of Radiology, Interventional Radiology
Thomas Jefferson University Hospital
July 29, 2020
Disclosures

- No financial disclosures
Chronic Kidney Disease (CKD)

- > 3 months of renal dysfunction
 - Albuminuria
 - Urine sediment abnormalities
 - Electrolyte abnormalities
 - Histologic abnormalities
 - Imaging structural abnormalities
 - Prior renal transplant

Most Common Comorbidities
Diabetes Mellitus
Cardiovascular Disease
<table>
<thead>
<tr>
<th>Stages of Chronic Kidney Disease</th>
<th>GFR*</th>
<th>% of Kidney Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>90 or higher</td>
<td>90-100%</td>
</tr>
<tr>
<td>Kidney damage with normal kidney function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td>89 to 60</td>
<td>89-60%</td>
</tr>
<tr>
<td>Kidney damage with mild loss of kidney function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 3a</td>
<td>59 to 45</td>
<td>59-45%</td>
</tr>
<tr>
<td>Mild to moderate loss of kidney function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 3b</td>
<td>44 to 30</td>
<td>44-30%</td>
</tr>
<tr>
<td>Moderate to severe loss of kidney function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>29 to 15</td>
<td>29-15%</td>
</tr>
<tr>
<td>Severe loss of kidney function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 5</td>
<td>Less than 15</td>
<td>Less than 15%</td>
</tr>
<tr>
<td>Kidney failure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• When is dialysis initiated?
 • Signs and symptoms of uremia and volume overload

<table>
<thead>
<tr>
<th>Absolute Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encephalopathy*</td>
</tr>
<tr>
<td>Pericarditis*</td>
</tr>
<tr>
<td>Pleuritis*</td>
</tr>
<tr>
<td>Declining nutrition</td>
</tr>
<tr>
<td>Refractory volume overload</td>
</tr>
<tr>
<td>Fatigue and malaise</td>
</tr>
<tr>
<td>Mild cognitive impairment</td>
</tr>
<tr>
<td>Refractory acidosis, hyperK+, hyperphos</td>
</tr>
</tbody>
</table>

*absolute indications
Data Source: Special analyses, USRDS ESRD Database. The special analyses exclude US territories, unknown age, and unknown/other races. Standardized to the age-sex-race distribution of the 2011 US population.

Data Source: Special analyses, USRDS ESRD Database. Standardized to the age-sex-race distribution of the 2011 US population.
Renal replacement therapy

ESRD

Dialysis

Transplant

Hemo-

Peritoneal

Catheter

Fistula

Graft
Renal replacement therapy

- ESRD
 - Dialysis
 - Hemo-
 - Catheter
 - Peritoneal
 - Fistula
 - Graft
 - Transplant
Renal replacement therapy - Transplant

Data Source: Reference Table D.1 and special analysis of USRDS ESRD Database.
Abbreviation: ESRD, end-stage renal disease.
PREVALENT ESRD

<table>
<thead>
<tr>
<th>Age</th>
<th>Total</th>
<th>HD N</th>
<th>HD %</th>
<th>PD N</th>
<th>PD %</th>
<th>Transplant N</th>
<th>Transplant %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-21</td>
<td>9,667</td>
<td>1,608</td>
<td>16.6</td>
<td>977</td>
<td>10.1</td>
<td>7,082</td>
<td>73.3</td>
</tr>
<tr>
<td>22-44</td>
<td>103,821</td>
<td>50,835</td>
<td>49.0</td>
<td>9,124</td>
<td>8.8</td>
<td>43,862</td>
<td>42.2</td>
</tr>
<tr>
<td>45-64</td>
<td>321,810</td>
<td>190,655</td>
<td>59.2</td>
<td>22,899</td>
<td>7.1</td>
<td>108,256</td>
<td>33.6</td>
</tr>
<tr>
<td>65-74</td>
<td>184,582</td>
<td>123,915</td>
<td>67.1</td>
<td>12,293</td>
<td>6.7</td>
<td>48,374</td>
<td>26.2</td>
</tr>
<tr>
<td>75+</td>
<td>123,794</td>
<td>101,094</td>
<td>81.7</td>
<td>7,426</td>
<td>6.0</td>
<td>15,274</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Data Source: Reference Table D.10 and special analyses, USRDS ESRD Database.
Renal replacement therapy

