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The Role of Decorin Proteoglycan in Mitophagy
Thomas Neill * and Renato V. Iozzo *

Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney
Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
* Correspondence: thomas.neill@jefferson.edu (T.N.); renato.iozzo@jefferson.edu (R.V.I.)

Simple Summary: The eminent rise of extracellular matrix constituents, chiefly hailing from the
proteoglycan gene family, has revolutionized our understanding of how intracellular catabolism
is regulated at the intersection of autophagy and breast cancer. In this review, we examine the
mechanisms of decorin, a small leucine-rich proteoglycan, as it relates to autophagy and mitochondrial
autophagy (mitophagy). In each case, decorin signals via a unique cell surface receptor tyrosine
kinase to evoke autophagy (VEGFR2) or mitophagy (MET receptor) that converges on a novel tumor
suppressor gene. The downstream function of either Peg3 or mitostatin in response to decorin
manifests as potent means to subdue breast cancer development and progression.

Abstract: Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in
prominence has transformed our basic understanding and alerted us to the existence of non-canonical
pathways, independent of nutrient deprivation, that potently control the autophagy downstream
of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin
has single-handedly pioneered the connection between extracellular matrix signaling and autophagy
regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast car-
cinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine
kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying
the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic
progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan mem-
bers) will represent a quantum leap forward in transforming autophagic progression into a powerful
tool to control intracellular cell catabolism from the outside.

Keywords: small leucine-rich proteoglycans; autophagy; Peg3; VEGFR2; MET; mitostatin

1. Introduction

In spite of the significant advances in breast cancer diagnosis and treatment, this ma-
lignant neoplasm is still the most common cancer diagnosed among women and represents
the second leading cause of cancer mortality in the United States after lung cancer [1].
One of the most striking features of mammary carcinomas is their heterogeneity both in
terms of tumor cell types and the stroma, an associated tissue long considered an active
participant in malignant behavior, metastatic spreading, and colonization of distant or-
gans [2–6]. Indeed, intratumor heterogeneity has been proposed to represent the “Rosetta
Stone” of therapy resistance [7]. This concept is based on the idea that acquired tumor
resistance to targeted therapies depends on intratumor heterogeneity and diversification
during the therapeutic process enabling cancer cells to escape death [7]. There is emerging
evidence that breast cancer progression, metastasis, and treatment resistance may depend
on intratumoral molecular subtypes and their interconversion among seemingly different
subtypes [8]. Moreover, differences in diffusion and consumption rates of growth factors
and cytokines would contribute in modulating the microenvironment, further promoting
phenotypic heterogeneity [7]. Accordingly, both survival and recurrence rates in mammary
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carcinomas are variable and the biological underpinnings that affect clinical outcomes need
to be fully elucidated [5].

There is a mounting body of evidence pointing to the breast cancer stroma as a key
regulator of tumor progression after the initial stages of tumor formation, and that the
tumor stroma may also contribute to chemoresistance [9]. For example, stromal cells
can extrinsically alter tumor cell drug responses with profound consequences for patient
outcome [9]. Thus, aspects of stromal biology, including mesenchymal, stromal, immune
cells, and cancer-associated fibroblasts, are important to fully understand the molecular
and cellular mechanisms contributing to breast cancer development and progression.
Proteoglycans are key constituents of the breast cancer stroma and mediate many important
functions including angiogenesis, growth factor sequestration and presentation to various
receptors, immune modulation, and autophagy, among many other roles [10].

In this review, we critically assess the role of proteoglycans, especially focusing on
decorin, in autophagy and mitophagy and propose a new paradigm whereby soluble
extracellular matrix constituents with biological activity significantly affect intracellular
catabolic events linked to breast cancer progression and metastasis.

Proteoglycans Are Versatile and Emergent Autophagic Regulators

As a ubiquitous and genuinely multifunctional entity necessary for maintaining home-
ostasis, the extracellular matrix (ECM) is a reciprocal dynamism of highly interconnected
and interacting macromolecules that nourishes and encapsulates all cells within tissues and
organs [11]. Proteoglycans (PGs) represent a major class of these versatile ECM molecules.
They exert not only a structural and architectural role within their tissue of residence,
but are chief signaling effectors responsible for controlling key facets of cellular behavior
in response to ever-changing stimuli [12]. To date, there are about forty-three genes that
encode proteoglycans, with many variants postulated to exist due to alternative messenger
RNA (mRNA) splicing to further fine tune their function in a diverse array of cell types
and tissues [12]. Proteoglycans (PGs) are subject to heavy post-translational modifications,
such as their hallmark motif that acts to differentiate this class from other ECM molecules,
the covalent attachment of one or more glycosaminoglycan (GAG) chains to the protein
core. These chains come in four common flavors, chondroitin sulfate/dermatan sulfate,
keratan sulfate, and heparan sulfate [12]. Additionally, glycosylation events also occur
to generate O- and N-linked oligosaccharides that further decorate the protein core. The
GAG chains are frequently sulfated, which generates a code for the binding, sequestration,
and release of various growth factors; this is especially critical for establishing morphogen
gradients during development and has implications in disease [13].

