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RESEARCH ARTICLE

Dysregulation of miR-21-associated miRNA regulatory networks by chronic
ethanol consumption impairs liver regeneration

Austin Parrish,* Ankita Srivastava,* Egle Juskeviciute, Jan B. Hoek, and Rajanikanth Vadigepalli
Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell
Biology, Thomas Jefferson University, Philadelphia, Pennsylvania

Abstract

Impaired liver regeneration has been considered as a hallmark of progression of alcohol-associated liver disease. Our previous
studies demonstrated that in vivo inhibition of the microRNA (miRNA) miR21 can restore regenerative capacity of the liver in
chronic ethanol-fed animals. The present study focuses on the role of microRNA regulatory networks that are likely to mediate
the miR-21 action. Rats were chronically fed an ethanol-enriched diet along with pair-fed control animals and treated with AM21
(anti-miR-21), a locked nucleic acid antisense to miR-21. Partial hepatectomy (PHx) was performed and miRNA expression profiling
over the course of liver regeneration was assessed. Our results showed dynamic expression changes in several miRNAs after
PHx, notably with altered miRNA expression profiles between ethanol and control groups. We found that in vivo inhibition of
miR-21 led to correlated differential expression of miR-340-5p and anticorrelated expression of miR-365, let-7a, miR-1224, and
miR-146a across all sample groups after PHx. Gene set enrichment analysis identified a miRNA signature significantly associated
with hepatic stellate cell activation within whole liver tissue data. We hypothesized that at least part of the PHx-induced miRNA
network changes responsive to miR-21 inhibition is localized to hepatic stellate cells. We validated this hypothesis using AM21
and TGF-b treatments in LX-2 human hepatic stellate cells in culture and measured expression levels of select miRNAs by quan-
titative RT-PCR. Based on the in vivo and in vitro results, we propose a hepatic stellate cell miRNA regulatory network as contrib-
uting to the restoration of liver regenerative capacity by miR-21 inhibition.

alcoholic liver disease; hepatic stellate cells; liver regeneration; microRNA networks

INTRODUCTION

Alcohol-associated liver disease (ALD) is a major health
concern and one of the leading causes of chronic liver disease,
eventually leading to the development of cirrhosis and hepa-
tocellular carcinoma (1, 2). Although the liver is normally ca-
pable of restoring its baseline mass and function following
severe injury, the regenerative capacity of the liver is signifi-
cantly decreased by chronic ethanol consumption, due to
complications arising from hepatitis, fibrosis, and improper
hepatocyte proliferation (2). Transcriptomic approaches
to understanding these changes in liver physiology have
revealed reprogramming of multiple molecular systems, sug-
gesting the necessity of a systemic approach to better under-
stand alcohol-associated liver disease (3, 4). Of particular
interest are the observed changes in hepatic stellate cell (HSC)
signaling networks, which can lead to the transition
between multiple functional cell states such as quiescent
(baseline) and activated (antiproliferative, profibrotic).
Regulation of the signaling resulting in shifts to these
states, and thus overall HSC function, has significant
implications for the regenerative capacity in the liver.
Recent studies have shown microRNA (miRNA) to be a

particularly important regulatory mechanism for the con-
trol of cell function and may play a significant role in
the transition between cell states. miRNAs are a class of
small, noncoding RNAs �22 nucleotides in length that are
involved in post-transcriptional regulation of a wide vari-
ety of processes critical for normal cell function, such as
development, cell differentiation, cell proliferation, and
cell death (5–7). Previous research has investigated the
critical role of miRNA dysregulation in multiple disease
states across organ systems, including liver-specific dis-
eases such as infection with hepatitis B or C viruses (HBV/
HCV) and hepatocellular carcinoma (HCC) (7). However,
the majority of these studies focused only on a small num-
ber of miRNAs and offered little insight into the dynamics
of their expression levels. There remains, therefore, a
dearth of knowledge regarding the precise role and func-
tion of miRNAs in the context of ALD. Previous work by
our laboratory and others has identified several miRNAs to
be key regulators of liver regeneration, such as miR-21,
whose role in liver regeneration and liver disease has been
well studied both in vivo and in vitro with a significant
role in HSC activation via the TGF-b signaling pathway (8–
12). We have previously shown that chronic ethanol
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(EtOH) consumption in rats leads to an elevated expres-
sion of miR-21 in post-partial hepatectomy (PHx) relative
to pair-fed control animals. To our knowledge, complex
expression dynamics of miRNA during liver regeneration has
not been examined in depth. In this study, we sought to char-
acterize global miRNA expression patterns in the rat liver for
both control and ethanol-fed animals before and after 70%
PHx, including nonparenchymal cell signatures.

