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The efficacy of low-dose aspirin 
in pregnancy among women 
in malaria-endemic countries
Melissa Bauserman1*, Sequoia I. Leuba1, Jennifer Hemingway‑Foday2, Tracy L. Nolen2, Janet Moore2, 
Elizabeth M. McClure2, Adrien Lokangaka3, Antoinette Tsehfu3, Jackie Patterson1, Edward A. Liechty4, 
Fabian Esamai5, Waldemar A. Carlo6, Elwyn Chomba7, Robert L. Goldenberg8, Sarah Saleem9, Saleem Jessani9, 
Marion Koso‑Thomas10,11, Matthew Hoffman11, Richard J. Derman12, Steven R. Meshnick1 and Carl L. Bose1 

Abstract 

Background: Low dose aspirin (LDA) is an effective strategy to reduce preterm birth. However, LDA might have dif‑
ferential effects globally, based on the etiology of preterm birth. In some regions, malaria in pregnancy could be an 
important modifier of LDA on birth outcomes and anemia.

Methods: This is a sub‑study of the ASPIRIN trial, a multi‑national, randomized, placebo controlled trial evaluating 
LDA effect on preterm birth. We enrolled a convenience sample of women in the ASPIRIN trial from the Democratic 
Republic of Congo (DRC), Kenya and Zambia. We used quantitative polymerase chain reaction to detect malaria. We 
calculated crude prevalence proportion ratios (PRs) for LDA by malaria for outcomes, and regression modelling to 
evaluate effect measure modification. We evaluated hemoglobin in late pregnancy based on malaria infection in early 
pregnancy.

Results: One thousand four hundred forty‑six women were analyzed, with a malaria prevalence of 63% in the DRC 
site, 38% in the Kenya site, and 6% in the Zambia site. Preterm birth occurred in 83 (LDA) and 90 (placebo) women, 
(PR 0.92, 95% CI 0.70, 1.22), without interaction between LDA and malaria (p = 0.75). Perinatal mortality occurred in 
41 (LDA) and 43 (placebo) pregnancies, (PR 0.95, 95% CI 0.63, 1.44), with an interaction between malaria and LDA 
(p = 0.014). Hemoglobin was similar by malaria and LDA status.

Conclusions: Malaria in early pregnancy did not modify the effects of LDA on preterm birth, but modified the effect 
of LDA on perinatal mortality. This effect measure modification deserves continued study as LDA is used in malaria 
endemic regions.

Keywords: Malaria, Pregnancy, Premature birth, Perinatal mortality
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Background
Preterm birth is a major cause of neonatal mortality, 
and infants born in low- and middle-income countries 

(LMICs) are particularly vulnerable. Recent trials demon-
strate that low dose aspirin (LDA) is an effective strategy 
to reduce preterm birth [1–3]. However, LDA might have 
differential effects in global regions, based on the etiology 
of preterm birth. The Eunice Kennedy Shriver National 
Institute for Child Health and Human Development 
(NICHD) Global Network for Women’s and Children’s 
Health Research (GN) recently completed the ASPIRIN 
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trial, a multi-country trial of the effects of LDA on pre-
term birth [3, 4]. While, this study was not powered to 
investigate efficacy in individual sites, site-specific data 
did not demonstrate a reduction in the risk of preterm 
birth for LDA in the Democratic Republic of the Congo 
(DRC) [3]. One feature that distinguished this site from 
others in the ASPIRIN trial was high malaria prevalence.

Malaria infections during pregnancy are an important 
cause of preterm birth in many LMICs, especially sub-
Saharan African countries where malaria infection in 
pregnancy is common [5]. Malaria is associated with up 
to 36% of all preterm or low birth weight (LBW) infants 
born in malaria endemic areas [6]. Malaria treatment or 
prophylaxis in the latter half of pregnancy improves out-
comes [7]. Studies also suggest that malaria may exert 
deleterious effects early in pregnancy that lead to pre-
term birth, stillbirth, pregnancy loss, anemia or other 
adverse pregnancy outcomes [7–9]. Malaria infections 
during early pregnancy are associated with abnormal 
development of the placental circulation that may result 
in hypertensive disorders, intrauterine growth restriction 
(IUGR) and prematurity [5]. Early malaria infections may 
cause both local and systemic inflammation leading to 
poor placentation that leads to these adverse pregnancy 
outcomes.

