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Abstract 

Decorin is a stromal-derived prototype member of the small leucine-rich proteoglycan gene family. In 

addition to its functions as a regulator of collagen fibrillogenesis and TGF activity, soluble decorin acts 

as a pan-receptor tyrosine kinase (RTK) inhibitor.  Decorin binds to various RTKs, including EGFR, 

HER2, HGFR/Met, VEGFR2, TLR and IGFR. Although the molecular mechanism for the action of decorin 

on these receptors is not entirely elucidated; overall, decorin evokes transient activation of these 

receptors with suppression of downstream signaling cascades culminating in growth inhibition, followed 

by their physical downregulation via caveosomal internalization and degradation. In the case of Met, 

decorin leads to decreased -catenin signaling pathway and growth suppression. As most of these RTKs 

are responsible for providing a growth advantage to cancer cells, the result of decorin treatment is 

oncosuppression. Another decorin-driven mechanism to restrict cancer growth and dissemination is by 

impeding angiogenesis via VEGFR2 and the concurrent activation of protracted endothelial cell 

autophagy.  In this review, we will dissect the multiple roles of decorin in cancer biology and its potential 

use as a next-generation protein-based adjuvant therapy to combat cancer.  
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INTRODUCTION 

Decorin (DCN), is a well characterized small leucine-rich proteoglycan (SLRP) and serves as the 

archetype for this group of proteoglycans (1,2). SLRPs are an 18-member gene family, forming a distinct 

subgroup of proteoglycans that is a microcosm of the multifunctional nature of ECM proteins (2-5). 

SLRPs, aptly named after their identifiable leucine-rich structural motif repeats, contain three canonical 

classes, I-III, and two non-canonical classes, IV-V. These classifications are defined through parameters 

such as homologies at the genomic and protein levels. The distribution of SLRP-encoding genes is 

spread across seven chromosomes with some in gene clusters, indicating there is functional redundancy 

among the SLRPs. The evolutionary conservation of SLRP function underscores the critical function of 

these proteins in the ECM and overall organismal homeostasis (3,6). Decorin is one of these highly 

conserved SLRPs, and is present across species. In mammals, the proteoglycan consists of a central 

domain of ten leucine-rich repeats, a single glycosaminoglycan chain (GAG), and a 42 kDa conserved 

protein core. Originally categorized as a collagen-binding protein, decorin, a class I SLRP, was initially 

characterized as a critical structural factor in collagen fibrillogenesis and tissue integrity. The myriad of 

interactions decorin has with its ligands (7) primarily involves its protein core, but the single GAG chain, 

existing as either chondroitin or dermatan sulfate, also plays an essential role in tissue homeostasis (8). 

 

A BRIEF HISTORY OF DECORIN 

In the latter half of the 1980s, a heavy emphasis was put on proteoglycan research, as understanding 

the associations and interactions between single gene products lied at the epicenter of advancing the 

field of biochemistry. Naturally, connective tissue became a locus of particular interest due to its layout 

as a complex multicellular system with different components working in tandem to sustain critical function 

in both maintaining shape and resisting physical stressors (9,10). The characterization of proteoglycans 

became a focal point in the study of connective tissue, with decorin identified as a chondroitin-dermatan 

sulfate proteoglycan. Decorin is indeed heavily involved in collagen fibrillogenesis and along with other 

dermatan sulfate-rich proteoglycans, was shown to associate with tendon collagen at the d band in the 

gap region (11). Thus the eponym of decorin was aptly proposed for its ability to “decorate” collagen 

fibrils (12). With further investigation, it was determined that decorin possesses a much broader range of 

function, with the discovery that the protein core inhibits, rather than aids, collagen fibrillogenesis by 

binding to type I collagen (13) and maintaining collagen fibril structure, fiber realignment, and mechanical 

properties of various tissues (14-21) that regulate homeostasis.  Moreover, the realization that decorin 

harbored a single GAG chain at its N-terminus was “surprise" at that time as proteoglycans were believed 

to have a higher amount of carbohydrates related to the protein core. After its initial cloning in 1986 from 