MATERIALS AND METHODS

Animal Model

All animal experiments were carried out in accordance
with protocols approved by the Thomas Jefferson University
Institutional Animal Care and Use Committee. Male Sprague–
Dawley rats (Charles River, Wilmington, MA), between the
ages of 8 and 14 wk were pair-fed an isocaloric liquid diet
according to the Lieber–DeCarli protocol (13) for 6–8 wk, in
which 36% of total calories came either from ethanol (EtOH)
or from carbohydrates (CHO; maltose-dextran) in control ani-
mals (Bio-Serv, Frenchtown, NJ). Animals were maintained
on a 12:12-h light-dark cycle. Liver damage was induced by a
70% partial hepatectomy (PHx) surgery in which the left lat-
eral andmedial lobes were removed following anesthetization
with isoflurane. Livers were allowed to regenerate for 6, 24, or
72 h before the remaining liver was excised. Total RNA from
each sample was extracted from frozen liver samples using an
Animal Tissue RNA Purification Kit (Norgen Biotek, Thorold,
ON, Canada).

In Vivo Inhibition of miR-21

Rats were injected with 7.5 mg/kg ip of locked nucleic acid
(LNA) oligonucleotide probe antisense to miR-21 (Exiqon,
Vedbaek, Denmark) in 1 mL of saline. These anti-miR-21
(AM21) injections were given at two time points—one 72 h
before surgery and one immediately following PHx surgery.
Control animals were either left untreated or injected intra-
peritoneally with 1 mL of saline.

Cell Culture and Treatments

The LX-2 human HSC line was obtained from Millipore
Sigma (Burlington, MA). LX-2 cells were cultured in
Dulbecco’s modified Eagle’s media (DMEM) (Gibco, Waltham,
MA) supplemented with 1% fetal bovine serum (FBS) (Gibco)
and 100 U/mL penicillin and 100 U/mL of streptomycin
(Gibco) at 37�C, 5% CO2. LX-2 cells were seeded at 3.5� 105

cells/well in a six-well culture plate. The cells were starved
and transfected at 80% cell confluence with one of anti-miR
hsa-miR-21-5p miRCURY LNA miRNA Power Inhibitor 50

FAM-labeled (Qiagen, Hilden, Germany). All treatments were
performed using 50 nM LNA for 72 h following the manufac-
turer’s protocol. Cell stimulation with TGF-b (Peprotech,
Rocky Hill, NJ) was carried out at 5 ng/mL for 48 h. The cells
were harvested using Qiazol (Qiagen) for RNA isolation.

NanoString nCounter Array

Purified RNA from rat livers was assayed using NanoString’s
in-house services against a list of 420 well-characterized rat
miRNAs. Raw counts were normalized first by Trimmed Mean
of M values (TMM) normalization using the “edgeR” package

version 3.34.1 as developed for the R programming language
(14), followed by voom transformation (15) using the “limma”
package version 3.48.3 (16) to convert counts to log-cpm.
Differential expression analysis was performed using “limma”
with log-cpm values (17). Data are available at Gene Expression
Omnibus (GEO) accession ID GSE171438. Pair-wise Pearson cor-
relation coefficients betweenmiRNAswere calculated based on
the normalized expression data using the cor function available
in the base package of the R software version 3.6.