LDA is thought to reduce inflammation and throm-
bosis that leads to placental dysfunction, preterm birth, 
preeclampsia and IUGR [10, 11]. Malaria could be an 
important effect modifier of the relationship between 
LDA and preterm birth in malaria-endemic regions. For 
example, malaria may reduce the beneficial effects of 
LDA by increasing inflammation. Conversely, LDA may 
reduce the adverse impact of malaria in early pregnancy 
by reducing placental inflammation caused by malaria.

LDA treatment to prevent preterm birth has impor-
tant public health implications, and might be adopted 
in LMICs, including those countries in malaria-endemic 
regions. Therefore, there is an urgent need to understand 
the relationships between LDA and malaria in early preg-
nancy on maternal and neonatal health. The objectives 
of this paper were to investigate if LDA has a differen-
tial effect in areas where malaria is prevalent and deter-
mine whether malaria infection interacts with the effects 
of LDA on pregnancy outcomes. Furthermore, we also 
investigated the relationships between malaria, LDA and 
anemia in pregnancy to determine if a potential effect of 
malaria was mediated through anemia, a common mor-
bidity of the disease.

Methods
This study was a sub-study of the ASPIRIN (Aspirin 
Supplementation for Pregnancy Indicated Risk Reduc-
tion In Nulliparas) trial [4]. The ASPIRIN trial was a 

multi-national, randomized, double-masked, placebo 
controlled trial to evaluate the effects of LDA (81  mg 
daily) in nulliparous women on the outcome of preterm 
birth (birth before 37  weeks gestational age). Across 8 
research sites in LMICs, women were randomized in 
a 1:1 ratio to receive LDA (treatment) or an identically-
appearing placebo (control).

Pregnant women were eligible for the ASPIRIN trial if 
they were nulliparous, between 14–40  years of age, had 
pregnancies characterized by a gestational age between 
6 weeks and 0 days and 13 weeks and 6 days (confirmed 
by ultrasound), blood pressure < 140/90  mmHg, hemo-
globin > 7.0  g/dL, a live singleton fetus, and absence of 
fetal anomaly. Women were excluded who had allergy or 
contraindication to aspirin, previous aspirin use for more 
than 7 days, a history of ≥ 2 first-trimester losses, or the 
presence of diabetes or hypertension [4].

For the sub-study, we enrolled a convenience sample of 
women participating in the ASPIRIN trial from 4 of the 8 
GN sites. The four sites were chosen based on the poten-
tial for malaria affecting the pregnancies in the study 
regions, and represented a range of malaria endemicity 
(high and low). These 4 sites were located in the DRC 
(North and South Ubangi Provinces), Kenya (Western 
region), Pakistan (near the city of Karachi), and Zambia 
(south and east of the capital city of Lusaka).

Women enrolled in the malaria sub-study had blood 
collected at times coincident with blood collection in 
the ASPIRIN trial. Blood was collected at enrollment 
(6–13 6/7 weeks gestation) and during the third trimester 
(between 26–30 weeks gestation), using dried blood spot 
techniques. All blood spot cards were shipped to a central 
laboratory, the Meshnick Laboratory at the University of 
North Carolina (U.S.) for analyses. The PCR results were 
performed in batches, in most cases, after the conclu-
sion of pregnancies, therefore the PCR research results 
were not available to guide treatment decisions during 
pregnancy. Rapid diagnostic tests (RDTs) were also per-
formed for women enrolled at the Pakistan, Zambia and 
Kenya sites, and women were treated according to local 
standards based on the results. No RDTs were performed 
at the DRC site. Each sample was tested in duplicate for 
P. falciparum lactate dehydrogenase (pfldh) by quantita-
tive polymerase chain reaction (qPCR). Because malaria 
parasites were not detected in the samples from Paki-
stan, the women enrolled from the Pakistani site were 
excluded from subsequent analyses.