Proteoglycans are highly dynamic molecules involved in a plethora of homeostatic
cellular processes, ranging from initial modeling and subsequent remodeling of local and
organismal ECM architecture, bi-directional cellular signaling, tissue repair, development,
inflammatory responses, proliferation, migration, and varied immune responses [13–19].
However, PGs are functionally relevant in cancer biology via their innate ability to regulate
angiogenesis and induce autophagy (see below) within the breast tumor stroma and
mitophagy in the parenchymal cancer cells [13,20–25]. The highly coordinated mechanisms
of action of PGs in cancer depend on direct interactions with cell surface receptor tyrosine
kinases (RTKs), such as MET and vascular endothelial growth factor receptor 2 (VEGFR2),
integrins, and Toll-like receptors that are expressed by stromal cells, breast cancer cells,
and macrophages [20,26–28].

Autophagy is an essential and evolutionarily conserved homeostatic process where
various organelles (superfluous, damaged, or aged) and/or cytosolic components (pro-
tein aggregates, foreign nucleic acids) are degraded and recycled via lysosomes [14,23].
It must be noted that the role of autophagy in regulating cancer progression has met with
a substantial amount of controversy. This is warranted, as initial reports pointed to an al-
most exclusive pro-tumorigenic and pro-survival function, as the catabolism of intracellular
compartments enhances cell survival through periods of nutrient scarcity, until the an-
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giogenic switch is engaged [29,30]. However, new and mounting evidence proposes that
inducing or augmenting autophagic activation within cancer cells and their surrounding
stromal cells can lead to tumor cell death, reduce malignant angiogenesis, and impede
local and distal metastases to lymph nodes and organs [31–34]. Collectively, an important
functional paradigm in cancer biology has emerged at the intersection of autophagy and an-
giogenesis. Proteoglycans and, perhaps other ECM molecules that possess pro-autophagic
tendencies, can be categorized into two bins [35,36]. That is, the PGs can either be anti-
angiogenic and pro-autophagic, i.e., decorin (see Section 2), or those exhibiting strong
pro-angiogenic effects that will simultaneously inhibit autophagy, i.e., perlecan [37–40].
Therefore, we postulate that proteoglycans are heterobifunctional, and depending on the
cell context and/or expression level, can inhibit or enhance autophagy [24,41]. Therefore,
in this Review, we examine the role of decorin in orchestrating and evoking mitochondrial
autophagy within breast cancer. Indeed, protein therapeutics that can leverage this form of
latent bivalency would make for potent therapies in the ongoing fight against cancer.

2. Decorin Is the Prototypical Heterobifunctional Small Leucine-Rich Proteoglycan

Intracellular signaling events that are mediated by PGs are primarily evoked by the
binding of soluble, extracellular proteoglycans to their cognate receptor to enthusiastically
modulate cell homeostasis by controlling downstream signaling cascades. Decorin derives
its eponym for its ability to specifically bind periodic collagen type I [42–44], and functions
not only as a “collagen decorator”, but also as an important regulator of collagen fibrillo-
genesis both in vitro [45] and in vivo [46–50]. The genetic ablation of the Dcn gene causes
a skin fragility phenotype [51]. Decorin was originally discovered by several laboratories
and designated DSPG1 or PG40 because of its apparent molecular weight of the protein
core [52] and subsequently identified in various tissues [53,54] and in the stroma of colon
cancer [2,55]. Decorin has been utilized as an anti-fibrotic agent because of its ability to bind
many isoforms of transforming growth factor beta (TGF-β [56–60], thereby sequestering
this powerful growth factor in the pericellular matrix. The lack of decorin in various mouse
models of mesenchymal and epithelial neoplasms is permissive for tumorigenesis [61–63];
conversely, decorin can suppress tumorigenesis, invasion, and metastasis of inflammatory
breast cancer [64]. This is further underscored by a recent study demonstrating that decorin
is downregulated in senescent fibroblasts, which additively drives the tumor-promoting
phenotype of ionizing radiation induced premature senescence [65]. Decorin may also serve
as an important diagnostic biomarker for patients with advanced stage (II or III) breast
cancer as it emerged as an independent predictive factor for these stages [66]. Decorin is
a prime mechanistic example of how PGs can elicit dramatic responses within cells via
RTK signaling. Decorin is the archetypical member of the small leucine rich proteoglycan
(SLRP) gene family and harbors a single covalently attached dermatan/chondroitin sulfate
chain at its N-terminus. Decorin engages, with a hierarchal affinity, various RTKs, includ-
ing epidermal growth factor receptor (EGFR) [67–70], MET [71] and VEGFR2 [20,72,73].
Intriguingly, the GAG chain that decorin possesses appear to be dispensable for many,
if not all, of the below discussed functional activities [71,72,74–76]. Indeed, it appears the
GAG chain is required for the proper spacing and alignment of type I collagen fibers during
fibrillogenesis and overall matrix organization [77–79].