RNA Isolation and Real-Time Quantitative PCR Analysis

For quantitative real-time PCR analysis, RNA was isolated
using miRNeasy Mini Kit (Qiagen). For quantification of
miRNA expression, 10 ng of total RNA was used, and cDNA
was synthesized using TaqMan Advanced miRNA cDNA
Synthesis Kit (Thermo Fisher, Waltham, MA). Real-time PCR
analysis was performed to measure the miRNA expression
levels using TaqMan Fast Advanced Master Mix and Taqman
primers with conditions (enzyme activation: 95�C for 20 s; 40
PCR cycles of denaturation: 95�C for 1 s; annealing and exten-
sion: 60�C for 20 s). Target micro-RNA expression was nor-
malized using three endogenous miRNAs (hsa-miR-99b-5p,
hsa-miR-23a-3p, and hsa-miR-100-5p). Relative expression of
miRNA was analyzed using the DDcomparative threshold
(CT) method. The statistical significance was performed using
GraphPad Prism unpaired t test, and values are means ± SE
(n = 4), ����P< 0.0001, ���P< 0.001, and ��P< 0.01.

Immunofluorescence Staining

LX-2 cells were cultured on eight-well chamber slides at a
confluence of 10� 103 cells. After LNA transfection and TGF-
b stimulation, the cells were fixed in 4% paraformaldehyde
(Electron Microscopy Sciences, Hatfield, PA) for 20 min and
washed with 1� PBS (Fisher Bioreagents), two washes for 5
min each. The cells were blocked using 5% normal goat se-
rum (ab7481; Abcam, Cambridge, MA) for 1 h. All steps
including fixation and blocking were done at room tempera-
ture. Blocking was followed by overnight incubation at 4�C
followed by three washes of 1� PBS at 5-min intervals each.
The primary antibody targeted alpha smooth muscle actin
(aSMA) (M085101, Agilent, Santa Clara, CA) used at 1:50 dilu-
tion. The antibody was chosen based on previously pub-
lished literature regarding hepatic stellate cell activation
comparing primary HSCs isolated frommale Wistar rats cul-
tured over 7 days; quiescent cells showed no a smooth mus-
cle actin expression, whereas activated cells showed high
levels (18). The secondary antibody was used at 1:500 dilu-
tions, goat anti-mouse IgG Alexa Fluor 488 (ab150117,
Abcam). The fixed cells were incubated with secondary anti-
bodies for 1 h 45 min at room temperature followed by three
washes of 5 min each with 1� PBS. After secondary antibody
incubation, DAPI (D9542; Sigma-Aldrich) was applied and
allowed to incubate for 15 min followed by three washes of 5
min each. ProLong Diamond Antifade (Life Technologies)
solution was applied, and the slides were mounted with cov-
erslips. Prior to microscopic imaging, slides were cured at
room temperature overnight. Images were acquired using a
Zeiss LSM 780 mounted on a Zeiss Axio Observer inverted
microscope. Images were acquired using a Zeiss LSM 780
mounted on a Zeiss Axio Observer inverted microscope.
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Zeiss ZEN 2011 software package associated with the LSM
780 was used to set the image acquisition parameters and
capture images. Laser emission at wavelengths of 405 nm
and 488 nm were used for image acquisition to capture DAPI
and the secondary antibody against a smooth muscle actin,
respectively. Prior to the image acquisition, the range of the
accepted signal levels (i.e., zero and saturation parameters)
were set using the range indicator function built into the
Zeiss software. Images were acquired at a pixel resolution of
1,024� 1,024 at 8-bit color depth with a line scan and averag-
ing intensities from four scans of the same area.

miRNA Target Identification

Putative miRNA target genes were retrieved from target
site predictions using output from the miRanda algorithm
(August 2010 release) (19). Predicted targets were chosen with
high scores and conserved miRNA families. Networks of pre-
dicted targets were constructed using Cytoscape v3.2.1. Gene
ontology analysis was performed using DAVID (https://david.
ncifcrf.gov/; version 6.7) (20).

Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using
a set of R scripts developed by the Broad Institute. Briefly,
miRNA expressed in control or alcohol-fed animal samples
were tested against a known set of miRNAs associated with
HSCs, rat liver sinusoidal endothelial cells (LSECs), or Kupffer
cells (KCs) to determine if these miRNA sets display signifi-
cant correlation with expression patterns from a particular bi-
ological state. These miRNA signatures were derived from
previously published miRNA profiling data from primary rat
hepatic stellate cells activated in culture (21), rat liver sinusoi-
dal endothelial cells (LSECs) compared with other liver cell
types (22), and mouse Kupffer cells (KCs) at 3 days after 70%
PHx (23). The HSC signature consisted of 16 upregulated
miRNAs and 26 downregulated miRNAs. The LSEC signature
consisted of 66 miRNAs enriched in LSECs compared with
other liver cell types [highlighted in Figure 2A of Oda et al.
(22)]. The KC signature consisted of 20 differentially expressed
miRNAs. This set was derived by analyzing the normalized
miRNA expression data available via Gene Expression
Omnibus data set GSE159198, using limma function in R to
compare the 3-day post PHx versus 0-h samples, and fil-
tered for false discovery rate adjusted P value <0.1 and top
20 log2(fold change) values.

RESULTS

Multiple miRNAs Are Differentially Expressed in
Response to Ethanol Adaptation and Further Altered by
PHx

Male Sprague-Dawley rats were fed a liquid diet according
to the Lieber–DeCarli protocol (13). Liver regeneration was
induced by 70% partial hepatectomy and the regenerating
liver tissue was collected at 6, 24, and 72 h after PHx (Fig.
1A). Total RNA was extracted from whole liver rat tissue for
NanoString analysis of 420miRNAs. During recovery follow-
ing 70% PHx, 36 miRNAs were differentially expressed by 72
h in both groups (Fig. 1B). We next sought to quantitatively
compare the differences in expression profiles between diets

across time. To this end, we employed a method developed
by our laboratory [comparative pattern count (COMPACT)
analysis] (10). Briefly, this approach uses discretized changes
compared with a baseline sample (e.g., 24 h vs. 0 h post
PHx). Discretized patterns are encoded from a predeter-
mined fold change threshold to classify time points or con-
ditions as upregulated, downregulated, or unchanged.
Differentially expressed miRNAs are assigned to groups
with distinct expression patterns, with each group con-
taining unique sets of miRNAs (Fig. 2). From this analysis,
three sets of miRNAs were immediately noticeable—those
downregulated at 6 h in CHO-fed animals but upregulated
at 24 and 72 h in EtOH-fed animals (Fig. 2B), those upregu-
lated by 24 and 72 h in the EtOH-fed animals only (Fig.
2C), and those downregulated at 24 and 72 h in EtOH-fed
animals but unchanged in CHO (Fig. 2D). Six miRNAs are
significantly downregulated at later time points in etha-
nol-adapted livers and 25 miRNAs are significantly upreg-
ulated; 10 of these miRNAs show a decrease at 6 h in
carbohydrate-fed animals compared with ethanol-fed,
while the remaining 14 show no significant changes in car-
bohydrate-fed animals (Fig. 2; significance determined by
log2 fold change � 1.5). One of the miRNAs to show signifi-
cant upregulation in ethanol-fed animals, miR-21, has
been previously observed as an important regulator of
liver regeneration (12, 24).

Inhibition of miR-21 In Vivo Alters the Expression Level
of Several Additional miRNAs