We defined primary and secondary efficacy outcomes 
as specified in the ASPIRIN trial. Therefore, preterm 
delivery was defined as delivery after 20  weeks, but 
before 37 0/7 weeks gestation. We defined hypertensive 
disorders to include pre-eclampsia, eclampsia, and gesta-
tional hypertension. We defined small for gestational age 
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as a birth weight less than 10% of the INTERGROWTH-
21st growth standard.[12] We defined perinatal mortal-
ity as stillbirths and deaths in the perinatal period from 
20  weeks gestation to 7  days post-partum. Additionally, 
we used a priori specifications for other maternal out-
comes of interest, such as maternal vaginal bleeding, 
antepartum/postpartum hemorrhage, maternal mortal-
ity and a combined category of preterm and hyperten-
sive disorders. We used a priori defined specifications for 
other fetal outcomes of interest, including preterm deliv-
ery < 34 weeks, birthweight < 2500 g, birthweight < 1500 g 
and stillbirth. We also defined malaria in late pregnancy 
as an infection in women for whom we collected a sec-
ondary blood sample between 26–30 weeks that was pos-
itive for malaria by qPCR.

We performed descriptive statistics for bivariate com-
parisons. Crude prevalence proportion ratios (PRs) were 
calculated for LDA treatment by P. falciparum infec-
tion in the first trimester by each variable using strati-
fied tables for all sites and for each site individually. We 
chose to present prevalence proportion ratios instead 
of incidence ratios since our enrollment occurred after 
conception, and therefore true incidence of adverse preg-
nancy outcomes (outcomes from conception to end of 
pregnancy) could not be accurately determined. Pois-
son models were developed to evaluate effect measure 
modification of malaria on the effect of LDA in regards 
to maternal and fetal outcomes of interest with terms 
included for treatment, malaria in the first trimester, site, 
and the interaction term of malaria in the first trimester 
and LDA treatment. Similar models were constructed 
separately for each site to estimate the prevalence ratio 
of preterm birth and perinatal mortality with terms 
included for treatment, malaria in the first trimester, and 
the interaction term of malaria in the first trimester and 
LDA treatment.

We used prevalence ratios (PRs) to investigate the rela-
tionship between early pregnancy malaria status and late 
pregnancy hemoglobin levels. Hemoglobin levels were 
measured by point of care testing devices in the third 
trimester (between 26–30 weeks). We used multiple cut-
offs for hemoglobin levels (≤ 8 g/dL, ≤ 9 g/dL, ≤ 10 g/dL, 
and ≤ 11 g/dL) to assess whether malaria in the first tri-
mester was an effect measure modifier for the relation-
ship between LDA treatment and hemoglobin levels in 
late pregnancy. Comparisons were limited to observa-
tions without missing data for each variable. All analyses 
were performed using the R statistical platform (ver-
sion 4.0.2) and SAS version 9.4 (SAS Institute, Cary, NC, 
USA).

This study was approved by the relevant ethics commit-
tees at the institutions conducting the study at each site 
prior to the initiation of study activities. The study was 

also approved by the ethics committees at the partner 
U.S.-based institutions (University of North Carolina at 
Chapel Hill, Columbia University, University of Alabama 
at Birmingham and Indiana University) and by RTI Inter-
national, the data coordinating center. All women pro-
vided informed consent prior to their participation in the 
sub-study. The ASPIRIN trial was registered in clinical-
trials.gov (NCT02409680).

Results
We included 1,446 pregnant women in our analyses; 469 
(32%) from DRC, 642 (44%) from Kenya, and 335 (23%) 
from Zambia (Fig. 1).

The women in the DRC site had the highest preva-
lence of malaria in early pregnancy (297/469, 63%), fol-
lowed by the women in the Kenya site (244/642, 38%), 
then the Zambia site (21/335, 6%). Half of the women 
(n = 724, 50%) were randomized to the LDA (treatment) 
arm. Of the women who received LDA, 39% (279/724) 
had malaria in early pregnancy, equal to 39% of women 
(283/722) with malaria in early pregnancy who were ran-
domized to placebo (Table 1).

Baseline characteristics were similar among women 
who received LDA vs placebo, and among women who 
had malaria in early pregnancy vs those who did not, in 
terms of gestational age at enrollment, maternal height, 
weight, body mass index (BMI), antenatal care visits, 
delivery attendant, delivery location and mode of deliv-
ery (Table  1). Women with malaria in early pregnancy 
trended toward younger maternal ages and fewer years of 
formal education. The majority of all mothers had deliv-
eries attended by nurses/midwives, delivered in clinics 
or health centers and had vaginal deliveries. The median 
number of antenatal care (ANC) visits was four.