In target-rich environments, such as those found on the surface of breast cancer cells,
upon decorin binding, the RTK undergoes dimerization, a rapid burst of phosphorylation
occurs on the intracellular tails, and finally internalization and consequent lysosomal
degradation of the decorin/receptor complex [72,80,81]. Via this mechanism of action,
decorin is potently anti-angiogenic [28,82] by suppressing HIF1A expression in a non-
canonical manner and inhibiting the synthesis and release of intracellular and secreted
vascular endothelial growth factor A (VEGFA) [74]. Simultaneously, decorin promotes the
expression and rapid release of potent anti-angiogenic effectors, such as thrombospondin-
1 [83]. However, this was only a chapter in the much larger novel that is the story of
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decorin [81], an oncosuppressive molecule with a high potential for becoming an adjuvant
therapy for human epithelial malignancies [84].

2.1. Decorin Is a Soluble Pro-Autophagic Tumor Repressor

The hypothesis of autophagic induction as oncosuppressive [85] is underscored by
critical genetic experiments demonstrating an increase in tumor burden and progression,
following the heterozygous deletion of Becn1, which encodes Beclin 1, a core autophagic
component [86–88]. A deeper (and perhaps much more relevant line of evidence for
autophagy as anti-tumorigenic and its relationship to decorin) explicitly involves an RTK-
dependent mechanism. This originates from the finding that EGFR, a target that decorin
potently suppresses [67], avidly phosphorylates and inactivates Beclin 1 [89] via Akt [90].
In this manner, EGFR suppresses Beclin 1, leading to increased chemoresistance and tu-
mor progression [89]. The converse also holds where augmented autophagy suppresses
HER2-mediated tumorigenesis [91]. One of the key properties of decorin is the differential
regulation of RTK trafficking [71]. This is exemplified by distinct populations of either
decorin/MET or hepatocyte growth factor (HGF)/MET, where decorin triggers the associa-
tion of MET with caveolin positive endosomes for degradation whereas HGF promotes
interactions with clathrin for sustained recycling of MET to the plasma membrane for
continued oncogenic signaling [71]. It was thought that decorin promoted internalization
and degradation via lysosomes in this manner for both EGFR and MET (and may represent
a general mechanism for decorin bound RTKs); however, perhaps it is via autophagic
degradation as LC3C can mediate MET trafficking in response to autophagic signals [92].
As an additional layer of regulatory complexity, we found that nutrient deprivation,
a classical signal for autophagic induction, triggers the expression of decorin mRNA
and protein in murine cardiac tissue [24,41].

We discovered that nanomolar amounts of soluble, monomeric decorin [93] evokes
protracted and non-canonical endothelial cell autophagy (Figure 1) [72] and breast cancer
cell mitochondrial autophagy (mitophagy) [80], directly within the tumor parenchyma
(Figure 2). Thus, decorin concurrently targets distinct histological compartments, whose
specificity is determined by the type of cell surface RTK expressed. Indeed, decorin binds
VEGFR2 expressed by the endothelial cells and MET that abundantly (that is, target-rich)
adorns breast cancer cells. In this manner, decorin triggers the formation of bubble-like
structures in endothelial cells reminiscent of autophagosomes. These structures, originally
detected by differential interference microscopy, were morphologically validated by co-
immunostaining for Beclin 1 and microtubule associated protein 1 light chain 3 (LC3),
two key autophagic effectors [94]. This discovery positioned decorin as the first soluble
SLRP capable of evoking autophagy.

2.2. Decorin Evokes Endothelial Cell Autophagy and Mitophagy

Before delving into the discovery of decorin-mediated mitophagy in breast cancer,
we will briefly review the general mechanism of decorin-evoked autophagy in endothelial
cells as a starting point (Figure 1). In genetically stable primary cultures of endothelial cells,
decorin binds the ectodomain of VEGFR2 at IgG3-5, which partially overlaps with VEGFA
binding (IgG1-3) [72]. This high-affinity decorin/VEGFR2 interaction results in the rapid
activation of the α catalytic subunit of AMP-activated protein kinase (AMPK), the master
energy sensor kinase that has been previously implicated in cancer inhibition [95]. AMPK
regulates a plethora of intracellular catabolic processes, including autophagic initiation.
The conventional AMPK activation follows from times of cellular stress, e.g., a nutrient
dearth where the AMP/ATP ratio is significantly elevated, to induce autophagy [96]. This
is in stark contrast to the non-canonical mechanism utilized by proteoglycan-mediated
autophagy, which occurs in an RTK-dependent manner and in nutrient-rich conditions
where the AMP/ATP ratio is conducive to normal physiological function [72]. Silencing
VEGFR2 via RNAi strategies or small molecule inhibitors to pharmacologically impair the
VEGFR2 kinase, abrogates decorin signaling and thus impairs autophagy [72].
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Figure 1. Schematic depiction of decorin-evoked autophagy in endothelial cells. The PDB accession
ID for decorin is 1XCD. Please consult the manuscript for additional details. Images generated using
Biorender. Abbreviations used: VEGFR2, vascular endothelial growth factor receptor 2; mTOR,
mechanistic target of rapamycin; Vps34, vacuolar protein sorting 34; AMPK, AMP-activated protein
kinase; Peg3, paternally expressed gene 3; LC3, microtubule associated protein 1 light chain 3; TFEB,
transcription factor EB.