Previous study from our group has shown that inhibition
of miR-21 in vivo rescues the delayed liver regeneration phe-
notype observed in ethanol-fed rats post PHx and leads to
broad changes in gene expression (9). Based on the spectrum
of molecular changes observed in this previous study, we
hypothesized that miR-21 is involved in a broader gene regu-
lation network affecting other co-regulatory miRNAs. We
treated carbohydrate-fed (CHO) and ethanol-fed (EtOH) ani-
mals with either anti-miR-21 injections (AM-21), a locked
nucleic acid (LNA) oligonucleotide complementary to miR-
21, saline injections, or left untreated. PHx surgery was per-
formedwithin each group and animals were allowed to recover
for 24 h post PHx before remnant liver tissue was collected.
Expression level of one miRNA from treated rats (miR-3405p)
showed significant positive correlation to miR-21 (Pearson r >
0; P < 0.05; Fig. 3, A and B), whereas four miRNAs (miR-365,
let-7a, miR-1224, and miR-146a) showed significant negative
correlation (Pearson r < 0; P < 0.05) (Fig. 3, A and C). miR-
146a, which was most anticorrelated with miR-21 expression
(Fig. 3C), is reported to act as a tumor suppressor and is
involved in the regulation of hepatic stellate cell activity, sug-
gesting a possible functional role of this miRNA in controlling
gene expression in the context of response to partial hepatec-
tomy followingmiR-21 inhibition (21, 25–27).

We used the miRanda target prediction software to identify
putative targets of the miRNAs responsive to AM-21 treat-
ment. Enrichment analysis of the targeted genes was per-
formed with the DAVID bioinformatics resource (version 6.7)
(20). We identified several significantly enriched processes by
which these miRNAs may regulate liver regeneration, mainly
involved in cell cycle progression and cell death (Table 1).
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Taken together, these results suggest that multiple miRNAs
are involved in co-regulatory networks, and that disruption of
normal miRNA expression (e.g., by chronic ethanol consump-
tion) leads to a cascade of changes in gene expression, con-
tributing to dysregulated liver regeneration following injury.

GSEA Uncovers a Signature for Hepatic Stellate Cell
miRNAs in Liver Regeneration

To further investigate the potential link between dysregu-
lation of normal miRNA expression in nonparenchymal cells
and liver regeneration, we performed gene set enrichment
analysis comparing miRNA differential expression in the
ethanol and carbohydrate control groups to known sets of
miRNAs that are differentially expressed in HSCs (21), LSECs
(22), and KCs (23) (Table 2). The HSC-associated miRNA

signature consisted of 16 upregulated and 26 downregulated
miRNAs, of which all but 3 downregulated miRNAs over-
lapped with our data set. Our analysis revealed that by 24-h
post-PHx there is significant enrichment in both ethanol-fed
and control groups for miRNAs that are upregulated in acti-
vated HSCs (Fig. 4,A and C). The carbohydrate control group
did not show significant enrichment for miRNAs that are
downregulated in activated HSCs (Fig. 4B). However, etha-
nol group displayed a statistically significant enrichment for
this set of downregulated miRNAs, showing decreased
expression after PHx (Fig. 4D). For LSECs, we used a list of
miRNAs enriched in these cells relative to other liver cell
types and evaluated the over-representation of the LSEC-
enriched miRNA signature in the bulk tissue miRNA profil-
ing data from our experiments. Of the 66 miRNAs included

Figure 1. A: overview of experimental
model of liver regeneration and subse-
quent analysis. Sprague-Dawley rats were
fed a liquid diet containing either ethanol
or a carbohydrate mixture. Liver regenera-
tion was induced by a 70% partial hepa-
tectomy and allowed to regenerate up to
72 h. Animals treated with anti-miR-21
(AM21) or saline were injected intraperito-
neally 72 h prior to surgery and immedi-
ately thereafter; samples were collected
at baseline and 24 h after partial hepatec-
tomy (PHx). Total RNA from rat liver was
extracted for a NanoString miRNA assay
and further validated in vitro. B: heatmap
of differentially expressed miRNAs from
untreated animals. miRNAs show both
time- and diet-dependent changes in
expression. n = 3 animals per condition.
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in this signature, only 30 miRNAs overlapped with our bulk
tissue data set (Table 2). This signature corresponding to the
LSEC-enriched miRNAs was not statistically significant in
the carbohydrate (P = 0.68) or ethanol (P = 0.28) groups. For
assessing the potential contribution of KC-associated
miRNAs, we analyzed a miRNA profiling data set collected
from isolated KCs at 3 days after 70% PHx inmice to identify
a differential miRNA expression signature to use in the
GSEA (Table 2). Of the 20miRNAs included in this signature,
only 7 miRNAs overlapped with our bulk tissue data set.
GSEA results indicated poor statistical significance of the KC
signature in carbohydrate (P = 0.13) and ethanol (P = 0.69)
groups. Taken together, these results suggest that it is diffi-
cult to ascertain the contribution of LSEC- and KC-associ-
ated miRNA networks from the present bulk tissue data set,
even as HSC-associatedmiRNA signatures were prominently
identifiable using this statistical approach.