Preterm birth occurred in 83 women in the LDA group 
and 90 women in the placebo group (PR 0.92, 95% CI 
0.70, 1.22) (Table 2).

The association between LDA and preterm birth was 
similar among the malaria negative (PR 0.89, 95% CI 
0.59, 1.36) and the malaria positive group (PR 0.95, 95% 
CI 0.66, 1.38, p = 0.75). Perinatal mortality occurred in 
41 pregnancies in the LDA group and 43 pregnancies 
in the placebo group (PR 0.95, 95% CI 0.63, 1.44). The 
association between LDA and perinatal mortality varied 
between the malaria negative (PR 0.56, 95% CI 0.31, 1.03) 
and the malaria positive group (PR 1.69, 95% CI 0.91, 
3.14), as the model indicated interaction between LDA 
treatment and malaria infection for perinatal mortality, 
(p = 0.014).

Malaria in late pregnancy was present in 92 pregnan-
cies in the LDA group and 83 pregnancies in the placebo 
group (PR 1.13, 95% CI 0.88, 1.45) (Table 2). The model 
did not show a significant interaction between LDA 
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treatment and early malaria infection on late malaria sta-
tus (p = 0.15). Outcomes of hypertensive disorders, small 
for gestational age, vaginal bleeding, antepartum hemor-
rhage, postpartum hemorrhage, maternal mortality, and 
the combined outcome of preterm and hypertensive dis-
orders occurred infrequently among the groups. The pro-
tective effect of LDA on very low birth weight (< 1500 g) 
is observed in the malaria negative group but not in the 
malaria positive group. No evidence of an interaction 
between LDA and malaria status was observed for any 
other secondary neonatal outcomes of interest (i.e., inter-
action terms in model-based analyses were not signifi-
cant and PRs numerically do not appear to differ).

Preterm birth and perinatal mortality occurred at dif-
ferent frequencies in each research site (Table 3).

In the DRC, 92/469 (20%) pregnancies ended in pre-
term birth, compared to 58/642 (9%) in Kenya and 
23/335 (7%) in Zambia. Perinatal mortality was observed 
with an incidence of 7% (32/469) in the DRC, 5% (34/642) 
in Kenya, and 5% (18/335) in Zambia. Effect measure 
modification was observed in site specific analyses only 
for perinatal mortality for DRC (p = 0.035).

We report hemoglobin levels in late pregnancy based 
on malaria infection in early pregnancy (Table 4).

Hemoglobin levels in late pregnancy appeared to 
be similar among women with malaria positive and 

women that were malaria negative, and LDA treated and 
untreated groups (Fig. 2).

Discussion
Our study investigated the potential interaction between 
LDA and malaria in early pregnancy. We found that 
malaria in early pregnancy did not modify the effects 
of LDA on the risk of preterm birth. However, we did 
observe effect measure modification between LDA and 
malaria on perinatal mortality. Women without malaria 
in early pregnancy had lower rates of perinatal mortality 
when given LDA versus placebo, but this protective effect 
was not observed for women with malaria in early preg-
nancy. Third trimester hemoglobin levels did not vary 
based on LDA exposure and malaria status.

Our study adds important knowledge to the lessons 
learned from the ASPIRIN trial. Within the ASPIRIN 
trial, we observed a risk ratio of 0.89 (0.81 to 0.98) for 
preterm birth, among women receiving LDA compared 
to women receiving placebo, and an absolute reduction 
of prematurity of 2% [3]. While the ASPIRIN trial was 
not powered to evaluate a benefit by site, the relative risk 
ranged from 0.66 (0.44, 1.00) to 1.13 (0.90, 1.42) across 
the 8 sites, with the highest RR being observed in DRC. It 
is biologically plausible that the beneficial effect of LDA 
on preterm birth was modified by malaria given the role 

Fig. 1 Study Participants
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Table 1 Baseline characteristics of study population by treatment arm and malaria status in early pregnancy

Variable ALL CALL COUNTRIES

LDA (N = 724) PLACEBO (N = 722)

Malaria negative Malaria positive Malaria negative Malaria positive

Randomized, N (%) 445 (61) 279 (39) 439 (61) 283 (39)

 Maternal age (years), N (%)
   < 20 225 (50·6) 209 (74·9) 250 (56·9) 206 (72·8)