human fibroblasts (22), the decorin gene was fully sequenced in both humans and mice (23,24), and its 

promoter region was also partially characterized (25,26). Notably, the transcriptional regulation of DCN 
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is quite complex and is induced by quiescence and repressed by tumor necrosis factor  (TNF) (27), 

and is also transcriptionally repressed by FOXD1 (28) and MEIS1 (29). Moreover, decorin is involved in 

controlling cell proliferation, adhesion and migration (30,31). In order to fully understand the in vivo 

functions of decorin, we generated Dcn-/- mice and discovered that the lack of decorin caused lax and 

fragile skin, telltale of dermal thinning (32), consistent with its ascribed roles in collagen fibrillogenesis. 

As these mice are viable and fertile, they have been used in many studies and in various pathological 

processes, in both experimental and congenital settings. 

Adding to its already versatile interactions, decorin potently binds TGF, effectively sequestering the 

cytokine, attenuating its function and blocking cell proliferation (33-36). It was this discovery that propelled 

decorin into the forefront of proteoglycan research, particularly in cancer as malignant progression 

requires constitutive cell proliferation, making decorin a promising target for oncogenic therapeutics. As 

study of the proteoglycan continued, it was revealed that the breadth and power of its biological function 

primarily lies in its functional interactions with multiple cell surface receptors tyrosine kinases, effectively 

ascribing ECM remodeling as a cardinal role of decorin (37-39). Because cancerous tissues require 

constant remodeling of the extracellular matrix, this groundbreaking discovery has wholly re-shaped our 

understanding of the physiological role of decorin and its significance in the tumor microenvironment, 

especially in terms of its potential as an oncosuppressive agent.   

 

A CURENT VIEW OF DECORIN  

Today, decorin is understood as a far more complex unit of the ECM. Genetic ablation of this SLRP leads 

to a wide range of debilitating conditions that range from structurally compromised skin and tendon to 

impaired metabolism and obesity, abnormal angiogenesis, myocardial infarction and fibrosis, 

demonstrating its multifunctional nature via direct and indirect interactions with a multitude of diverse 

signaling molecules (18,32,40-43). Dcn-/- mice have been studied, and in addition to the skin fragility 

phenotype, they show a strong trend towards spontaneous tumor development (44-48) and metastatic 

spread (49). Early in its discovery, decorin was characterized as having an inhibitory role on cancer 

proliferation and metastasis in tumor cell lines (50,51) because Dcn-/- mice have a significantly increased 

potential to spontaneously develop solid tumors in a plethora of loci in the body, including the intestinal 

tract and liver, lymphoid tissue, and breast (52). Notably, decorin levels are markedly reduced in several 

solid malignancies including prostate, breast, colon, renal and esophageal carcinomas (53-61). Decorin’s 

primary function can be attributed to cell cycle regulation via p21-induced G1 cell cycle arrest. Upon 

ectopic decorin expression, upregulation of p21 allows for nuclear translocation in cells with de novo 

decorin expression subsequently inhibiting cell cycle machinery. Recently, our studies have shown that 

decorin can induce autophagy in endothelial cells and mitophagy in breast cancer cells, independently of 

nutrient conditions (62-70). 
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THE STRUCTURE AND FUNCTION OF DECORIN 

Decorin is horseshoe-shaped, in which its 14 curved β-strands, located on the inner concave surface 

contains protein sequences for recognizing most of the known decorin-binding partners (7,71). In 

contrast, the outer convex surface of decorin contains multiple -helices (Fig. 1) (65). The LRR 

architecture of the decorin solenoid provides a plastic interface that encodes biological information 

necessary for coordinating a myriad of protein-protein interactions, the hallmark of decorin multiplicity of 

functions. To understand how decorin interacts, it is useful to think of the decorin structure as an amalgam 

of two parts. The central domain is composed of the characteristic twelve leucine-rich repeats forming 

short β-strands in a parallel conformation, and the N-terminal attachment of the GAG chain, of either 

dermatan or chondroitin sulfate (Fig. 1).  The LRR protein core forms the interface for binding receptor 

tyrosine kinases, most notably vascular endothelial growth factor receptor 2 (VEGFR2). Specifically, 