Manipulation of miR-21 Levels In Vitro Supports
Evidence of Stellate Cell Mirna Signature in Whole
Tissue

To validate our GSEA results indicating HSC differential
miRNA signatures, we used LX2 cells, an immortalized
human stellate cell line (Fig. 5A) (28). LX-2 cells were trans-
fected using a locked nucleic acid-based approach to inhibit

miR-21 and cells were stimulated with TGF-b. We first vali-
dated in vitro activation of LX-2 cells using Acta2 expression
as a marker. Treatment with TGF-b was sufficient to induce
Acta2 upregulation at both mRNA (Fig. 5B) and protein levels
(Fig. 5C). A subset of miRNAs was selected based on our
Nanostring data and used for GSEA (21). As observed in whole
tissue samples, miR-21 and miR-146a displayed an anticorre-
lative relationship, with miR-146a increasing significantly in
response to AM21 treatment (Fig. 5D). Treatment with TGF-b,
which promotes activation in stellate cells, causes a decrease
in miR-146a levels in conjunction with AM21 similar to the
changes seen in vivo after PHx. miR-16, which has previously
been shown to decrease in response to stellate cell activation
(21), did not show a significant change with TGF-b alone, but
AM21 treatment was sufficient to significantly increase miR-
16 expression (Fig. 5D). Interestingly, the combination of TGF-
b and AM21 returned miR-16 to baseline expression levels,
supporting the idea thatmiR-16 expression is decreased in the
hepatic stellate cell activation response. Lastly, miR-199a has
been reported (21) to increase in activated HSCs, and we
observed a similar result in response to TGF-b treatment (Fig.
5D). Treatment with AM21 led to a decrease in miR-199a
expression and abrogated the increase in expression seen
with TGF-b alone. Taken together, our findings show that
these miRNA profiles, observed in whole tissue, are supportive

Figure 2. Comparative pattern count (COMPACT) analysis reveals clusters of similarly altered miRNAs. A: overview of the COMPACT matrix showing dis-
crete groups of miRNAs arranged in accordance with changes in expression between carbohydrate- and ethanol-fed animals across time points. These
groups (B, C, and D) show that multiple miRNAs display altered expression levels at early, intermediate, and later time points of regeneration. PHx, partial
hepatectomy.
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of the major hepatic stellate cell role in the liver regenerative
response, particularly in attenuating the response in the
chronic ethanol group, as well as mediating the recovery of
regeneration response followingmiR-21 inhibition.

DISCUSSION

This study further explores the relationship between
miRNA expression and liver regeneration in the context of
chronic alcohol intake. We have shown that prolonged
intake of ethanol in rats leads to dysregulation of normal
miRNA expression patterns, which are further altered by
additional insult, here in the form of a 70% partial hepatec-
tomy. We have also shown that changes in miRNA expres-
sion patterns show altered dynamics between control and
ethanol-fed animals. Furthermore, using a novel tech-
nique for exhaustive and unbiased comparative data anal-
ysis, we quantitatively identified clusters of miRNAs
whose expression significantly changed during liver
regeneration, between control and ethanol-fed animals.
One of these miRNAs in particular, miR-21, plays an

important role in liver regeneration and is significantly
upregulated by chronic ethanol consumption (9, 24, 29).
Preliminary analysis using a small and targeted cohort of
miRNAs showed some changes in response to miR-21 inhi-
bition but was limited in scope (9). The use of Nanostring
nCounter assays allowed us an unbiased view of global
miRNA expression in whole liver tissue. Using a miR21-
specific LNA oligonucleotide inhibitor, we showed that
several previously unremarked miRNAs display altered
expression patterns in response to knockdown of miR-21
as well as by ethanol consumption during liver regenera-
tion. Furthermore, gene ontology analysis was used to
identify mechanisms by which these miRNAs may regu-
late liver regeneration, with the findings consistent with
previous reports on tissue repair and particularly HSC
function.