  20–29 214 (48·1) 69 (24·7) 185 (42·1) 74 (26·1)

   > 29 6 (1·3) 1 (0·4) 4 (0·9) 3 (1·1)

  Median (P25, P75) 19·0 (18·0, 22·0) 18·0 (17·0, 19·5) 19·0 (18·0, 21·0) 18·0 (17·0, 20·0)

Projected gestational age at enrollment (weeks, days), N (%)
 6, 0 – 7, 6 63 (14·2) 30 (10·8) 72 (16·4) 26 (9·2)

 8, 0 – 9, 6 134 (30·1) 75 (26·9) 114 (26·0) 76 (26·9)

 10, 0 – 10, 6 66 (14·8) 33 (11·8) 57 (13·0) 31 (11·0)

 11, 0 – 11,6 47 (10·6) 48 (17·2) 66 (15·0) 54 (19·1)

 12, 0 – 13, 6 135 (30·3) 93 (33·3) 130 (29·6) 96 (33·9)

 Median (P25, P75) 10·3 (8·7, 12·3) 11·0 (9·1, 12·4) 10·6 (8·4, 12·1) 11·1 (9·0, 12·4)

Maternal education, N (%)
 No formal 20 (4·5) 25 (9·0) 19 (4·3) 24 (8·5)

 Primary 58 (13·0) 84 (30·1) 60 (13·7) 97 (34·3)

 Secondary 334 (75·1) 158 (56·6) 327 (74·5) 156 (55·1)

 University + 33 (7·4) 12 (4·3) 33 (7·5) 6 (2·1)

Maternal height (cm), N
 Mean (StdDev) 157·0 (7·5) 155·6 (8·0) 157·0 (7·4) 155·2 (7·9)

 Median (P25, P75) 158·0 (152·5, 162·0) 156·0 (150·2, 161·0) 157·0 (152·5, 161·9) 155·0 (150·0, 160·0)

Maternal weight (kg), N
 Mean (StdDev) 55·0 (8·1) 53·0 (7·4) 55·0 (8·3) 52·3 (7·5)

 Median (P25, P75) 54·0 (50·0, 59·0) 52·2 (48·0, 58·0) 54·0 (50·0, 60·0) 52·0 (47·0, 56·8)

Maternal BMI (kg/m2), N
 Mean (StdDev) 22·4 (3·4) 22·0 (3·1) 22·3 (3·4) 21·8 (3·1)

 Median (P25, P75) 21·1 (20·0, 24·0) 21·7 (19·7, 23·4) 21·9 (20·0, 24·1) 21.5 (19·5, 23·3)

Antenatal care visits, N
 Mean (StdDev) 4·2 (1·1) 3·9 (1·3) 4·2 (1·1) 3·9 (1·2)

 Median (P25, P75) 4·0 (4·0, 5·0) 4·0 (3·0, 5·0) 4·0 (4·0, 5·0) 4·0 (3·0, 5·0)

Delivery attendant, N (%)
 Physician 24 (5·4) 9 (3·2) 18 (4·1) 9 (3·2)

 Nurse/nurse midwife 391 (87·9) 241 (86·4) 383 (87·2) 239 (84·5)

 Traditional birth attendant 19 (4·3) 22 (7·9) 23 (5·2) 30 (10·6)

 Family/Self/Other 11 (2·5) 7 (2·5) 15 (3·4) 5 (1·8)

Delivery location, N (%)
 Hospital 113 (25·4) 58 (20·8) 122 (27·8) 46 (16·3)

 Clinic/health center 296 (66·5) 180 (64·5) 270 (61·5) 194 (68·6)

 Home/Other 36 (8·1) 41 (14·7) 47 (10·7) 43 (15·2)

Delivery mode, N (%)
 Vaginal 426 (95·7) 271 (97·1) 422 (96·1) 276 (97·5)

 C‑section 19 (4·3) 8 (2·9) 17 (3·9) 7 (2·5)

Site, N (%)
 DRC 87 (19·6) 140 (50·2) 85 (19·4) 157 (55·5)

 Kenya 199 (44·7) 130 (46·6) 199 (45·3) 114 (40·3)

 Zambia 159 (35·7) 9 (3·2) 155 (35·3) 12 (4·2)
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Table 2 Primary and secondary efficacy outcomes based on infection with malaria in early pregnancy