LRRV/VI aid in the binding of decorin to VEGFR2 (72), whereas LRRXII is utilized for decorin binding to 

CCN2/CTGF and for suppressing its biological activity (73). Perhaps, the most established sequence 

(SYIRIADTNIT) is located in LRRVII and contains the area with high affinity for collagen type I (74), the 

most classic and well-known binding partner of decorin (75). The C-terminal includes a structure known 

as the “ear” repeat and participates in protein folding (Fig. 1). This structure has been investigated 

extensively and its functionality has been determined via truncation of the decorin C-terminal, which 

causes protein misfolding and endoplasmic reticulum stress. These issues subsequently cause disease 

manifestation, including congenital stromal corneal dystrophy (76-79). The GAG chain remains crucial 

for decorin-ligand interactions. The chondroitin/dermatan sulfate (CS/DS) chain attached to decorin 

performs many functions related to wound healing (80), keratinocyte function (81), and collagen assembly 

in adipose and skeletal muscle tissues (82). Additionally, the chain appears to increase the affinity of 

decorin to collagen, with its absence often phenotypically emerging as increased skin fragility (32). 

Because decorin appears in both a monomeric and dimeric form, it is likely that the dimeric complex 

would sterically hinder most of the core region, thus making binding to other substrates, especially cell 

surface receptors, quite difficult or impossible. Thus, although decorin forms a dimer in physiological 

solutions (83), its biologically active form is that of a monomer (84).  

 

ROLE OF DECORIN IN ANTI-TUMORIGENIC SIGNALING  

Decorin has been considered a “guardian from the matrix” because of its anti-tumorigenic activity, which 

manifests itself by inhibiting several RTKs and their downstream signaling cascades that originate from 

the ECM (85). In general, by blocking these RTK-mediated pathways, decorin ultimately interferes with 

the continued growth and survival of the tumor by inhibiting key processes such as metastasis and 

angiogenesis. These two processes are integral in determining the fate of a tumor in terms of remaining 
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silent or becoming malignant. In angiogenesis, new blood vessels are formed from pre-existing blood 

vessels which enhances the survival of tumor cells, the so-called angiogenic switch (86). This is because 

a greater amount of nutrients and oxygen pertinent to cancer growth can reach tumorigenic tissue and 

feed metabolic processes (87). During metastatic dissemination tumors gain migratory abilities and 

spread to distal areas in relation to the primary site, which makes it a beneficiary of angiogenesis. After 

binding to RTKs, decorin mitigates both tumor metastasis and angiogenesis (88-93). The latter process 

is perfomed in a way similar to other proteoglycan-derived bioactive molecules such 

perlecan/endorepellin (94-96) or Collagen XVIII/endostatin (97-99). Apart from RTKs, decorin can also 

bind other growth factor receptors like TGFβR and Toll-like receptors TLR2 and TLR4 to stimulate the 

anti-inflammatory response which similarly curbs cancer lethality (7,100). Below we provide a succinct 

summary of the functional involvement of several RTKs interacting with the decorin protein core. 

 

EGFR signaling 

Decorin binds with several RTKs on the cell surface with high affinity. Epidermal growth factor receptor 

(EGFR) was the first RTK discovered as a binding partner of decorin (37-39). In A431 squamous 

carcinoma cells, decorin binding to EGFR induces dimerization, internalization and the subsequent 

degradation of EGFR via caveolar-mediated endocytosis (37,38,101). Moreover, soluble decorin 

elevates cytosolic Ca2+ in squamous carcinoma cells overexpressing EGFR (102). After binding to the 

receptor, decorin evokes sustained down-regulation of EGFR and an overall attenuation of the EGFR 

signaling cascade (103), a mechanism for controlling tumor growth in vivo. Activation of this EGFR 

signaling through PI3 kinase (PI3K) and RAS is crucial for sustained tumor growth and proliferation (Fig. 