Figure 2. Schematic representation of decorin-evoked mitophagy in triple negative breast carcinomas
cells. Please consult the manuscript for additional details. Images generated using Biorender.
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From a top-down or outside-in [23] signaling perspective (decorinαVEGFR2α au-
tophagosome), autophagy initiates from a discrete subcellular region referred to as the
phagophore assembly site (PAS). The molecular composition of the PAS is known to con-
tain the p110 class III (non-oncogenic) PI3K vacuolar protein sorting 34 (Vps34), human
Unc-51 Like Autophagy Activating Kinase 1/2 (hULK1/2), Atg13, and FAK-interacting
protein of 200 kDa (FIP200) [97,98]. Decorin requires Vps34 and induces phosphorylation of
AMPK at Thr172 [99] (Figure 1). Inhibiting Vps34 with 3-methyladenine (3-MA) or AMPK
with Compound C (Dorsomorphin) abrogates decorin-mediated autophagy [72]. AMPK
opposes mechanistic target of rapamycin, complex 1 (mTORC1), which is responsible for
fundamental anabolic pathways coordination cell growth, cell size, and proliferation [100],
thereby making mTOR staunchly anti-autophagic. Decorin attenuates the mTOR axis
(Figure 1), by decreasing phosphorylated mTOR at Ser2448, Akt at Ser476, and p70S6K
at Thr389 [99].

These signaling cascades results in a specific pro-autophagic signature written in the
language of protein phosphorylation. At its terminus, this signature converges on the
expression and cytosolic accumulation of Peg3 (Paternally expressed gene 3) [72]. Peg3 was
identified from a subset of differentially expressed genes exclusively within the murine
tumor stroma of triple negative orthotopic tumor xenografts treated systemically with
human recombinant decorin [72,75,101]. Intriguingly, since Peg3 non-canonically disrupts
Wnt/β-catenin signaling [102], in a mechanism akin to how decorin suppresses β-catenin
downstream of MET [71], we pursued Peg3 as a candidate gene. Peg3 encodes a genomically
imprinted, Krüpple-like zinc finger-containing transcription factor. Initially characterized
as a tumor suppressor [103,104], we discovered that Peg3 acts as a nexus for decorin-
(and other PGs [105,106])-mediated autophagy [72,80] (Figure 1). Peg3 associates with
autophagosomes in human and murine microvascular and macrovascular endothelial cells
via co-localization with Beclin 1 and/or LC3 following decorin as a stimulus [72]. Mechanis-
tically, Peg3 is necessary as it is required for promoting BECN1 and MAP1LC3A expression
downstream of decorin/VEGFR2 signaling [80]. Importantly, Peg3 is also sufficient [72,107]
insofar as maintaining basal BECN1 expression levels. Therefore, Peg3 acts as a master
switch for BECN1 that not only ensures appropriate physiological levels of BECN1 mRNA,
but to also augment its expression (in parallel with MAP1LC3A) when the cell confronts
a stimulus from outside.

A key hallmark of autophagy comes from the flux of cargo through the pathway.
Measuring flux is achieved by Bafilomycin A1 (BafA1) or chloroquine (CQ), which inhibits
autophagosomal fusion with a lysosome. Using these inhibitors, we discovered that decorin,
via Peg3, drives autophagic flux above basal levels, resulting in excessive endothelial
cell autophagy [107].

Part and parcel with driving this newly augmented autophagic flux is the Transcrip-
tion Factor EB (TFEB). TFEB recognizes and binds to coordinated lysosomal expression and
regulation (CLEAR)-box sequences present in the proximal promoters of many autophagy
and lysosomal genes necessary for long-term (transcriptional control) autophagy [108–111].
Long-term autophagic progression is a key characteristic of decorin. Mechanistically, TFEB
is kept inactive via mTOR, thus enabling cytosolic sequestration by 14-3-3 scaffolding
proteins [110,112,113]. However, following an appropriate autophagic stimulus, TFEB
is rapidly dephosphorylated by calcineurin and translocates into the nucleus where it
promotes gene expression necessary for sustained autophagy [111]. Congruent with the
long-term effects of decorin activity, TFEB is regulated downstream of VEGFR2- and in
a Peg3-dependent manner [114] (Figure 1). Decorin attenuates mTOR signaling and pro-
motes nuclear translocation of TFEB [114]. Inhibiting VEGFR2, AMPK, or using RNA to
silence Peg3 is enough to inhibit decorin-mediated TFEB expression as well as its nuclear
translocation. These events decrease the levels of critical lysosomal genes and reduces over-
all autophagic flux evoked by decorin. Conversely, increasing the amounts of Peg3 drives
TFEB expression (and subsequent translocation) in a proportional and saturable manner,
indicating direct promoter interactions. Therefore, Peg3 functions as a novel upstream
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regulator of TFEB [115] and positions TFEB as a prominent downstream transcription factor
within the mechanistic framework of the decorin/VEGFR2/AMPK/Peg3 axis [114].