Variable Overall Malaria Negative Malaria Positive Aspirin – Malaria 
Interaction p-value

n/N (%) PR (95% CI) n/N (%) PR (95% CI) n/N (%) PR (95% CI)

Primary Outcome
 Preterm delivery

  Aspirin 83/724 (11) 0·92 (0·70, 1·22) 38/445 (9) 0·89 (0·59, 1·36) 45/279 (16) 0·95 (0·66, 1·38) 0.75

  Placebo 90/722 (12) 42/439 (10) 48/283 (17)

Hypertensive disorders

 Aspirin 10/724 (1) 1·11 (0·45, 2·71) 8/445 (2) 0·88 (0·34, 2·25) 2/279 (1) 5·07 (0·24, 105·17) –

 Placebo 9/722 (1) 9/439 (2) 0/283 (0)

Small for gestational age

 Aspirin 89/686 (13) 1·11 (0·84, 1·48) 58/421 (14) 1·21 (0·84, 1·73) 31/265 (12) 0·97 (0·61, 1·54) 0.62

 Placebo 78/668 (12) 46/403 (11) 32/265 (12)

Perinatal mortality

 Aspirin 41/724 (6) 0·95 (0·63, 1·44) 16/445 (4) 0·56 (0·31, 1·03) 25/279 (9) 1·69 (0·91, 3·14) 0.014

 Placebo 43/722 (6) 28/439 (6) 15/283 (5)

Other Maternal Outcomes of Interest
 Vaginal bleeding

  Aspirin 12/713 (2) 0·86 (0·40, 1·85) 11/437 (3) 0·91 (0·41, 2·05) 1/276 (0) 0·51 (0·05, 5·56) 0.64

  Placebo 14/715 (2) 12/435 (3) 2/280 (1)

Antepartum hemorrhage

 Aspirin 4/721 (1) 8·95 (0·48, 165·94) 4/442 (1) 8·86 (0·48, 164·04) 0/279 (0) 1·01 (0·02, 50·76) –

 Placebo 0/717 (0) 0/435 (0) 0/282 (0)

Postpartum hemorrhage

 Aspirin 6/724 (1) 2·99 (0·61, 14·77) 2/445 (0) 4·93 (0·24, 102·46) 4/279 (1) 2·03 (0·37, 10·99) –

 Placebo 2/722 (0) 0/439 (0) 2/283 (0)

Maternal mortality through 42 days

 Aspirin 0/724 (0) 0·33 (0·02, 8·15) 0/445 (0) 0·33 (0·02, 8·05) 0/279 (0) 1·01 (0·02, 50·94) –

 Placebo 1/722 (0) 1/439 (0) 0/283 (0)

Preterm and hypertensive disorders

Aspirin 1/724 (0) 2·99 (0·12, 73·32) 0/445 (0) 0·99 (0·02, 49·61) 1/279 (0) 3·04 (0·12, 74·38) –

Placebo 0/722 (0) 0/439 (0) 0/283 (0)

Other Fetal Outcomes of Interest
 Preterm < 34 weeks of pregnancy

  Aspirin 30/724 (4) 0·88 (0·54, 1·42) 15/445 (3) 0·74 (0·38, 1·43) 15/279 (5) 1·09 (0·53, 2·21) 0.40

  Placebo 34/722 (5) 20/439 (5) 14/283 (5)

Birth weight < 2500 g

 Aspirin 76/715(11) 0·94 (0·70, 1·27) 37/439 (8) 0·91 (0·59, 1·39) 39/276 (14) 0·98 (0·65, 1·47) 0.69

 Placebo 80/708 (11) 40/432 (9) 40/276 (15)

Birth weight < 1500 g

 Aspirin 9/715 (1) 0·69 (0·29, 1·59) 1/439 (0) 0·10 (0·01, 0·77) 8/276 (3) 2·67 (0·71, 9·95) 0.007

 Placebo 13/708 (2) 10/432 (2) 3/276 (1)

Stillbirth

 Aspirin 14/718 (2) 0·87 (0·43, 1·76) 8/442 (2) 0·87 (0·34, 2·23) 6/276 (2) 0·87 (0·30, 2·55) 0.99

 Placebo 16/712 (2) 9/432 (2) 7/280 (3)

Malaria in late pregnancy (26–30 weeks)

 Aspirin 92/296 (31) 1·13 (0·88, 1·45) 42/177 (24) 1·42 (0·93, 2·15) 50/119 (42) 0·94 (0·70, 1·26) 0.15

 Placebo 83/301 (28) 31/185 (17) 52/116 (45)
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of LDA and malaria on placental development [5]. How-
ever, our findings did not suggest effect modification on 
preterm birth by malaria status.

