Jefferson

Thomas Jefferson University

HOME OF SIDNEY KIMMEL MEDICAL COLLEGE Jefferson D ig ital Com monS

Thomas Jefferson University

Department of Medicine Faculty Papers Department of Medicine

4-22-2022

Tolerability and feasibility of at-home remotely supervised
transcranial direct current stimulation (RS-tDCS): Single-center
evidence from 6,779 sessions

Giuseppina Pilloni
NYU Grossman School of Medicine

Amy Vogel-Eyny
NYU Grossman School of Medicine

Matthew Lustberg
NYU Grossman School of Medicine

Pamela Best

eloﬁ ovc\;/rﬁ\sfgrgﬁ gggﬁ%’n%ﬁ Avegrlglg% https://jdc.jefferson.edu/medfp

CrpipdYelite Ne_urologthorlnn;ons .
FEFUEREEW 18U A6¢¢%Es to this document benefits you

RES. 88X P95 L9 @eSijional authors

Pilloni, Giuseppina; Vogel-Eyny, Amy; Lustberg, Matthew; Best, Pamela; Malik, Martin; Walton-Masters,
Lillian; George, Allan; Mirza, Ibraheem; Zhovtis, Lana; Datta, Abhishek; Bikson, Marom; Krupp, Lauren; and
Charvet, Leigh, "Tolerability and feasibility of at-home remotely supervised transcranial direct current
stimulation (RS-tDCS): Single-center evidence from 6,779 sessions" (2022). Department of Medicine
Faculty Papers. Paper 360.

https://jdc.jefferson.edu/medfp/360

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been
accepted for inclusion in Department of Medicine Faculty Papers by an authorized administrator of the Jefferson
Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.


https://jdc.jefferson.edu/
https://jdc.jefferson.edu/medfp
https://jdc.jefferson.edu/med
https://jdc.jefferson.edu/medfp?utm_source=jdc.jefferson.edu%2Fmedfp%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/692?utm_source=jdc.jefferson.edu%2Fmedfp%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/

Authors

Giuseppina Pilloni, Amy Vogel-Eyny, Matthew Lustberg, Pamela Best, Martin Malik, Lillian Walton-Masters,
Allan George, Ibraheem Mirza, Lana Zhovtis, Abhishek Datta, Marom Bikson, Lauren Krupp, and Leigh
Charvet

This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/medfp/360


https://jdc.jefferson.edu/medfp/360

Brain Stimulation 15 (2022) 707—-716

journal homepage: http://www.journals.elsevier.com/brain-stimulation

Contents lists available at ScienceDirect 2 E},}mAnl.ﬁ

Brain Stimulation

Tolerability and feasibility of at-home remotely supervised
transcranial direct current stimulation (RS-tDCS): Single-center

Check for
updates

evidence from 6,779 sessions

Giuseppina Pilloni ¢, Amy Vogel-Eyny “, Matthew Lustberg ¢, Pamela Best °,
Martin Malik °, Lillian Walton-Masters €, Allan George °, Ibraheem Mirza ¢, Lana Zhovtis “,
Abhishek Datta ¢ ¢, Marom Bikson €, Lauren Krupp ¢, Leigh Charvet "

2 Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA

b Hackensack Meridian School of Medicine, Nutley, NJ, USA

€ Sidney Kimmel Medical College, Thomas Jefferson University, PA, USA

d Research and Development, Soterix Medical, Inc., Woodbridge, NJ, USA

€ Department of Biomedical Engineering, City College of New York, New York, NY, USA

ARTICLE INFO

Article history:

Received 5 January 2022
Received in revised form

25 March 2022

Accepted 19 April 2022
Available online 22 April 2022

Keywords:

Transcranial direct current stimulation
tDCS

At-home

Remote

Feasibility

Tolerability

ABSTRACT

Introduction: The ability to deploy transcranial direct current stimulation (tDCS) at home is a key us-
ability advantage to support scaling for pivotal clinical trials. We have established a home-based tDCS
protocol for use in clinical trials termed remotely supervised (RS)-tDCS.
Objective: To report the tolerability and feasibility of tDCS sessions completed to date using RS-tDCS in
clinical trials.
Methods: We analyzed tolerability (i.e., adverse events, AEs) reported in six Class I/II/III trials using RS-
tDCS to study symptom outcomes over 10 to 60 daily applications. Across the six clinical trials, 308
participants (18—78 years old) completed an average of 23 sessions for a total of 6779 RS-tDCS ad-
ministrations. The majority of participants were diagnosed with multiple sclerosis, and open-label trials
included those diagnosed with a range of other conditions (e.g., Parkinson's disease, post-stroke aphasia,
traumatic brain injury, cerebellar ataxia), with minimum-to-severe neurologic disability. Clinical trial
feasibility (i.e., treatment fidelity and blinding integrity) was examined using two Class I randomized
controlled trials (RCTs).
Results: No serious AEs occurred. Across administrations, three sessions (0.04%) were aborted due to
discomfort, but no participant discontinued due to tolerability. The AEs most commonly reported by
participants were tingling (68%), itching (41%) and warmth sensation (42%) at the electrode site, and
these were equally reported in active and sham tDCS conditions. The two Class I RCTs resulted in rapid
enrollment, high fidelity to treatment completion, and blinding integrity.
Conclusions: At-home RS-tDCS is tolerable, including when used over extended periods of time. Home-
based RS-tDCS is feasible and can enable Class I tDCS clinical trial designs.
© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

to modulate brain regions of interest for behavioral or clinical effect
[2]. Clinical trials of tDCS are now numbered in the hundreds,

Transcranial direct current stimulation (tDCS) is a noninvasive
brain stimulation technique that passes a low intensity electric
current through electrodes placed on the scalp [1]. tDCS is targeted

* Corresponding author. 222 East 41st Street, 10th Floor, New York, NY, 10017,
USA.
E-mail address: Leigh.Charvet@nyulangone.org (L. Charvet).
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spanning investigation of its use for the management of neuro-
logical and psychiatric conditions. Both human and mechanistic
trials show a cumulative benefit across stimulation sessions [3—5],
presenting a practical obstacle for many investigators when par-
ticipants are required to travel to the clinic or lab facility for daily
treatment. Deploying tDCS for home use in clinical trials, defined by
the FDA as “users in any environment outside of a healthcare

1935-861X/© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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facility” [6], can reach more participants and accommodate an
extended number of tDCS sessions that may be necessary for
adequate evaluation of its effect. There is a growing body of trials
using approaches to home-based delivery of tDCS ([7—16]), with
interest and urgency increasing in response to the COVID-19
pandemic [17].

Our lab has developed and verified a protocol to provide par-
ticipants with home-based tDCS for use in our clinical trials
[18—21]. Utilizing live remote supervision at each administration
via videoconference, the protocol aims to replicate the standards of
onsite tDCS administration in the clinic or lab, and is referred to as
remotely supervised or RS-tDCS [20]. Similar supervised home-use
tDCS protocols are being implemented by investigators to study
tDCS in a range of conditions (e.g. Ref. [7—16]).

We initially developed and verified the RS-tDCS protocol in pilot
studies in individuals with MS (administering 244 RS-tDCS ses-
sions) [18,19,22,23]. Due to the nature of the disease, participants
with MS range in age across the lifespan and have a diverse disease
course, characterized by variability and broad-spectrum symptoms
that can include cognitive and/or motor impairments as well as
symptoms including fatigue, pain and mood disturbances. Given
our goal to complete clinical trials of tDCS in the management of
multiple sclerosis (MS), our procedures have been optimized to
reach participants who are demographically diverse with varying
levels of neurological impairment and to allow for the simulta-
neous pairing with therapeutic cognitive or motor training.

Following its development, we have found that the RS-tDCS
protocol can be generalized for use in participants with other
neurological conditions. Our RS-tDCS protocol has been validated
for use in Parkinson's disease (PD) [24,25], and used in participants
with post-stroke aphasia, cerebellar ataxia, depression, neuro-
cognitive disorders due to traumatic brain injury, and mild cogni-
tive impairment [26—28]. RS-tDCS has been successfully
implemented at additional centers (e.g., for post-traumatic head-
ache [29]), and we also provide at-home tDCS treatment through
our tDCS telehealth clinical program (n = 113 patients have
received clinical treatment to date, with 4,660 at-home tDCS ses-
sions delivered) [30].

Table 1

Descriptive characteristics of the randomized double-blind controlled clinical trials and
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We have completed six clinical trials at NYU Langone Health
using the RS-tDCS protocol. We report the aggregated tolerability
data across these trials, including for protocols administering tDCS
for extended treatment periods, and the feasibility of its use for the
completion of Class [ RCTs.