It is well established that decorin is anti-angiogenic (see Section 2) [74,83,116,117]
that also possesses pro-autophagic functions. A new chapter concerning the functional
interconnections between suppression of angiogenesis and pro-autophagic properties of
decorin is emerging [26]. This chapter of decorin has been written by evaluating the
intracellular degradation of VEGFA in endothelial cells via autophagy [118]. Decorin-
evoked VEGFA catabolism proceeds in an mTOR-independent manner but depends on
Peg3. In an observation akin to BECN1 and TFEB, Peg3 is necessary and sufficient for
VEGFA degradation in LC3+ autophagosomes. Moreover, VEGFA serves as a basal au-
tophagic substrate as determined by assaying autophagic flux with BafA1, CQ, or transient
ATG5 silencing. Interestingly, we identified RAB24, a small GTPase that regulates basal
autophagy [119–121], as necessary for the degradation of VEGFA following decorin stimu-
lation. Importantly, starved mice show a substantial clearance in both aortic and cardiac
VEGFA that was rescued by systemic CQ administration. This study began unifying the
metabolic control of intracellular VEGFA via autophagy in response to decorin as well as
other traditional, pro-autophagic stimuli, such as starvation and AMPK mimetics, such as
5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR).

Therefore, our working model includes that the VEGFR2/AMPK/Peg3/TFEB axis is ca-
pable of decoding decorin and integrating the anti-angiogenic and pro-autophagic information
encoded therein to inhibit tumorigenesis and stymie inappropriate neovascularization.

3. Decorin Evokes Breast Cancer Cell Mitophagy via Mitostatin

Our knowledge regarding the molecular foundations of mitophagy in mammalian
cells is rapidly increasing, although it is still incomplete. It is becoming evident, however,
that pro-mitophagic pathways are closely linked to the metabolic rewiring of cancer cells
and their high bioenergetic demands [122,123]. There is also mounting evidence that mi-
tophagy modulators overlap with cell cycle control and survival pathways, including those
occurring after cell detachment from its ECM, migration, and metastasis [124]. Moreover,
mitochondria-targeted redox agents selectively induce mitophagy in a breast cancer cells
and could represent valuable therapeutic strategies to target mitochondrial metabolism
in cancer [125].

As we have discussed above, decorin manifests specific cellular outcomes as dictated
by the expression and differential binding to different RTKs. This mechanistic paradigm
is aptly illustrated by the observation that decorin evokes mitophagy in triple negative
breast cancer (TNBC) cells via MET [76]. Decorin synchronizes a concerted suppression
of key mitochondrial respiratory chain subunits, from all five complexes, in conjunction
with several established mitophagy biomarkers, such loss of mitochondrial DNA (mtDNA)
and voltage dependent anion channel 1 (VDAC1) [76] (Figure 2). Akin to endothelial cell
autophagy, decorin-evoked mitophagy occurs independently of the prevailing nutrient
conditions and bioenergetic demands of the cell. Instead, it depends on MET and mitostatin,
thereby manifesting as a non-canonical, receptor-mediated induction of mitophagy in
TNBC cells.

3.1. Mitostatin Is a Tumor Suppressor Gene That Regulates Mitochondria

Mitostatin is a tumor suppressor gene known by several alternate aliases, including
trichoplein, a keratin filament binding protein (TCHP). The locus physically encoding
TCHP is located at 12q24.1 and was originally named Ts12q, for Tumor suppressor at
12q. However, the resulting protein translated from mature TCHP mRNA was renamed
mitostatin, for mitochondrial protein with oncostatic activity, to more accurately reflect
its primary cellular function [126]. Empirical biochemical evidence for the existence of
TCHP splice variants is currently lacking. However, performing a deep bioinformatics
search did yield the existence of a computationally predicted splice form of TCHP that is
approximately half the size of full-length mitostatin. This predicted isoform is missing its
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C-terminal half, with the shared N-terminal half perfectly aligning with that of full-length
mitostatin. Immunoblotting with an antibody that recognizes an N-terminal epitope across
a variety of different cell types did reveal a recognized protein product that was half the
size of full-length mitostatin in a variety of cell lines (unpublished observations).

Mitostatin was discovered via subtractive hybridization of cDNA libraries as
an decorin-inducible gene [126]. Mitostatin mRNA and protein is differentially expressed
in many tissues and is conserved across multiple species [126]. In breast and bladder cancer,
mitostatin expression is frequently decreased, wholly lost, and/or exists as a mutated pro-
tein variant [127,128]. Thus, mitostatin may function as a putative tumor suppressor gene.
Further evidence for this assertion comes from rescue experiments where restoration of
wildtype mitostatin in prostate cancer cells significantly prevents invasive phenotypes [128].
Remarkably, this finding was faithfully replicated in two TNBC cell lines where migration
in 2D and 3D substrates was significantly impaired (unpublished).

Immunostaining for mitostatin reveals a punctate cytosolic pattern with a strong mito-
chondrial co-localization when using mitochondrial-tagged fluorescent protein probes [128].
Biochemical fractionation revealed that mitostatin is significantly enriched at inter-organelle
microdomains referred to as mitochondrial-associated membranes (MAMs) [129]. MAMs
are ultra-specialized synapses of endoplasmic reticulum (ER) with the outer mitochondrial
membrane (OMM) that permits the bi-directional communication of ions and small chemi-
cal messengers that are critical for ER and mitochondrial homeostasis and overall cellular
function [130]. Recent evidence has implicated MAM function as critical nodes necessary
for mitophagic initiation by assembling signaling complexes, such as extracellular regulated
kinase 2 (ERK2) [131] or PTEN-induced kinase 1 (PINK1) [132]. Among the many synaptic-
like molecules found within MAMs, the primary component is the large, fusogenic GTPase
known as mitofusin 2 [133], which is vital for maintaining mitochondrial function and
morphology. Importantly, mitostatin physically interacts with the ectodomain of mitofusin
2 (MFN2) [129]. This interaction could modulate ER/mitochondrial tethering [134] in
a mitostatin-dependent manner or could aid in recruiting pro-mitophagic components
(such as the E3 ligase, Parkin [135]) to form a mitostatin/MFN2-positive signaling hub [136].