- ESRD
 - Dialysis
 - Transplant
 - Hemo-
 - Catheter
 - Peritoneal
 - Fistula
 - Graft
Peritoneal Dialysis

- 200,000 patients worldwide
- Given an informed choice, 50% of patients will choose PD first
Renal replacement therapy - PD

Data Source: Reference Table D.10 and special analyses, USRDS ESRD Database. The numbers in this table exclude "Uncertain Dialysis."

<table>
<thead>
<tr>
<th>Age</th>
<th>Total</th>
<th>HD N</th>
<th>HD %</th>
<th>PD N</th>
<th>PD %</th>
<th>Transplant N</th>
<th>Transplant %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-21</td>
<td>9,667</td>
<td>1,608</td>
<td>16.6</td>
<td>977</td>
<td>10.1</td>
<td>7,082</td>
<td>73.3</td>
</tr>
<tr>
<td>22-44</td>
<td>103,821</td>
<td>50,835</td>
<td>49.0</td>
<td>9,124</td>
<td>8.8</td>
<td>43,862</td>
<td>42.2</td>
</tr>
<tr>
<td>45-64</td>
<td>321,810</td>
<td>190,655</td>
<td>59.2</td>
<td>22,899</td>
<td>7.1</td>
<td>108,256</td>
<td>33.6</td>
</tr>
<tr>
<td>65-74</td>
<td>184,582</td>
<td>123,915</td>
<td>67.1</td>
<td>12,293</td>
<td>6.7</td>
<td>48,374</td>
<td>26.2</td>
</tr>
<tr>
<td>75+</td>
<td>123,794</td>
<td>101,094</td>
<td>81.7</td>
<td>7,426</td>
<td>6.0</td>
<td>15,274</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Peritoneal Dialysis
Peritoneal Dialysis

- Falciform ligament
- Liver
- Anterior
- Visceral peritoneum
- Peritoneal cavity (with serous fluid)
- Stomach
- Kidney (retroperitoneal)
- Wall of body trunk
- Parietal peritoneum
- Posterior
Peritoneal Membrane

Peritoneal Space

Mesothelial Cell Layer

Interstitial Matrix

Capillary
• Peritoneal capillary is critical barrier to solute and water transport
 • BF ~ 50-100 mL/min
Peritoneal Capillary

RBC 6-8 μm
(6000-8000 nm)

Capillary Space
- Intercellular Cleft
- Intercellular Gap

Peritoneal Space
- 4-6 nm (numerous)
- >20 nm (1 gap: 10,000 clefts)

Transcellular Transport
- 0.4 - 0.6 nm (numerous)
Methods of Peritoneal Clearance

- Diffusion (solute)
- Ultrafiltration (water)
- Convection (solute)
Methods of Peritoneal Clearance

- Diffusion (solutes)
 - Solutes travel down a concentration gradient
 - Via small and large pores
- Ultrafiltration (water)
- Convection (solutes)
Methods of Peritoneal Clearance

- **Diffusion (solute)**
- **Ultrafiltration (water)**
 - H2O movement due to differences in osmotic pressure
 - Via small pores, large pores, and aquaporins
- **Convection (solute)**
Methods of Peritoneal Clearance

- Diffusion (solute)
- Ultrafiltration (water)
- Convection (solute)
 - “Solvent drag”
 - As H2O moves, other solutes move too
 - Independent of solute concentration gradients
Who places PD catheters?