2A). By suppressing oncogenic signaling, decorin is believed to restrict tumor growth, survival, and 

metastatic potential. On the other hand, through EGFR signaling, decorin can simultaneously activate an 

anti-oncogenic pathway that leads to cell cycle arrest. Decorin induces rapid trans-autophosphorylation 

of EGFR and concurrent activation of mitogen-activated protein (MAP) kinase for a protracted induction 

of endogenous p21 (104,105), a potent inhibitor of cyclin-dependent kinases, and induction of caspase-

3, which ultimately results in cell cycle arrest (38) . In line with these findings, the anti-angiogenic effect 

of decorin is also reported to signal via EGFR in breast carcinoma cells (106). Decorin evokes the rapid 

secretion of thrombospondin-1 (TSP-1), a potent anti-angiogenic effector via inhibition of the 

RhoA/ROCK1 complex (Fig. 2A) (106). The importance of decorin in EGFR signaling is further 

emphasized when osteosarcoma cells that constitutively produce decorin were shown to be resistant to 

decorin-induced growth arrest through the sustained expression and activation of EGFR signaling (107). 

Decorin has recently been established as a suppressor of invasion and tumor growth in inflammatory 

breast cancer by inhibiting EGFR/Erk signaling. Additionally, its overexpression leads to decreased 

migration and invasion of the tumor both in vitro and in mouse xenograft models (108). Collectively, 
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through EGFR, decorin suppresses oncogenic signaling and activates oncosuppressive functions in 

tumor cells.  

 

MET signaling 

To investigate the possibility that the anti-oncogenic effects of decorin could integrate with RTKs other 

than EGFR and related ErbB receptors, we utilized an antibody array system to assess tyrosine 

phosphorylation of 42 RTKs (109). We discovered that the addition of soluble decorin affected 

phosphorylation of the hepatocyte growth factor (HGF) receptor Met in a serum-independent manner that 

resembled its effects on EGFR. Decorin can directly bind to the Met receptor, a proven mediator of 

malignant transformation, invasive growth, and metastasis (109-111). Decorin binds to the extracellular 

domain of Met that leads to receptor down-regulation through a combination of increased ectodomain 

shedding and internalization (112). Notably, decorin evokes a marked proteasome-dependent 

degradation of the transcription factor β-catenin and downregulates the protein expression of both β-

catenin and Myc (Fig. 2B) (109,113). In tumor xenograft models, decorin downregulates Met with 

concurrent suppression of β-catenin, which is mechanistically implicated in mediating HGF- and Met-

dependent cell invasion, and Myc, a key oncogenic factor for tumor progression (113). Not limited to this, 

decorin was also shown to suppress the expression of two pro-angiogenic genes, hypoxia inducible factor 

(HIF)-1 and vascular endothelial growth factor A (VEGFA) in breast carcinoma cells and inhibits VEGFA 

mediated angiogenesis (114). In line with this, decorin reduces the expression and activity of matrix 

metalloprotease (MMP)-9 and MMP-2, two pro-angiogenic proteases and evoke the expression of potent 

angiostatic agents like TIMP3 (106). Decorin antagonizes the angiogenic network by inhibiting pro-

angiogenic factors and activating angiostatic agents via Met which reduces tumorigenicity. Additionally, 

in triple negative and luminal breast carcinoma cells, decorin triggered mitochondrial depolarization 

followed by augmented mitophagy downstream of Met. Mechanistically, decorin mobilizes PGC-1 for 

the cytosolic accumulation of mitostatin to evoke mitophagy (66). Thus, by increasing mitostatin levels 

and evoking the autophagic catabolism of mitochondria, decorin suppresses VEGFA ultimately leading 

to tumor angiostasis.        