Concurrent with its effects on inhibiting migration, mitostatin over-expression
severely disrupted the organization of the mitochondrial matrix resulting in disordered
cristae architecture and triggered swelling, with affected mitochondria taking on a more
stout and oblong morphology [127]. Mitostatin affects a molecular chaperone protein
known as heat shock protein 27 (Hsp27), which has roles in modulating the mitochondrial-
independent (extrinsic) apoptotic pathway [137] and actin re-organization [138,139]. Co-
incident with these ultrastructural changes, mitostatin decreased Hsp27 phosphorylation
at Ser82 (total Hsp27 levels remained unchanged) [127]. The biological role of decreased
Hsp27 phosphorylation via mitostatin remains unknown; however, the mechanism be-
hind this decrease and the functional connections it may have to modulating mitochon-
drial architecture following over-expression may be critical for its pro-mitophagic and
anti-tumorigenic effects.

3.2. Mitostatin Is Necessary to Drive Decorin-Stimulated Breast Cancer Mitophagy

Proximal to decorin/MET binding is the first clear event during the initiation of the
pro-mitophagic signaling cascade [25]. The master regulator of mitochondrial biogenesis
and energy metabolism [140–142], peroxisome-proliferator activated receptor-α coactivator
1α (PGC-1α) is dynamically regulated in a spatiotemporal manner [76]. Strikingly, decorin
triggers nuclear translocation of PGC-1α and directs it to directly bind TCHP mRNA via its
C-terminal RNA recognition motif (RRM). This results in mitostatin protein to significantly
accumulate [76]. Silencing PGC-1α or genetically deleting the RRM compromises TCHP
mRNA stability and subsequently reduces the amount of cytosolic mitostatin.

Deciphering this cascade revealed an unlikely connection between mitostatin, a pu-
tative tumor suppressor gene, and PGC-1α, a known proto-oncogene that is necessary
for mitochondrial biogenesis. Increased oxidative metabolism, via PGC-1α, MITF, and B-
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Raf [143] drives metastatic melanomas characterized by augmented mitochondrial res-
piratory capacity and oxidative stress resistance [144]. However, despite this oncogenic
connection, this would not be the only instance of a cooperative loop to maintain proper
mitochondrial homeostasis, which could be leveraged in breast cancer as a novel ther-
apy. Further nuancing the intricate molecular complexity between decorin and PGC-1α is
the role of AMPK in potentially transducing these signaling in TNBC. While it is known
that decorin activates AMPK for autophagic induction in endothelial cells, it is unknown
whether decorin stimulates AMPK in a similar manner. This would be intriguing, espe-
cially in light of how AMPK functions in TNBC via the activity of folliculin (FLCK) [145].
Folliculin has been characterized as a tumor-suppressor protein and forms a regulatory
complex with AMPK [146]. The loss of FLCK results in the constitutive activation of AMPK,
leading to enhanced engagement with PGC-1α, HIF-1α, and TFE3 to drive aggressive
tumor formation and angiogenesis, particularly in TNBC [145]. Given this, decorin may
finely regulate the interaction of FLCK with AMPK, and thus the output of AMPK signaling
in TNBC to permit mitophagic activation and continued oncosuppression. This would be
a key molecular interaction to investigate in endothelial cells where decorin does activate
AMPK to drive the Peg3/TFEB axis for autophagic progression.

As discussed below, Parkin-mediated mitophagy is a major pathway to clear damaged
and abnormal mitochondria. An elegant feedback loop centered around Parkin keeps the
balance between mitophagy and mitochondrial biogenesis to ensure proper mitochondrial
mass [147]. In this system, Parkin ubiquitinates components on the OMM for mitochondria
destined for degradation via mitophagosomes while simultaneously targeting a transcrip-
tion factor known as PARIS (ZNF746) for proteasomal degradation [148]. The loss of PARIS
results in de-repressed PGC-1α (and its target nuclear respiratory factor 1, NRF1) to drive
mitochondrial biogenesis to replace the mitochondria lost to mitophagy [147]. It is possible
that mitostatin may be interfacing with PGC-1α in a similar manner to regulate the mito-
chondrial population. As a further layer of complexity underscoring this concept is that
mitostatin binds Parkin following decorin stimulation (see below).

Mitostatin loss via RNAi abrogates basal and decorin-mediated mitophagy [149,150]
including respiratory chain subunits, VDAC1, mitochondrial transcription factor A (TFAM),
mtDNA, and mitochondrial network fragmentation [76] (Figure 2). Fragmentation of the
mitochondrial network is a key step toward efficient mitophagy and is congruent with
mitostatin over-expression [127]. Current studies are focusing on determining the role of
decorin and mitostatin in driving mitophagic flux in an analogous mechanism for decorin
and Peg3 to drive endothelial cell autophagic flux (see above).