2. Methods

We report here from our six Class I/II/III trials at NYU Langone
Health using the standardized RS-tDCS protocol [20] (Table 1). All
studies were approved by the NYU Langone Health IRB and par-
ticipants signed an informed consent prior to their participation.

2.1. RS-tDCS eligibility criteria

RS-tDCS protocols required participants to be at least 18 years of
age, to have an estimated premorbid cognitive ability in at least the
average range, and to be without severe current cognitive impair-
ment. These criteria were screened for with a measure of single-
word reading recognition (WRAT-4). Accommodations for those
in the open-label trial for chronic neurological conditions with
impaired language and/or visual functions included the nonverbal
alternative tests of receptive vocabulary (Peabody Picture Vocab-
ulary Test, 4th edition; PPVT-4) or expressive vocabulary (Wechsler
Abbreviated Scale of Intelligence, 2nd Edition; WASI-II). Current
level of cognitive impairment was estimated with the Symbol Digit
Modalities Test (SDMT; using cut off age-normative z-score
of < —3.0 SD).

Exclusion criteria for the RS-tDCS protocol included: (1) metal
implanted in the head or in the neck; (2) pregnant or breastfeeding;
(3) history of head trauma (e.g., head injury, brain surgery); (4)
history of or current seizure disorder; (5) presence of any skin
disorder or skin sensitive area near stimulation locations; (6) co-
morbid primary medical, neurological or psychiatric condition that
was judged to be contributing to the enrolling symptom targeted by
the clinical trial.

Full participant eligibility criteria varied by trial depending on
targeted outcome measures (see Table 1). Four of the six trials were

open-label trials using the RS-tDCS protocol.

Clinical Trial Diagnosis, n Time period Study Design Number of  tDCS Current Electrode tDCS Duration Paired Activity
Identifier Participants Sessions Intensity (mA) Montage (min)
Class I
NCT03838770 MS, 107 Mar 2019—Jun Sham- 30 2.0 DLPFC 20 Cognitive Training
2021 controlled RCT
NCT03499314 MS, 64 April 2018—0ct Sham- 20 2.0 M1-SO 20 Manual Dexterity
2021 controlled RCT Training
Class Iy/II
NCT02746705 MS, 74 April 2016 Sham- 20/40 2.0/2.5 DLPFC 20 Cognitive Training
—Sept 2018 controlled RCT
NCT03564496 MS, 32 Jul 2018—0ct  Open Label 20 2.0 DLPFC 20 Cognitive Training
2021
NCT02746705 PD, 16 April 2016 Open Label 10 20 DLPFC 20 Cognitive Training
—Sept 2018
NCT03049969 Major Depression, 3; Sept 2017— Open Label Up to 60 2.0-2.5 DLPFC/cerebellar 20 Cognitive Training,
Post-stroke Aphasia, Ongoing montage Physical Exercise
3;
Neurocognitive
Disorder, 3;
MS, 2;
Chronic Fatigue
Syndrome, 1;
Idiopathic

Hypersomnia, 1;
Cerebellar Ataxia, 1;
Chronic Pain, 1
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studies of participants with MS; an open-label trial included par-
ticipants with PD, and the remaining trial enrolled participants
with a range of other conditions. All participants were required to
have a medically confirmed diagnosis of their presenting condition
per trial definition, with stable disease and no change in any
medication for at least one month prior to enrollment.

2.2. RS-tDCS equipment

The participants were loaned a study kit for the duration of their
trial participation that included three key components to enable
the RS-tDCS protocol (Fig. 1):

tDCS Device: All trials used a 1 x 1 mini-CT tDCS device (Soterix
Medical Inc.). The mini-CT tDCS device is equipped with multiple
safety features to allow at-home use. The device contains contact
quality monitoring and control systems that update performance
and feedback >1000 times per second. During the stimulation
period, the 1 x 1 mini-CT device shows in real time the contact
quality of the electrode using simple category levels: Poor vs.
Moderate/Good. The stimulation will not start until adequate con-
tact quality is achieved (Moderate/Good). Once adequate contact
quality is achieved, it is rare for the contact quality to drop. If the
contact quality moves to “Poor” during the stimulation period, the
participant and the study technician are alerted by the device
beeping continuously. The device will pause automatically if the
contact quality is not restored, accompanied by an alert sound. The

(3)SNAPpad

(1) 1x1 mini-

(3a)

cT
<7 (2b)
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protocol guides the technician to instruct the participant in
corrective action (e.g., typically applying pressure to the electrode).
This high sensitivity to any change supports safety and helps to
maintain stimulation efficacy. If there is any disruption in the
contact quality for more than 30 s, the device automatically and
gradually powers off, decreasing the current over 30 s. The device
also has an Abort function that gradually ramps down the current in
the event of undue pain or any desire to stop the stimulation to
support tolerability.