 

VEGFR2 signaling 

In recent years, decorin has been established as a novel VEGFR2 antagonist in endothelial cells as well 

as in human trophoblasts (62,72,115). Presumably, these biological interactions affect in vivo 

neovascularization in several organs including the cornea (116) Decorin directly binds the ectodomain of 

VEGFR2 in a region that partially overlaps with its endogenous agonist, VEGFA and, as such, inhibits 

VEGFA-mediated angiogenesis. By interacting with VEGFR2, decorin induces AMPK to initiate a 
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signaling cascade that activates Vps34 (vacuolar protein sorting 34) and inhibits mTOR for excessive 

autophagy. Due to the protracted nature of decorin-evoked autophagy in endothelial cells, decorin 

transcriptionally activates Paternally Expressed Gene 3 (PEG3). Peg3 is critical for sustaining the 

decorin-evoked autophagy response as it necessary and sufficient for driving the expression and 

accumulation of Beclin-1 and LC3 (117), two key proteins required for successful autophagy (Fig. 2C) 

(62,117). Moreover, Peg3 has been conclusively implicated in mediating autophagic flux downstream of 

decorin/VEGFR2 interactions (62), in part by transcriptionally promoting TFEB expression (115). Loss of 

Peg3 or Beclin 1 significantly abrogates decorin-evoked autophagy. Decorin-VEGFR2 binding also 

inhibits the Akt phosphorylation axis that ultimately blocks oncogenic signaling via mTOR pathway (118). 

Recently, a connection that unifies the pro-autophagic properties of decorin with the well-established anti-

angiogenic functions has been uncovered. Decorin clears intracellular VEGFA by mobilizing this potent 

pro-angiogenic growth factor into LC3-positive autophagosomes in a Peg3-dependent manner (119). 

Moreover, VEGFA is sensitive to autophagic flux in vivo as application of chloroquine prevented a 

starvation-induced reduction of VEGFA in cardiac and aortic tissues (119).  Thus, decorin induced 

VEGFR2 signaling attenuates tumor progression by blocking angiogenesis or by inhibiting oncogenic 

signaling through autophagy.  

 

IGF-IR signaling 

Activation of signaling cascades through insulin like growth factor receptor I (IGF-IR) is involved in the 

development of many carcinomas. In some experimental models, it has been established that activation 

of IGF-IR is directly linked to tumor progression and epithelial-mesenchymal transition (EMT) (120,121). 

Notably, previous studies have shown that in invasive bladder cancer IGF-IR expression is generally up-

regulated whereas Dcn mRNA expression is down-regulated (122-124). In addition, it has been shown 

that decorin binds IGF-IR and inhibits IGF-I induced migration and invasion of bladder cancer through 

the inhibition of downstream signaling cascades (123). Decorin severely mitigates IGF-I-stimulated 

activation of Akt and ERK1/2, two key pathways for tumor development and progression (Fig. 2D). 

Therefore, decorin binding with IGF-IR inhibits the oncogenic signaling through Akt and ERK whereas 

loss of decorin indirectly induces IGF-IR activity and signaling, thereby promoting enhanced cellular 

motility, invasion, and tumor progression. 

 

TGFβ signaling 

Limited reports are available concerning the role of decorin in transforming growth factor β (TGF) 

signaling. In 2002, decorin was shown to disrupt the TGFβ/Smad signaling pathway in human mesangial 

cells where decorin induced the phosphorylation of different Smad proteins (125). This initial discovery 

was supported by subsequent reports whereby decorin has been genetically ablated. This was sufficient 
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to allow for rampant Erk and Smad signaling favoring the development of hepatic (126,127) and renal 

fibrosis (128,129). Another way in which decorin affects TGF is through interaction with LDL receptor-

related protein 1 (LRP-1) (130), is a large endocytic receptor involved in in lipoprotein metabolism, 

catabolism of proteinases, coagulation (131) and cancer cell migration (132). Notably, the internal LRRVI 

is responsible for decorin binding to LRP-1 and subsequent TGF-evoked signaling (133). Very recently, 

decorin has also been reported as an antagonist of TGF in astrocytes of the optic nerve (134). In this 

report also, decorin deficiency has been shown to increase the expression and synthesis of TGFs. 

Importantly, treatment with decorin reduced TGF expression in murine astrocytes. In addition, this report 

claims Smad-independent TGFβ signaling where decorin exerts its suppressive effect over TGF 

expression via pAKT/AKT signaling (Fig. 2E) (134). 