As an organellar harbinger of the mitophagy to come, decorin triggers rapid mito-
chondrial depolarization (∆Ψm) (Figure 3) [76] as determined by staining with TMRE
(Figure 3, top row) or JC-10 (Figure 3, bottom row). The magnitude of ∆Ψm is statistically
comparable to (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone) FCCP or carbonyl
cyanide m-chlorophenylhydrazone (CCCP), which are established protonophores for the
chemical uncoupling of the electron transport chain [151].

However, considering the vast differences in mechanisms between decorin (which is
not cell permeable and therefore requires a membrane-bound RTK to signal) and FCCP (or
CCCP) (membrane soluble), it stands to consider the downstream signaling complexes as
active participants to transduce the ∆Ψm signal from the membrane to the mitochondrial
machinery. Preliminary evidence, surprisingly, rules out the contribution from canonical
kinases implicated in autophagic initiation, including Vps34 and AMPK (unpublished
observations) in mediating ∆Ψm. Importantly, this does not rule out AMPK at having vital
roles in decorin-mediated mitophagy at later stages of the process [152]. Therefore, kinases,
such as leucine rick repeat kinase 2 (LRRK2) [153], which localizes within MAMs [154] or
mitochondrial localized ERK2 [131], are reasonable candidates to begin deciphering this
important signaling mechanism.



Cancers 2022, 14, 804 10 of 19

Figure 3. Representative live cell images depicting decorin-evoked mitochondrial depolarization
in triple negative MDA-MB-231 cells using TMRE (top row) or JC-10 (bottom) relative to vehicle
(PBS). The decorin protein core was used at 200 nM for 2 h. Upon depolarization, TMRE no longer
accumulates within the mitochondrial matrix and the fluorescent signal fades; JC-10 no longer
aggregates and thus undergoes a shift from red (JC-10 aggregates) to green (JC-10 monomers). Scale
bar ~10 µm.

As mitostatin localizes to the MAM and physically interacts with MFN2, it may permit
a rapid efflux of ER Ca2+, perhaps via the large conductance inositol 1,4,50-triphosphate re-
ceptor (IP3R) activation, into the mitochondria to trigger mitophagy. Alternatively, decorin
may have a role in reactive oxygen species (ROS) production, which is a potent activator
of ∆Ψm [5,155]. Conceptually, this would place decorin as a ROS modulator, compounds
already implicated as pro-mitophagic as therapy for breast cancer. The loss of ∆Ψm across
the OMM is potent signal for PINK1/Parkin-mediated mitophagy [156–159]. Parkin is
an RBR-domain containing E3-ubiquitin ligase commonly found within SCF-like ubiqui-
tin ligase complexes [160] that is quickly recruited to the OMM following mitochondrial
damage, such as loss of mitochondrial polarization. PINK1 is a mitochondrial-localized
kinase that is protected from continued degradation [161] and thus accumulates upon
the OMM [162] following ∆Ψm [132]. Recent evidence implicates an ECM connection
where heparan sulfate structures can affect mitophagy in D. melanogaster Parkin models
(see Section 4) [163].

Stabilized PINK1 phosphorylates multiple mitochondrial (VDAC1, translocase of the
outer mitochondrial membrane, TOM) complexes [164] and cytosolic substrates, includ-
ing ubiquitin (Ub) [165]. As it pertains to mitostatin biology, mitofusin 2 is a verified
PINK1 substrate [166,167], whose phosphorylation is critical for culling damaged mito-
chondria via Parkin-mediated mitophagy [135]. It is unknown whether mitostatin contains
a consensus PINK1 phosphorylation domain or if mitostatin, in response to decorin sig-
naling, modulates PINK1 activity towards mitofusin 2. Phosphorylated Ub activates
Parkin [168,169], which results in the generation of poly-Ub chains on key mitochondrial
proteins [170]. Parkin then utilizes phospho-Ub to ubiquitinate several OMM compo-
nents, including VDAC1 and p62 [171] following binding to dedicated Parkin receptors
(Bnip3/Nix, FUNDC1, and NDP52 [132]). There is evidence that even the TOMM complex
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and/or VDAC1 [172], following PINK1-phoshorylation, serves as a Parkin receptor and
subsequent signaling hub for Parkin-driven mitophagy [164] (Figure 2).

The recognition of the phospho-Ub substrates by various Ub-binding receptors (p62,
optineurin, or NBR1) results in engulfment by LC3-positive autophagosomes and sub-
sequent clearance [132]. Mechanistically, Parkin requires p62/VDAC1 binding for au-
tophagosomal capture of selected mitochondria [171]. Parkin maintains mitochondrial
homeostasis [160] and mitochondrial turnover in vivo [173], it is plausible that decorin
directly recruits Parkin to the OMM following ∆Ψm, in a mitostatin/mitofusin 2-dependent
manner (Figure 2). It currently remains unknown if Peg3 is involved in this shuttling in
a manner akin to VEGFA being shuttled into autophagosomes. Given the role of Peg3 as
a tumor suppressor gene in breast cancer and its roles in autophagy, Peg3 may subsume
an important regulatory function connecting mitostatin/Parkin to the mitophagy system.