Surgeon → Laparoscopy

Interventional Radiology → Fluoroscopic + US Guidance

Interventional Nephrology → US Guidance
Technique for IR placement
Technique for IR placement

- Anterior (Superficial)
- Rectus sheath
- Anterior portion
- Posterior portion
- Rectus abdominis
- Peritoneal cavity
- Tranversalis fascia

- Posterior (Deep)

- Linea semilunaris
- Rectus sheath (anterior portion)
- Rectus abdominis
- Linea alba
- Transversalis fascia
- External oblique
- Internal oblique

Philadelphia University + Thomas Jefferson University
Technique for IR placement
Technique for IR placement
Technique for IR placement
Technique for IR placement
Peritoneal Dialysis Prescriptions

• Continuous Ambulatory Peritoneal Dialysis (CAPD)
 • No machine needed
 • 24/7
Types of PD Rx

- Automated Peritoneal Dialysis (APD)
- Continuous Cycling Peritoneal Dialysis (CCPD)
- Machine run cycles
- 7 d/wk
Renal replacement therapy

ESRD

Dialysis

Hemo-

Catheter

Fistula

Graft

Peritoneal

Transplant
Renal replacement therapy

Data Source: Reference Table D.1 and special analysis of USRDS ESRD Database.
Renal replacement therapy

PREVALENT ESRD

<table>
<thead>
<tr>
<th>Age</th>
<th>Total N</th>
<th>HD N</th>
<th>HD %</th>
<th>PD N</th>
<th>PD %</th>
<th>Transplant N</th>
<th>Transplant %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-21</td>
<td>9,667</td>
<td>1,608</td>
<td>16.6</td>
<td>977</td>
<td>10.1</td>
<td>7,082</td>
<td>73.3</td>
</tr>
<tr>
<td>22-44</td>
<td>103,821</td>
<td>50,835</td>
<td>49.0</td>
<td>9,124</td>
<td>8.8</td>
<td>43,862</td>
<td>42.2</td>
</tr>
<tr>
<td>45-64</td>
<td>321,810</td>
<td>190,655</td>
<td>59.2</td>
<td>22,899</td>
<td>7.1</td>
<td>108,256</td>
<td>33.6</td>
</tr>
<tr>
<td>65-74</td>
<td>184,582</td>
<td>123,915</td>
<td>67.1</td>
<td>12,293</td>
<td>6.7</td>
<td>48,374</td>
<td>26.2</td>
</tr>
<tr>
<td>75+</td>
<td>123,794</td>
<td>101,094</td>
<td>81.7</td>
<td>7,426</td>
<td>6.0</td>
<td>15,274</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Data Source: Reference Table D.10 and special analyses, USRDS ESRD Database.
Renal replacement therapy

ESRD

Dialysis

Hemo-

Catheter

Fistula

Graft

Peritoneal

Transplant
Catheter-Based Hemodialysis

• Benefits
 • Rapid start
 • Quick and easy to place
 • Functional
 • Easily removed if renal recovery
 • Multiple placement options
Catheter-Based Hemodialysis

- Negatives
 - High associated morbidity and mortality
 - Infection
 - Hospitalization
 - Death
 - Accelerated vascular injury → lost access
Vascular access use at HD initiation

Data Source: Special analyses, USRDS ESRD Database. ESRD patients initiating hemodialysis in 2005-2017.
Data Source: Special analyses, USRDS ESRD Database. Data from January 1, 2014 to May 30, 2017: (a) Medical Evidence form (CMS 2728) at initiation and CROWNWeb for subsequent time periods. (b) ESRD patients initiating hemodialysis (N = 104,102).
Data Source: Special analyses, USRDS ESRD Database. Data from January 1, 2014 to May 30, 2017: (a) Medical Evidence form (CMS 2728) at initiation and CROWNWeb for subsequent time periods. (b) ESRD patients initiating hemodialysis (N =104,102).
Goal: 66% national prevalent AVF use
- Resulted in a steady increase in the prevalence of AVF
 - 32% (2003) → 63% (2014)

Goal: reduce long-term tunneled catheter use
- Not including bridging catheters
- Has not been as successful

AVFs associated with lowest morbidity
- Higher primary patency
- Lower risk of infection
- Better durability
- Lower associated mortality
- Require fewer interventions

Grafts have their place
- Comparable secondary patency rates
- Potentially a better option in older patients
Renal replacement therapy

ESRD

Dialysis

Hemo-

Catheter

Fistula

Graft

Transplant

Peritoneal
Fistula versus Graft

AV FISTULA

- From the dialysis machine
- To the dialysis machine
- AV Fistula

AV GRAFT

- Artery
- Vein
- Synthetic bridge graft
- Blood to dialysis machine
- Blood from dialysis machine
Graft material