 

TLR signaling 

Beyond the interactions with growth factors and cytokines to control cell growth and proliferation, decorin 

also mediates inflammatory responses by acting as an endogenous ligand for TLR2/4 (toll-like receptor) 

(135,136). Decorin binds to TLR2 and TLR4 on macrophages with high affinity and in turn causes rapid 

activation of p38, MAPK, and NFB pathways, all of which are involved in pro-inflammatory responses 

(136,137). Decorin binding to the TLRs prevents transcriptional repression of PDCD4 (programmed cell 

death protein 4) by decreasing TGFβ1 activity; this leads to an increase of oncogenic miR-21, a post-

transcriptional repressor of PDCD4 (Fig. 2F). (136,138). Subsequently, increased PDCD4 decreased the 

release of IL-10, an anti-inflammatory cytokine, thereby making the overall cytokine environment more 

pro-inflammatory. Additionally, through these toll-like receptors, decorin enhances the synthesis of the 

pro-inflammatory cytokines TNF and IL-12 (Fig. 2F). Thus by stimulating pro-inflammatory molecules 

and reducing the abundance of anti-inflammatory ones, decorin shifts the immune response to a more 

pro-inflammatory state that is associated with reduced tumor growth. It is important to note that 

inflammation in cancer remains a highly debated topic, in which the current outlook diverges for the 

effects of acute versus chronic inflammation on tumorigenesis.  

 

CONSEQUENCES OF DECORIN INTERACTION WITH VARIOUS RECEPTORS 

To curb the lethality of tumorigenesis and malignant transformation, the interaction of SLRPs with 

different cell surface receptors has become an emerging field of study in the fight against cancer. After 

binding with different receptors, decorin modulates key processes vital for tumor growth, invasion and 

progression such as autophagy, mitophagy, cell cycle arrest, inflammation and angiogenesis. By 

attenuating several oncogenic processes, promoting oncosuppressive functions and/or inducing 

inflammation and autophagy, decorin acts as a soluble master tumor repressor to determine whether a 
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tumor remains silent or becomes malignant (57,58,139-142). Because decorin is ubiquitously expressed 

in all tissue types, its presence and potential use as a therapeutic agent is relevant to all types of 

carcinomas (Fig. 3A). Interestingly, in cancer patients, the expression of decorin is downregulated in most 

tumorigenic tissues (Fig. 3B). It is believed this facilitates tumor metastases due to reduced decorin 

expression from the homeostatic level. Therefore, abundant expression of decorin or treatment with 

decorin may lead to an “organized” ECM presenting itself as a physical barrier against tumor cell 

metastasis.   

 

DECORIN IN CANCER STUDIES 

Although clinical studies involving decorin date to the 1990s, knowledge of this proteoglycan was rather 

limited and was thought to strictly involve collage fibrillogenesis for tissue integrity. Therefore, in these 

initial studies, the focus was more on tissue and wound healing (143,144). In comparison, after 

experimental findings suggested that decorin evokes autophagy (145), there has been remarkable 

interest in evaluating decorin in clinical studies involving a wide spectrum of malignancies. Its 

effectiveness in animal models has inspired numerous groups to use decorin for prognosis and 

intervention. Since the 2000s, there have been numerable noteworthy studies concerning decorin and 

various forms of cancer. For instance, in 2003, Troup et al analyzed 140 invasive breast carcinomas 

without axillary node involvement that were treated with adjuvant endocrine therapy (146). In their study, 

an increase in tumor size was associated with a statistically significant (p=0.0496) reduction in decorin 

levels (146). Over the years, this proteoglycan has only snowballed in attention. Recently, Kawaguchi et 

al set out to examine the relationship between decorin levels, exercising, and hepatocellular carcinoma 

(HCC) (147). In their study, 65 patients with a history of HCC that were treated with embolization were 

enrolled. The study population was divided into two groups, high decorin and low decorin, after 

performing enzyme-linked immunosorbent assays. Increased serum decorin levels correlated with an 

increase in 6 minute walking distance with overall survival being significantly higher in the high decorin 

group (p=0.0353) (147). Glioblastoma multiforme (GBM) is a devastating cancer with a poor prognosis 

due to being very invasive and the current chemotherapy regimens generally failing fight it effectively. 