This novel signaling pathway of decorin/MET/mitostatin/Parkin transduces signals
from high affinity decorin/MET interactions via an unidentified kinase or similar effector,
for sustained tumor cell mitophagy [174,175]. In line with our studies, it has been recently
shown that mitostatin/Trichoplein binds pericentriolar material 1 protein (PCM1) and con-
trols autophagy in endothelial cells [176]. Autophagy and mitophagy are emerging as the
primary mechanisms of action that fully integrate and translate decorin/RTK antagonism
across diverse tissues within the tumor into the established and classical anti-tumorigenic
properties attributed to this proteoglycan.

4. A General Concept: Is Mitophagy Evoked by Other Secreted ECM Constituents?

We feel that the story with decorin and mitophagy may be the tip of the iceberg,
that is, we predict that many more secreted ECM constituents would affect these intracel-
lular catabolic pathways. For example, collagen VI is an abundant and ubiquitous ECM
protein that is secreted by fibroblasts in all the major organs [177] and whose genetic defects
are causatively linked to various mammalian congenital diseases [178]. Unexpectedly,
Col6a1−/− fibroblasts display abnormalities in the autophagy/lysosome machinery, im-
paired clearance of autophagosomes and failure of Parkin-dependent mitophagy [179,180].
Notably, adipocyte-derived collagen VI affects the early progression of mammary carcino-
mas in vivo, suggesting a critical role for this protein in the tumor microenvironment [181].
Another example of matrix-derived regulators of mitophagy is heparan sulfate, which
appears to be a negative regulator of mitophagy. In Drosophila Parkin mutants, altering
heparan sulfate biosynthesis suppresses mitochondrial dysmorphology indicating that the
activation of mitophagy is potentiated in these mutants [182]. These findings suggest that
a genetic background deficient in heparan sulfate, we do not know as of yet which heparan
sulfate proteoglycan is involved in this process and attenuates the muscle phenotype in
Parkin mutants, including restoration experiments [183].

There is also evidence that Irisin, a soluble peptide of 112 amino acids derived
from the transmembrane protein called fibronectin type III domain containing protein
5 (FNDC5) [184], can positively affect mitophagy [185]. Indeed, Irisin mitigates oxidative
stress and chondrocyte dysfunction through retaining mitochondrial biogenesis, dynam-
ics, and autophagy [185] Moreover, Irisin is an exercise-induced myokine abundant in
skeletal muscle and facilitates the positive impact of moderate exercise on tissue phys-
iology and cognitive function [186,187]. Notably, PGC1-α activates FNDC5 to increase
the secretion of Irisin [184] and, as mentioned above, decorin evokes mitophagy in breast
carcinoma cells via PGC-1α and mitostatin [76]. Decorin has also been proposed to act
as a myokine induced by exercise [188] and growth hormone [189]. Thus, it is possible
that decorin and Irisin could be part of a network of secreted proteoglycans and proteins
regulating mitophagy.

5. Conclusions: Challenges and Opportunities

The breakthrough discovery that selected proteoglycan family members are capable
of potently and specifically regulating facets of intracellular catabolism, such as au-
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tophagy [73,105,190–192], represents a major conceptual and scientific advance for matrix
biology. In particular, the soluble members of this cadre of proteins, represented first and
foremost by decorin, are capable of evoking driving receptor tyrosine kinase-dependent au-
tophagy by non-canonical means. Autophagic and mitophagic induction that is controlled
by decorin requires a dedicated RTK (VEGFR2 or MET) and a dedicated tumor suppressor
gene (Peg3 or mitostatin) to operate efficiently and optimally in different histological and
morphological tissue compartments.

These decorin neofunctions [24], most of which are generalizable to the broader pro-
teoglycan family, adds tremendous biological versatility and utility, while simultaneously
expanding the known interactome [117] of these truly multifaceted proteins [28,73]. The
kind of precise tissue specificity exhibited by decorin, conveyed by tissue specific RTK
expression, could be leveraged therapeutically to target a particular pathway of interest.
Indeed, delving deep into the mechanisms underlying how decorin regulates evolutionarily
overserved processes make for attractive therapeutic targets [193,194].

Utilizing advanced, innovative, high-throughput, and high-resolution “-omics” ap-
proaches and emergent technologies, such as AI and machine-learning based systems,
matrix biologists are currently expediting the full decoding the signaling pathways in-
volved in such dynamic systems [195,196]. These approaches led to the identification of
a master autophagic regulator, Peg3 [75] and the discovery of non-canonical, RTK-driven
autophagy in normal endothelial cells, independent of prevailing nutrient conditions. This
viewpoint was then extended and a corollary in breast cancer cells undergoing mitophagy
was soon found, driven by an innate tumor suppressor gene, mitostatin. In both cases,
decorin could tip the balance in favor of pro-autophagic/mitophagic signaling cascades,
despite the layers of complex regulatory mechanisms and networks (mTOR vs. AMPK)
governing cellular energy metabolism. Bypassing these systems permitted an excess level
of autophagy or mitophagy to occurs, resulting in novel methods of angiogenic and tu-
morigenic inhibition.
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