PTFE

DACRON

A: DACRON: https://digital.sciencehistory.org/works/1c18dg840
Graft material

Renal replacement therapy

ESRD

Dialysis

Hemo-

Catheter

Fistula

Graft

Transplant

Peritoneal
Poor maturation of surgical AVFs

 - Randomized, double-blind, placebo controlled, multicenter study
 - Of 758 patients, 60% of fistulas failed to be suitable for HD

 - Observational cohort study
 - USRDS Medicare claims data
 - 54.7% of fistulas used within 4 months of creation

- **Hemodialysis Fistula Maturation Study**
 - 602 AVFs
 - 43.7% matured unaided
 - 27.6% matured with intervention
 - 22.1% failed maturation completely
Technical factors

• Disruption of the vasa vasorum
• Torque and tension on the mobilized vessel
• Healing suture anastomoses can lead to scarring, intimal hyperplasia, and stenosis
Technical factors

- Disruption of the vasa vasorum
- Torque and tension on the mobilized vessel
- Healing suture anastomoses can lead to scarring, intimal hyperplasia, and stenosis
Technical factors

- Disruption of the vasa vasorum
- Torque and tension on the mobilized vessel
- Healing suture anastomoses can lead to scarring, intimal hyperplasia, and stenosis
Technical factors

- Disruption of the vasa vasorum
- Torque and tension on the mobilized vessel
- Healing suture anastomoses can lead to scarring, intimal hyperplasia, and stenosis

Technical factors

• Disruption of the vasa vasorum
• Torque and tension on the mobilized vessel
• Healing suture anastomoses can lead to scarring, intimal hyperplasia, and stenosis
Renal replacement therapy

- ESRD
 - Dialysis
 - Transplant
 - Hemo-
 - Catheter
 - Fistula
 - Peritoneal
 - Graft
Traumatic AVFs
Deep vessels

- Brachial artery + vein
- Radial artery + vein
- Ulnar artery + vein
- Interosseous artery + vein
Superficial veins

- Basilic vein
- Cephalic vein
- Median cubital vein
- Brachial artery + paired veins
- Ulnar artery + paired veins
- Radial artery + paired veins
- Interosseous artery + paired veins
- Perforating vein
Perforating vein
Perforating vein
Percutaneous AVF devices

WAVELINQ™ 4F EndoAVF System

ELLIPSY®
Percutaneous AVF devices - Ellipsys
Percutaneous AVF devices - Comparison

- Post balloon angioplasty to 5 mm
- Immediate tissue fusion
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Device</th>
<th># pts</th>
<th>Technical success</th>
<th>Maturation 90d</th>
<th>Median time to maturation</th>
<th>Mean time to 2 needle cann</th>
<th>Patency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull (2017)</td>
<td>E</td>
<td>107</td>
<td>95%</td>
<td>86%</td>
<td></td>
<td>114.3 d</td>
<td>86.7% for 24m, cum</td>
</tr>
<tr>
<td>Hebibi (2019)</td>
<td>E</td>
<td>34</td>
<td>97%</td>
<td>82%</td>
<td>(10d-6w)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallios (2019)</td>
<td>E</td>
<td>34</td>
<td>97%</td>
<td></td>
<td></td>
<td></td>
<td>82% for prim, 94% sec</td>
</tr>
<tr>
<td>Beathard (2019)</td>
<td>E</td>
<td>105</td>
<td>Unkwn</td>
<td>100%</td>
<td></td>
<td></td>
<td>92.7% for 24m, cum</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Device</td>
<td># pts</td>
<td>Intervention rate (ppy)</td>
<td>Major adverse event rate</td>
<td>Adverse events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hull (2017)</td>
<td>E</td>
<td>107</td>
<td>2.7</td>
<td>many</td>
<td>thrombosis, anast stenosis, steal, ven HTN, coil mig, vein rupture, neuropathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hebibi (2019)</td>
<td>E</td>
<td>34</td>
<td>35%</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallios (2019)</td>
<td>E</td>
<td>34</td>
<td>2.9%</td>
<td>0%</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beathard (2019)</td>
<td>E</td>
<td>105</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Percutaneous AVF devices
Percutaneous AVF devices - WavelinQ