Therefore, the five-year survival rate from this cancer is as low as 5.1% in recent studies (148). A 2021 

study by Jia et al focused on the effects of decorin on GBM. In their multifaceted study, they obtained 

tumors from 42 GBM patients and analyzed decorin expression via qRT-PCR. After dividing their patients 

to two groups, high and low expression, they have observed that the high DCN expression group had an 

overall higher survival rate (p=0.0159). Although this is an impressive finding by itself, the group took it a 

step further by utilizing patient derived xenograft models. As such, some of the tumors were implanted 

into nude mice and their metastatic behaviors were observed. Remarkably, the tumors with high decorin 

expression had markedly less invasive cells when compared to those possessing low decorin expression 
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(149). Like other proteins and proteoglycans in the human body, decorin is differentially expressed across 

different tissues. The abundance of decorin also varies among different types of cancer. Using the 

recently developed Xena platform (150) and data from resources like TCGA (The Cancer Genome Atlas), 

we analyzed decorin expression profiles across different cancers and their normal counterparts (Fig. 3B). 

According to this database, decorin expression is suppressed in a variety of primary tumors indicative of 

the pertinent oncosuppressive role decorin plays (150). Additionally, in breast, uterine, liver, and lung 

carcinomas, survival is markedly lower in patients with lower decorin expression levels as measured by 

the Kaplan-Meier cancer survival estimator database (Fig. 4). Following these studies, the reasonable 

way forward would be to utilize decorin isolates directly in a clinical trial. Unfortunately, at the time of 

writing, there are no studies utilizing this proteoglycan in such a way. 

 

CONCLUSIONS 

The extracellular matrix has emerged as a novel locus for cancer therapeutics, especially considering 

the interactions between proteoglycans and cell surface growth factor receptors. Tumor tissue differs 

greatly in terms of extracellular matrix composition and RTK density when compared with healthy tissue. 

Indeed, the emergence of the matrisome as a bioinformatic ensemble of extracellular matrix-associated 

proteins (151,152) needs to be considered as tumors can show unique features and variants of the 

matrisome (153,154). Decorin acts as a vital SLRP that helps reprogram constitutive metabolic activity 

tailored towards cell growth, proliferation, and migration. Decorin is an endogenous matrix-centric pan-

RTK inhibitor that possesses hierarchical binding for various RTKs expressed by a “target-rich” 

environment such as tumor cells. This property might function to integrate the activity of decorin across 

multiple RTKs with differential binding kinetics for sustained and proficient cross-talk for optimal 

tumorigenic suppression. In this manner, decorin acts as a soluble cell cycle arrest agent against 

metastasis by inhibiting the activities of known oncogenic genes such as mTOR, ERK, -catenin, and 

Myc while simultaneously upregulating genes such as p21 which serve oncosuppressive roles. Clinically, 

decorin was found to be ubiquitously expressed in most bodily tissues. Utilizing cancer databases that 

measure gene expression in normal and tumor tissues, decorin was found to be significantly 

downregulated in most solid tumors. Results of the clinical investigations and in vivo animal studies 

strongly suggest that decorin might be used in the near future as an adjuvant “protein therapeutic” for 

solid tumors where RTKs play a pivotal role. Decorin could be delivered as either fully glycanated 

proteoglycan or as a protein core, the size of which is similar to that of antibodies routinely used in the 

clinics. It could also be delivered as bioactive fragments harboring the internal leucine-rich repeats where 

all the bindings occur. Notably, it has been recently generated a fusion protein of decorin harboring a 