The device has a code-based unlocking function that uses
unique one-time activation codes for each stimulation session.
Codes are provided at the time of the RS-tDCS session to the
participant for device use by the supervising technician, as per the
protocol.

Blinding and Sham Procedures: In the double-blind, sham-
controlled RCTs, tDCS procedures were the same for active and
sham tDCS. To maintain double blinding integrity, devices were
pre-programmed in advance by an independent staff member who
did not interact with the participant for the daily session or
outcome assessments. For active tDCS, the device was programmed
to ramp up to the target current intensity (for 30-s), provide con-
stant current throughout the session (19 min), and then ramp down
at the end (for 30-s). For sham tDCS, the device was programmed
according to convention to ramp up to target current intensity (for
30-s) followed by a ramp down (30-s), with no current delivery for
18 min, and then ramp up (for 30-s) and down (for 30-s) at the end.

(2)SNAPstrap Headgear

Fig. 1. RS-tDCS Equipment. (1) 1 x 1 mini-CT tDCS device: pre-programmable session type (active, sham), stimulation duration, and current intensity; generation of single-use
“unlock-code” for pre-programmed dose. (2) SNAPstrap headgear: “cap”-like placement for simple positioning and uniform electrode placement; (2a) markers for guidance in
placement; (2b) electrode polarity labeling with fixed wiring. (3) SNAPpad: (3a) individually-packaged pre-moistened sponge; perforated packaging for easy opening; (3b) snap

connectors.
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An exception was the sham programming for Trial NCT03838770
that included three periods of 60-s ramp up/down (beginning,
midway, and end).

Headset and Electrodes: RS-tDCS used the Soterix Medical
SNAPstrap headset that allows robust fixed position electrode
placement for precise reproduction of a variety of montages. The
headset included pre-saturated sponge electrodes (SNAPpads) in
single use individual packaging for easy “snap” placement onto the
headset for each session (Fig. 1). This specific headset ensures
reliability of current flow and has been demonstrated to be
consistent when tDCS is administered either onsite or from home
[31,32]. As reported in Fig. 2, the electrode montages included in
our trials were:

A. DLPFC montage, with the anode placed over the left dorsolateral
prefrontal cortex (DLPFC) and the cathode over the right DLPFC
(F3-F4, according to 10—20 EEG system);

B. M1-SO montage, with the anode placed over the left primary
motor cortex and the cathode over the contralateral supraorbital
area (C3-Fp2, according to 10—20 EEG system);

. Cerebellar montage, with the anode placed over the cerebellum
region (02, according to 10—20 EEG system) and the cathode on
the right shoulder.

Brain Stimulation 15 (2022) 707—716

Study Laptop: Pre-configured laptops were provided to the
participant with a HIPAA-compliant video conferencing software
(VSee), a remote monitoring software (TeamViewer), and the study
session data reporting software. Depending on trial design and
treatment outcomes, participants were also provided with addi-
tional software and/or equipment to complete the paired training
activity (see Table 1).

2.3. RS-tDCS protocol

An initial visit (in person or remote) was provided for device
orientation, training, and tDCS tolerability testing. All remaining
tDCS sessions were then completed by the participant from home
and monitored by study technicians in real time via videoconfer-
ence. The supervising tDCS technicians were research lab personnel
who completed our standardized training to administer the RS-
tDCS protocol for daily sessions, ranging in background from
doctoral level neurology faculty (PhD/MD) to advanced student
interns.

Initial Baseline Training Visit: After the study screening visit,
participants progressed through a series of checkpoints and
training procedures following the standardized RS-tDCS protocol
[18—20] (Fig. 2).