Artery

Vein
Percutaneous AVF devices - WavelinQ
Percutaneous AVF devices - WavelinQ
Percutaneous AVF devices - WavelinQ
Post AVF creation
Percutaneous AVF devices
Pre AVF creation
Post AVF creation

Percutaneous AVF devices

Cephalic vein

Perforator

Artery

endoAVF
Percutaneous AVF devices - Comparison

- Post balloon angioplasty to 5 mm
- Immediate tissue fusion

- Coil 1 brachial vein
- Endothelialized tract ~30d (48h)
Percutaneous AVF devices - WavelinQ
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Device</th>
<th># pts</th>
<th>Technical success</th>
<th>Maturation 90d</th>
<th>Median time to maturation</th>
<th>Mean time to 2 needle cann</th>
<th>Patency</th>
<th>Use for ≥75% of sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajan (2015)</td>
<td>W</td>
<td>33</td>
<td>97%</td>
<td>96%</td>
<td>58 d (37-168 d)</td>
<td>--</td>
<td>96% 6m</td>
<td>100%</td>
</tr>
<tr>
<td>Lok (2017)</td>
<td>W</td>
<td>60</td>
<td>98%</td>
<td>87%</td>
<td>--</td>
<td>111.8 d HD</td>
<td>84% 12m, cum</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.4 d nonHD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radosa (2017)</td>
<td>W</td>
<td>8</td>
<td>100%</td>
<td>86%</td>
<td>63 d (26-137 d)</td>
<td>--</td>
<td>100% 6m</td>
<td>100%</td>
</tr>
<tr>
<td>Berland (2019)</td>
<td>W</td>
<td>32</td>
<td>100%</td>
<td>91%</td>
<td>--</td>
<td>43 ± 14 d</td>
<td>87% 6m, cum</td>
<td>74%</td>
</tr>
<tr>
<td>Hull (2017)</td>
<td>E</td>
<td>107</td>
<td>95%</td>
<td>86%</td>
<td>114.3 d</td>
<td>86.7% 24m, cum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hebibi (2019)</td>
<td>E</td>
<td>34</td>
<td>97%</td>
<td>82%</td>
<td>(10d-6w)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallios (2019)</td>
<td>E</td>
<td>34</td>
<td>97%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82% pri m 94% sec</td>
</tr>
<tr>
<td>Beathard (2019)</td>
<td>E</td>
<td>105</td>
<td>Unkwn</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td>92.7% 24m, cum</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Device</td>
<td># pts</td>
<td>Intervention rate (ppy)</td>
<td>Major adverse event rate</td>
<td>Adverse events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajan (2015)</td>
<td>W</td>
<td>33</td>
<td>0.1-0.6</td>
<td>3% (1)</td>
<td>brachial artery PSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lok (2017)</td>
<td>W</td>
<td>60</td>
<td>0.46</td>
<td>8% (5)</td>
<td>closure device embo, brach art dissection and thrombus, PSA (access site, endoAVF site), steal syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radosa (2017)</td>
<td>W</td>
<td>8</td>
<td>0.12</td>
<td>0%</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berland (2019)</td>
<td>W</td>
<td>32</td>
<td>0.21</td>
<td>3% (1)</td>
<td>guidewire perf tx’d w/ stenting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hull (2017)</td>
<td>E</td>
<td>107</td>
<td>2.7</td>
<td>many</td>
<td>thrombosis, anast stenosis, steal, ven HTN, coil mig, vein rupture, neuropathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hebibi (2019)</td>
<td>E</td>
<td>34</td>
<td>35%</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallios (2019)</td>
<td>E</td>
<td>34</td>
<td>2.9%</td>
<td>0%</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beathard (2019)</td>
<td>E</td>
<td>105</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 - Meta analysis
 - WavelinQ and Ellipsys
 - 300 patients