The ASPIRIN trial reported a trend toward signifi-
cance in regards to a reduction in perinatal mortal-
ity (RR 0.86 [0.75, 1.00]). We report potential effect 
measure modification by malaria for the effect of LDA 

Table 3 Preterm birth and perinatal mortality outcomes, by site

Notes: PR is prevalence ratio

PR was not calculated for cells in which no participants experienced the outcome

Outcome Overall Malaria Negative Malaria positive Aspirin – Malaria 
Interaction 
p-valuen/N (%) PR (95% CI) N w/o outcome PR (95% CI) N w/o outcome PR (95% CI)

DRC DRC
 Preterm Delivery

  Aspirin 44/227 (19) 0·98 (0·68, 1·41) 14/87 (16) 1·05 (0·53, 2·10) 30/140 (21) 0·96 (0·62, 1·48) 0.84

  Placebo 48/242 (20) 13/85 (15) 35/157 (22)

Perinatal Mortality

 Aspirin 18/227 (8) 1·37 (0·70, 2·69) 3/87 (3) 0·42 (0·11, 1·57) 15/140 (11) 2·40 (1·01, 5·72) 0.035

 Placebo 14/242 (6) 7/85 (8) 7/157 (4)

Kenya
 Preterm Delivery

  Aspirin 29/329 (9) 0·95 (0·58, 1·55) 15/199 (8) 0·94 (0·48, 1·84) 14/130 (11) 0·94 (0·46, 1·92) 0.99

  Placebo 29/313 (9) 16/199 (8) 13/114 (11)

Perinatal Mortality

 Aspirin 17/329 (5) 0·95 (0·49, 1·83) 7/199 (4) 0·78 (0·30, 2·05) 10/130 (8) 1·10 (0·45, 2·68) 0.62

 Placebo 17/313 (5) 9/199 (5) 8/114 (7)

Zambia
 Preterm Delivery

 Aspirin 10/168 (6) 0·76 (0·34, 1·70) 9/159 (6) 0·67 (0·30, 1·53) 1/9 (11) – –

 Placebo 13/167 (8) 13/155 (8) 0/12 (0)

Perinatal Mortality

 Aspirin 6/168 (4) 0·50 (0·19, 1·29) 6/159 (4) 0·49 (0·19, 1·27) 0/9 (0) – 1.00

 Placebo 12/167 (7) 12/155 (8) 0/12 (0)

Table 4 Hemoglobin level, by malaria infection and aspirin exposure

Note: Hemoglobin measured between 26–30 weeks. Malaria in early pregnancy measured between 6–13 6/7 weeks gestation

Hemoglobin cut-
point

Overall Malaria Negative Malaria positive

N (w/ and w/o 
outcome)

PR (95% CI) N (w/ and w/o 
outcome)

PR (95% CI) N (w/ and w/o 
outcome)

PR (95% CI)

Hemoglobin ≤ 8 g/dL

 Aspirin 11/618 0·91 (0·04, 2·04) 3/376 0·58 (0·14, 2·43) 8/242 1·16 (0·43, 3·14)

 Placebo 12/610 5/364 7/246

Hemoglobin ≤ 9 g/dL

 Aspirin 43/586 1·06 (0·70, 1·58) 10/369 0·57 (0·27, 1·23) 33/217 1·34 (0·82, 2·18)

 Placebo 42/580 17/352 25/228

Hemoglobin ≤ 10 g/dL

 Aspirin 122/507 1·01 (0·80, 1·26) 49/330 1·04 (0·71, 1·51) 73/177 1·00 (0·76, 1·31)

 Placebo 120/502 46/323 74/179

Hemoglobin ≤ 11 g/dL

 Aspirin 266/363 1·03 (0·90, 1·17) 128/251 1·07 (0·87, 1·31) 138/112 1·00 (0·86, 1·18)

 Placebo 256/366 117/252 139/114
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on perinatal mortality, in which women with malaria 
in pregnancy might not benefit from LDA. This find-
ing was consistent in the DRC in site-specific analyses. 
It does not appear that effect measure modification 
through preterm birth explains the perinatal mortality 
findings. Our convenience sampling strategy resulted 
in a sample too small to fully explore the effect meas-
ure modification. Furthermore, because we restricted 
our analyses to pregnancies that extended beyond 
20  weeks, we might have underestimated the early 
effects of malaria and LDA on early pregnancy loss (i.e., 
prior to the gestation of enrollment in the trial).