}_

-| Electrode Montages
A

-| At-home Setup and Live Supervision |

¥

7z

—] RS-DCS Technician Flow Chart
tDCS tDCs
Baseline Visit Tolerability 2 Tolerability
Testat2.0mA ) £ Testat 1.5 mA
s
Pain >7 from E’ STOP:
tDCS = Pain >7 from tDCS
Study Session 1 Computer tDCS
Training Session Aptitude Aptitude
STOP: STOP:
No Computer No tDCS
Aptitude Aptitude
— During Post
. - AEs and - Participant AEs
‘ RS-tDCS Session [ Tolerability { self-reports Self-reported
-+ Partic Reports pain >7
srzo:r.t: :",‘:1'{’2?‘ N el STOP: Participant reports
sig n’?ﬁ niGaTET event of critical concern
P etk STOP: Discontinuation
ST ey from study if participant
e raton] does not want to continue

Fig. 2. Operationalization of daily RS-tDCS session. At-home setup, live supervision, electrode montages (A: DLPFC; B: M1-SO, C: Cerebellar), and RS-tDCS protocol.
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Baseline Tolerability Test: During the initial visit, participants
completed a 90-s tolerability and dose selection test. The 90-s
tolerability test was performed with a standardized procedure by
using the Tolerability function of the Soterix Medical mini-CT de-
vice. Testing begins at the electrical current intensity as defined by
the study protocol (e.g., 2 mA or 2.5 mA). During the tolerability
test, the current intensity is ramped up to the target intensity and
then down over a 90-s period, with tolerability determined by
participant ratings below 7 on the 0—10 Visual Analogue Scale
(VAS) of pain. Participants unable to tolerate the target current
intensity were given the option to proceed with another tolerability
test at a lower amperage (reduced by 0.5 mA). In the event that this
lower amperage was also intolerable, the participant was excluded
from further participation in the study. The current intensity
determined during the tolerability test was delivered during the
duration of the intervention.

Daily RS-tDCS Sessions: Sessions were conducted daily Monday
through Friday for 20 min with the electrical current intensity set
between 1.5 and 2.5 mA as defined by the study protocol and in-
dividual participant tolerability levels determined at the baseline
visit. The technician guided the headset placement and visually
confirmed the correct position using the headset markers for
guidance. When ready to begin, the participant was then provided
with their single-use code to activate the daily session.

2.4. Session discontinuation criteria

During the session, the study technician captured any pain or
discomfort spontaneously reported and with a specific query at the
midpoint of the session. If the participant reported pain or
discomfort at any point, they were asked to rate the intensity (VAS
0—10). In the event of pain related to stimulation that was rated
higher than 7 on the VAS, the session was paused for review with
the study technician. The protocol provides the option to abort the
session, or resume the session based on participant feedback and
repeated VAS administration. If the reported discomfort resolved
and was addressed, the participant could choose to continue the
session (see Fig. 1).

2.5. AE reporting

At the end of each stimulation session, participants were asked
about any side effects that they experienced. In the absence of
established AE reporting for the tDCS field, this process was initially
completed with a rating of 11 potential AEs (adapted from Brunoni
et al,, 2011 [33]) for occurrence, intensity and duration. In addition,
participants could also report other treatment-related experiences
for AE reporting capture. Based on the predominant reporting of
tingling/itching/warmth sensations across ratings and inconsistent
endorsement of any other AE, we moved this process to a branched
logic screen capture (vs. technician recording) delivered through an
in-house software program developed specifically for use in RS-
tDCS trials. Here, when a participant reported an AE, they were
first asked about these three AEs, followed by a spontaneous cap-
ture of any “Other” AE experienced rather than continued
prompting of each checklist item. In both the written checklist and
the automated screen capture, participants were asked to report AE
intensity on the VAS and the duration in minutes as guided by the
tDCS technician.

2.6. Statistical analyses
We used descriptive statistics to summarize the clinical and

demographic characteristics, trial enrollment, and completion
rates. An AE occurrence was coded if reported at any intensity or

71

Brain Stimulation 15 (2022) 707—-716

duration. AE occurrences were examined by the percent of partic-
ipants reporting an AE in at least one of their tDCS sessions, as well
as by the percent of sessions in which an AE was reported. Then, we
reported the percent of participants endorsing an AE in relation to
stimulation condition (active, sham tDCS), current intensity (2.0,
2.5 mA), electrode montage (DLPFC, M1-SO) and population char-
acteristics (e.g., clinical characteristics, sex, age). Chi-Square
Fisher's Exact Test was used to assess whether the percent of par-
ticipants endorsing each AE differed across the independent vari-
ables. We utilized Cochran's Q test to assess differences in the
percent of participants reporting AEs of tingling, itching and
warmth sensation at different time points (20 M1-SO sessions, 30
DLPFC sessions). Analyses were performed using SPSS 25.0. Level of
statistical significance was set at 0.05 for all analyses.