<table>
<thead>
<tr>
<th></th>
<th>WavelinQ</th>
<th>Ellipsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical success</td>
<td>99.45%</td>
<td>95.19%</td>
</tr>
<tr>
<td>90 d maturation</td>
<td>89.27%</td>
<td>89.35%</td>
</tr>
<tr>
<td>6 mo patency</td>
<td>85.71%</td>
<td>90.98%</td>
</tr>
<tr>
<td>Procedure AE</td>
<td>8.59%</td>
<td>2.48%</td>
</tr>
</tbody>
</table>

Maturation →
Diameter ≥4 mm
Flow rate: ≥500 mL/min
Candidates for pAVF

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Perforator vein</td>
</tr>
<tr>
<td>No prior upper arm AVF creation</td>
</tr>
<tr>
<td>No flow limiting central stenosis</td>
</tr>
<tr>
<td>Vessel size at target creation site ≥ 2 mm</td>
</tr>
<tr>
<td>No significant arterial calcification</td>
</tr>
<tr>
<td>Conscious sedation candidate</td>
</tr>
</tbody>
</table>
Candidates for pAVF

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Perforator vein</td>
</tr>
<tr>
<td>No prior upper arm AVF creation</td>
</tr>
<tr>
<td>No flow limiting central stenosis</td>
</tr>
<tr>
<td>Vessel size at target creation site ≥ 2 mm</td>
</tr>
<tr>
<td>No significant arterial calcification</td>
</tr>
<tr>
<td>Conscious sedation candidate</td>
</tr>
</tbody>
</table>
Renal replacement therapy

ESRD

Dialysis

Transplant

Hemo-

Peritoneal

Catheter

Fistula

Graft

Surgical

Percutaneous
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th># pts</th>
<th>Technical success</th>
<th>Maturation 90d</th>
<th>Median time to maturation</th>
<th>Mean time to 2 needle cann</th>
<th>Patency</th>
<th>Use for >75% of sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajan (2015)</td>
<td>33</td>
<td>97%</td>
<td>96%</td>
<td>58 d (37-168 d)</td>
<td>--</td>
<td>96% 6m</td>
<td>100%</td>
</tr>
<tr>
<td>Lok (2017)</td>
<td>60</td>
<td>98%</td>
<td>87%</td>
<td>--</td>
<td>111.8 d HD</td>
<td>69% 12m, primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.4 d nonHD</td>
<td>84% 12m, cum</td>
<td></td>
</tr>
<tr>
<td>Radosa (2017)</td>
<td>8</td>
<td>100%</td>
<td>86%</td>
<td>63 d (26-137 d)</td>
<td>--</td>
<td>100% 6m</td>
<td>100%</td>
</tr>
<tr>
<td>Berland (2019)</td>
<td>32</td>
<td>100%</td>
<td>91%</td>
<td>--</td>
<td>43 + 14 d</td>
<td>87% 6m, cum</td>
<td>74%</td>
</tr>
<tr>
<td>Surgical AVFs</td>
<td>--</td>
<td>93%</td>
<td>40-80%</td>
<td>159 d (77-285 d)</td>
<td>60% 12m, primary</td>
<td>71% 12m, cum</td>
<td></td>
</tr>
<tr>
<td>Author (Year)</td>
<td># pts</td>
<td>Major adverse event rate</td>
<td>Intervention rate (ppy)</td>
<td>Interventions needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajan (2015)</td>
<td>33</td>
<td>3% (1)</td>
<td>0.1-0.6</td>
<td>Brachial artery PSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lok (2017)</td>
<td>60</td>
<td>8% (5)</td>
<td>0.46</td>
<td>Closure device embo, brach art dissection and thrombus, PSA (access site, endoAVF site), Steal Syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radosa (2017)</td>
<td>8</td>
<td>0%</td>
<td>0.12</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berland (2019)</td>
<td>32</td>
<td>3% (1)</td>
<td>0.21</td>
<td>Guidewire perf tx’d w/ stenting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical AVFs</td>
<td>--</td>
<td>--</td>
<td>1.5-3.3</td>
<td>Superficialization, angioplasty, stenting, revision, conversion to AVG, Steal syndrome, tributary ligation, thrombectomy, etc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>