CAR peptide that targets inflammatory and angiogenic vasculature (155). This CAR-DCN is a 

multifunctional biotherapeutic that inhibits numerous growth factor signaling pathways involved in fibrosis 
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(156,157). It has been safely administered to mice to block fibrosis and the formation of abdominal aortic 

aneurysms (158) as well as to attenuate the pathology of murine muscular dystrophy (159). Thus, we 

believe that the strategy of “monitoring from the matrix” with SLRPs like decorin provides a new paradigm 

that could be exploited as an additional therapeutic tool in the fight against cancer.    
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Figure 1.  Three-dimensional (3D) structure of decorin visualized as a cartoon ribbon diagram rendered with 
Incentive PyMOL (PDB accession number:1XKU). Monomeric bovine decorin is depicted where secondary 

structures are color coded: vertical arrows designate -strands and are shaded in green whereas coiled ribbons 

indicate -helices and shaded red. The leucine rich repeats are numbered in Roman numerals I-XII. Decorin 

contains a central domain composed of fourteen -strands, twelve of which are leucine rich repeats. This domain 
mainly participates in interaction with RTKs, collagen, and growth factors. The type I collagen binding sequence, 
SYIRIADTNIT, located in LRRVII is shaded in yellow. Other noteworthy areas include the C-terminal LRR Cys 
capping motif, known as the ear repeat, which is involved in protein folding, and the single GAG chain which is 
located between the N-terminus and the leucine-rich region. Please consult the text for additional information. 
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Figure 2. Interaction of decorin with different receptor tyrosine kinase (RTKs) and other receptors (A-F).  As it 

pertains to the TGFβ receptor, decorin binds the ligand, TGF, and inhibits its downstream signaling. After binding 
with variety of receptors or ligand, decorin inhibits several oncogenic biochemical pathways and activates some 
oncosuppressive genes to restrict the growth and proliferation of the tumor. Abbreviations used: EGFR, epidermal 
growth factor receptor; PI3K, PI3 Kinase; mTOR, mammalian target of rapamycin; Rho, RAS homolog family 
member A; ROCK1, Rho-associated coiled-coil kinase 1; MAPK, mitogen activated protein kinase; TSP-1, 
thrombospondin-1; Met, mesenchymal-epithelial transition factor also known as hepatocyte growth factor receptor 

(HGFR); HIF-1, hypoxia-inducible factor 1; VEGFA, vascular endothelial growth factor A; Myc, Myelocytomatosis 

proto-oncogene transcription factor; TIMP3, tissue inhibitor metalloprotease 3; PGC-1, Peroxisome proliferator-

activated receptor-gamma coactivator  1; VEGFR2, vascular endothelial growth factor receptor 2; AMPK, AMP 
activated protein kinase; VPS34, vacuolar protein sorting 34; Peg3, paternally expressed 3; IGF-IR, insulin like 
growth factor receptor 1; miR21, microRNA 21; PDCD4, programmed cell death protein 4; IL, interleukin; TGFβ1, 

transforming growth factor β isoform 1; TLR, Toll-like receptor; TNF, tumor necrosis factor . 
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Figure 3.  Ubiquitous expression of decorin and downregulation in various malignant tissues. A:  from data 
generated in GTEX tissue expression via the Xena database provided by the University of California in San Diego, 
decorin is expressed at measurable levels ubiquitously in different tissue types, further expounding its pertinent 
function in maintaining wild type, and healthy tissue function. Expression is measured via Fragments Per Kilobase 
of transcript per Million mapped reads (FPKM). B: from a cohort of 19,131 cancer patients aggregate in the TCGA 
Target GTEx database published by UCSD, normal and tumor tissue RNASeq signaling was measured in a variety 
of tissue types ranging from esophageal to ovarian. These data illustrate a significant downregulation (p values 
ranging from 1.74 x 10-8 to 2.63 x 10-206) of decorin in tumorigenic tissue. These findings strongly indicate that higher 
decorin concentrations are beneficial in preventing primary tumor growth and proliferation. Along with its ubiquitous 
expression in mammalian tissue, decorin is a non-discriminant anti-tumorigenic agent. 
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Figure 4. Kaplan-Meier database for cancer prognosis shows the survival probability of cancer patients in 
retrospective studies with high and low decorin levels. We used KMplotter (160,161) from GEO and EGA 
repositories. There is a clear correlation between low decorin expression and lower survival rates for patients 
suffering from breast, uterine, lung and hepatocellular carcinomas, which are some of the most common metastatic 
malignancies.   
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