3. Results
3.1. RS-tDCS participants and sessions

Overall n = 308 participants enrolled in 6 trials for a total of
6,779 sessions (see Table 2), with an average of 23 + 9.5 sessions
(ranging from 10 to 60) completed per participant. Total sessions
were 3,137 blinded active, 2,708 sham, and 934 open label active.
See Table 2 for a breakdown of assigned conditions, sessions, and
montages by trial. The full sample was 70% female with a mean age
of 50.26 + 13.01 [18—78] years; 230 participants (75%) were White,
54 (18%) were African American/Black, 6 (2%) were Asian, and the
remaining 15 (5%) were unknown or not reported; 14 (9%) were
Hispanic/Latino. Participants were enrolled in clinical trials tar-
geting fatigue, cognitive and/or motor dysfunction due to MS
(n = 277) or PD (n = 16), or enrolled in an open-label study tar-
geting symptoms of major depression (n = 3), post-stroke aphasia
(n = 3), MS (n = 2), cerebellar ataxia (n = 1), idiopathic hyper-
somnia (n = 1), chronic pain (n = 1), chronic fatigue syndrome
(n = 1), or neurocognitive disorders (n = 3) due to traumatic brain
injury (TBI) or mild cognitive impairment (MCI).

For the initial baseline training session, 244 sessions were
completed onsite, and 64 were completed remotely (as an ac-
commodation to continue enrollment during COVID-19). Therefore,
of the 6,779 total sessions administered, 6,535 RS-tDCS sessions
were delivered to the participant at home or another location
outside the clinic.

3.2. Tolerability: clearance and session discontinuations

No serious AEs [34] occurred in any of the trials.

Enrollment tolerability testing resulted in n = 1 trial participant
of the 308 enrolled (<0.5%) excluded (>7/10 VAS pain rating),
resulting in study withdrawal. A total of n = 2 participants were
unable to tolerate the target current intensity of 2.0 mA and, per
protocol, were lowered to 1.5 mA for the treatment period.

No participant was discontinued due to tolerability after starting
the trial. Single session limiting AEs, (defined as VAS rating for pain/
discomfort >7) occurred in 27 (0.4%) of all administered sessions
(n = 22 participants: 4 blinded active, 10 blinded sham, 8 open
label), which resulted in 3 sessions being aborted (n = 3 partici-
pants: n = 2 received active tDCS and n = 1 sham tDCS).

No participants were discontinued from the trials because of
training or technical difficulties, regardless of whether the initial
baseline training was conducted in-person or remotely.

Reported AEs: AE reporting was tabulated by total number of
participants, occurrence across total number of sessions, and
within participants across sessions (see Table 3). All AEs were re-
ported to be mild to moderate in intensity and did not lead to study
discontinuation for any participant. There was no overall difference
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Table 2

Summary of total sessions and participants by electrode montage and tDCS condition.

Brain Stimulation 15 (2022) 707—-716

Blinded Active
#sessions (n participants)

Sham
#sessions (n participants)

Open Label
#sessions (n participants)

Electrode Montage

DLPFC 2500 (97)
M1-SO 637 (35)
Cerebellar -

2160 (84)
548 (29)

874 (62)

60 (1)

in reporting of frequency of tingling, itching and warmth sensation
between the checklist reporting and the automated software pro-
gram (tingling: 75% vs. 60%, %% = 2.78, p = 0.058; itching: 45.6% vs.
35.4%, Xz = 139, p = 0.388; warmth sensation: 32.50% vs. 23.9%,
v2 = 2.78, p = 0.064, respectively).

Most Common AEs Reported: The most consistently reported
AEs across sessions included tingling (30.7%, 2,084/6,779), warmth
sensation (16.3%, 1,106/6,779) and itching (11.9%, 808/6,779). AEs
indicated at least once by participants were tingling, warmth
sensation and itching: 68% (210/308), 42% (128/308), and 41% (125/
308), respectively. Participants with MS did not differ in reporting
compared to those with a range of other conditions (within open-
label active participants): (72.2% vs. 83.9%, x*> = 1.99, p = 0.159),
itching (36.11% vs. 43.1%, x> = 123, p = 0.266), and warmth
sensation (31.3% vs. 41.9%, xz =0.78, p = 0.378).