Treatment or prevention of malaria in pregnancy is 
a strategy to improve maternal and neonatal outcomes 
[5, 13]. Malaria in pregnancy can exert multiple nega-
tive health effects on the mother and the fetus, such as 
preterm birth, IUGR, and stillbirth [5]. Malaria in preg-
nancy has also been associated with hypertensive disor-
ders of pregnancy, a condition that might be prevented 
by LDA treatment in pregnancy [14]. Our cohort had 
a low incidence of hypertensive disorders of pregnancy 
(1.4% in the LDA group and 1.2% in the placebo group), 
an incidence that is lower than predicted. Therefore, 
the joint effects of malaria and LDA on pregnancy out-
comes among hypertensive women are still not known.

This study has several strengths. Because of the 
design of the ASPIRIN trial, we were able to diagnose 
malaria in early pregnancy, at a median gestational age 

of 10 weeks. We were also able to study women in three 
countries with differing levels of malaria endemicity.

Despite these strengths, our findings and inferences 
are limited by some key features of our study design. In 
our cohort we did not observe an effect of LDA on the 
outcome of preterm birth. This differed from the overall 
findings of the ASPIRIN trial, which did show a positive 
association between LDA and reduction of preterm birth. 
Because of our limited sample size, we could have under-
estimated the contribution of malaria to preterm birth 
and the beneficial effects of LDA. We are also limited 
in our ability to describe malaria in various pathologi-
cal stages (incubation, chill, fever, and sweating periods), 
and therefore can not correlate pregnancy outcomes 
based on stage of protozoal infection in the first trimes-
ter of pregnancy. We also did not have robust informa-
tion about malaria treatment during pregnancy and are 
limited in our conclusions regarding anti-malarial treat-
ment effects. Our analysis population is restricted to 
pregnancy outcomes > 20  weeks based on the primary 
outcome of the ASPIRIN trial. This restriction limits our 
ability to determine the effects of malaria and aspirin on 
early pregnancy loss.

Our study emphasizes the importance of evaluating 
public health interventions within the context in which 
they will be used, particularly in LMICs where disease 
burden from infectious diseases is high. Endemic dis-
eases might modify the effect of treatment strategies, by 

Fig. 2 Hemoglobin level in late pregnancy (weeks 26–30), by malaria status in early pregnancy and aspirin exposure
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potentiating or eliminating the desired effect. Treatment 
strategies could be less effective, if not implemented 
in conjunction with other public health interventions 
[15, 16]. This is particularly true for pre-pregnancy and 
pregnancy interventions in which packages of interven-
tions are suggested [17]. Since there is an urgent need 
for timely interventions to improve maternal and new-
born health, studies should investigate interventions in 
diverse settings, where disease endemicity varies, or in 
conjunction with treatment for concurrent diseases such 
as malaria.

Conclusion
Malaria infections during pregnancy are an important 
cause of preterm birth in many LMICs, especially sub-
Saharan African countries where malaria infection in 
pregnancy is common. Recent trials demonstrate that 
low dose aspirin (LDA) is an effective strategy to reduce 
preterm birth, however it is not known if the effect of 
LDA will be modified based on regional differences in 
the etiology of preterm birth in low and middle income 
countries (LMICs). Our study investigated the poten-
tial interaction between LDA and malaria in early preg-
nancy. We found that malaria in early pregnancy did not 
modify the effects of LDA on the risk of preterm birth. 
However, malaria modified the benefit of LDA on peri-
natal mortality, and was associated with less efficacy of 
LDA to reduce this outcome. Given the urgent need for 
timely interventions to improve maternal and newborn 
health, our study highlights the importance of conduct-
ing intervention studies in diverse settings, where disease 
endemicity varies, or in conjunction with treatment for 
concurrent diseases such as malaria.
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