Overall, the intensity of these reports was mild (median value on
the VAS 0—10: 2.0) and transient in nature (average duration:
4.3 + 2.1 min). In the blinded trials, there was no difference be-
tween blinded active vs. sham in the percent of participants
reporting tingling (49.6% vs. 62.3%, x 2 = 3.98, p = 0.054), itching
(41.6% vs. 53.3%, x> = 3.96, p = 0.054) and warmth sensation (29.8%
vs. 30.7%, x 2 = 0.25, p = 0.874). In the DLPFC 2.0 mA trials, there
was a slightly higher rate of reporting of the tingling sensation
among participants receiving active stimulation as open-label
(n 63) vs. blinded (n 97) (76.2% vs. 50.5%, x> = 10.55,
p = 0.001).

3.3. Consistency in AE reporting across repeated sessions

Using our two completed double-blinded RCTs, we pooled all
participants who received either active or sham tDCS and
completed either 20 consecutive sessions of M1-SO tDCS or 30
consecutive sessions of DLPFC tDCS. Itching, tingling, and warmth
sensation persisted over time and were consistently reported at
each session across both active and sham participants (Fig. 3). There
were no significant differences in the proportion of participants
who reported tingling (active/sham tDCS: ¥* (19) = 16.57,
p = 0.619; x% (19) = 23.21, p = 0.228), itching (x? (19) = 25.72,
p = 0.138; x? (19) = 13.21, p = 0.828), and warmth sensation (x?
(19) = 21.10, p = 0.332; x> (19) = 14.81, p = 0.735) across the 20 M1-
SO daily tDCS sessions. Similarly, there was no difference in the
proportion of participants reporting tingling (active/sham tDCS: 2
(29) = 18.24, p = 0.939; ¥? (29) = 23.05, p = 0.774), itching (x>
(29) = 38.78, p = 0.109; X2 (29) = 24.19, p = 0.719), and warmth

Table 3

sensation (x? (29) = 30.99, p = 0.366; x° (29) = 23.56, p = 0.750)
across 30 DLPFC daily tDCS sessions.

3.4. Other reported AEs

As with the three most commonly reported AEs noted above, no
other AEs led to discontinuation (Fig. 4). The frequency of occur-
rence of other AEs was low (i.e., less than 10%) across the RS-tDCS
participants.

3.5. Electrode montage and stimulation intensity

We next tested whether the tDCS montage or current intensity
influenced AE reporting rate. To identify any relation between AE
occurrence and electrode montage, we analyzed the overall blinded
active sessions (DLPFC vs. M1-SO; n = 97 and n = 35 participants,
respectively). We did not find any difference in the percent of
participants reporting tingling (x> = 0.10, p = 0.764), itching
(x* = 0.09, p = 0.828), and warmth sensation (x* = 2.192, p = 0.139)
between DLPFC and M1-SO electrode montages.

To examine AEs by current intensity, we compared the two
active blinded DLPFC tDCS conditions of 2.0 mA (n = 38 partici-
pants) vs. 2.5 mA (n = 21 participants). Those receiving 2.5 mA
reported slightly higher rates of warmth sensation compared to
those receiving 2.0 mA (33.3% vs. 25.7%; x> = 4.87, p = 0.048), but
no difference in tingling (x> = 0.471, p = 0.493) and itching
(x> = 0.466, p = 0.623).

3.6. Feasibility in class I RCTs

We employed the RS-tDCS protocol to complete two double-
blind, sham-controlled RCTs (Table 1), targeting the MS symp-
toms of fatigue (30 sessions of tDCS paired with cognitive training)
and upper extremity impairment (20 sessions of tDCS paired with
manual dexterity training). Table 1 shows the demographic and
clinical features for each trial. Enrollment of both trials was robust,
including during the period of the COVID-19 pandemic, due to the
remote access for participation. During April 2019—February 2021
(22 months), we enrolled n = 120 participants for the study tar-
geting fatigue. The study targeting upper extremity motor func-
tioning recruited participants with more advanced disability level,
with n = 66 participants enrolled during April 2018—October 2020
(30 months).

There was a high rate of fidelity to treatment and protocol
completion for both studies. In the RCT #1 (NCT03838770),

Percentage of participants who endorsed tingling, itching, and warmth sensation in at least one RS-tDCS session broken down by condition (active vs. sham) and electrode

montage (DLPFC vs. M1-S0O). The table includes only participants with MS.

DLPFC

M1-SO

Active n = 97 participants

Sham n = 84 participants

Active n = 35 participants Sham n = 29 participants

Tingling, % 50.5 63.1
Itching, % 39.1 44.6
Warmth Sensation, % 26.8 34.5

48.6 66.6
45.7 344
38.2 20.0
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targeting fatigue and cognition, 92.0% of participants completed 25
or more sessions, with 67.2% participants completing all 30 ses-
sions. In the RCT #2 (NCT03499314), targeting upper extremity
motor function, 95% of participants completed all 20 RS-tDCS ses-
sions, with 98% completing at least 18/20.

Both trials met criteria for adequate participant blinding, iden-
tifying condition assignment with 53% accuracy for RCT #1 and 36%
for RCT #2, both falling within a generally acceptable target of
35—65% [35—37]. The trials differed in montage (M1-SO vs. DLPFC),
number of sessions (20 vs. 30), and sham procedure (conventional
ramp up/down vs novel three ramp up/down periods). RCT #1
administered 20 M1-SO sessions using the conventional sham of
initial ramp up/down period at the beginning, and RCT #2
employed a novel three period ramp up/down procedure. Further,
the percent of active and sham participants who accurately guessed
whether they received active or sham stimulation did not differ in
both RCTs (x? = 2.24, p = 0.134; x> = 3.22, p = 0.073, respectively).

4. Discussion

Our findings demonstrated the tolerability and feasibility of
tDCS delivered to participants at home and over extended time
periods in the largest sample reported to date (e.g., up to 60 ses-
sions) [38]. Using the RS-tDCS protocol, tDCS was found to be
tolerable and feasible in a diverse range of participants and for
repeated applications over time. Our findings extend the estab-
lished record of safety and tolerability of tDCS [34,39] to include
supervised use in the home setting.

Across the 6,779 sessions reported here, the most common AEs
were related to the electrode site for both active and sham tDCS:
tingling, itching and sensations of warmth. Together, these AEs
were commonly reported at each session, were not treatment
limiting, and resolved by session completion. In addition, there was
no significant change in incidence across repeated exposure,
demonstrating the tolerability of tDCS across sessions well beyond
the conventional number of sessions (e.g., less than 10 sessions
[40]) in the majority of the clinical trials to date. Furthermore, this
more extensive exposure did not increase the risk of AEs with
repeated application over time (including risk for skin lesion) [41].

Provided rigorous protocols and proper equipment is used [41],
our findings are broadly consistent with the tolerability reported
for tDCS across the large body of clinical trials to date
[1,38,39,42,43], with common AEs being mild (tingling, warmth,
itching) and transient. Specific rates of AEs will depend on the exact
protocol and equipment utilized. For example, our RS-tDCS re-
ported incidences of head discomfort or pain, including over the
cumulative application in our extended protocols, were lower
compared to prior reports [33,38,44]. This discrepancy in AE rates
may be attributed to our use of specific headsets rather than elastic
rubber bands.

Limitations of our analyses include that the majority of our RS-
tDCS use to date is in participants living with MS. However, while
all have one common diagnosis, the diversity of MS symptom
presentation and patient populations provide a robust sample to
inform the more generalized use of tDCS for symptomatic or
rehabilitative applications. Participants with MS varied across the
adult age span, with minimal to more severe levels of cognitive or
motor involvement, and a broad range of potential symptoms
experienced (e.g., fatigue, pain, and other motor, sensory and mood
disturbances).

We used our specific protocol of RS-tDCS for all sessions,
including live supervision and a structured paired activity during
the stimulation period. While live supervision for all sessions may
not be possible for many centers, we believe that our demonstra-
tion of its tolerability can allow for participants to be moved to a
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“briefly supervised” model with live connection for initial “clear-
ance” at the beginning of the daily session versus monitoring
throughout the entire session to its completion. While it is clear
that live real-time connection with participants at their sessions
results in higher treatment fidelity [7], this model of hybrid full and
more limited session monitoring has been successfully demon-
strated (e.g., Alonzo et al, 2019 [8], Loo et al, 2017 [45]) and
enabled by current technology advances.

5. Conclusions

Home-based tDCS is tolerable using the RS-tDCS protocol. The
RS-tDCS protocol provides an option to reach larger sample sizes
and deliver tDCS over extended treatment periods in RCTSs.
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