Although this study focused on miR-21, there are many
miRNAs of interest in the context of liver regeneration, par-
ticularly those whose expression is correlated or anticorre-
lated with miR-21. For instance, miR-146a, which we
identified as being negatively correlated with miR-21, is

Figure 3. A: dynamics of differentially expressed miRNAs in response to anti-miR-21 (AM21) treatment, along with Pearson correlation to miR-21 (red =
positively correlated, blue = negatively correlated). n = 3 biological replicates for all groups. Log2-transformed expression values for the most positively
correlated (B) and most negatively correlated (C) miRNAs.
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known to play an important role in regulating hepatic stel-
late cell activation, whose functional role in liver regenera-
tion has been widely studied (4, 21, 25). We have also
identified several other miRNAs that display similar changes
in expression patterns as those seen in miR-21, such as miR-

340-5p, which represent possible targets for manipulation in
future experiments.

In addition, gene set enrichment analysis shows that
global miRNA expression is potentially reflective of changes
occurring in nonparenchymal cells, particularly HSCs. A
data set from a previously published paper was used for this
analysis—examining miRNA changes in activated versus
quiescent rat primary stellate cells (21). By comparing this
set of miRNAs with our observed data, we see that there is an
outsized influence of this nonparenchymal cell type com-
pared with its relative abundance in total liver. Stellate cell-
relevant miRNA expression patterns in ethanol-fed animals
reflect activated states in these cell types at both baseline
and during regeneration, whereas pair-fed animals only dis-
play such changes in response to liver injury. Persistent
activation of hepatic stellate cells has been linked to develop-
ment of liver fibrosis and impaired regeneration (30), sug-
gesting that the heightened stellate cell activity induced by
ethanol adaptation may be leading to improper liver
response to injury. Although similar analyses of LSEC and
KC data sets did not show enrichment of the corresponding
miRNA signatures in the present data set based on whole

Table 2. Table of nonparenchymal cell-associated miRNA signatures used in the gene set enrichment analysis

Hepatic Stellate

Cells Upregulated Hepatic Stellate Cells Downregulated Liver Sinusoidal Endothelial Cells Kupffer Cells

Overlapping Overlapping Nonoverlapping Overlapping Nonoverlapping Overlapping Nonoverlapping

let-7b miR-207 miR-10a miR-351 miR-126a-3p miR-483 miR-671-3p
let-7c miR-335 miR-151� miR-335 miR-126a-5p miR-99b miR-1901
let-7e miR-195 miR-422b miR-146b miR-322-3p miR-103 miR-465c-5p
miR-125b-5p miR-16 miR-195 miR-511-3p miR-539 miR-331-5p
miR-132 miR-30a miR-322 miR-450b-5p miR-96 miR-466c-5p
miR-143 miR-122 miR-374 miR-143-3p miR-29b miR-383
miR-145 miR-30d miR-16 miR-23a-3p miR-152 miR-m108-2-5p
miR-152 miR-30b-5p miR-199a-5p miR-338-3p miR-883b-5p
miR-199a-5p let-7f miR-10b miR-130a-3p miR-467e
miR-21 miR-30c miR-497 miR-27a-3p miR-433
miR-210 miR-194 miR-140 miR-130b-3p miR-742
miR-214 miR-192 let-7i miR-362-3p miR-193b
miR-22 miR-29a miR-142-3p miR-24-3p miR-380-5p
miR-221 miR-26b miR-466d miR-23b-3p
miR-222 miR-126 miR-532-5p miR-29b-3p
miR-31 miR-146a miR-99b miR-24-2-5p

miR-296 miR-151 miR-500-3p
miR-125a-5p miR-142-5p miR-381-3p
miR-26a miR-146a miR-301a-3p
miR-99a miR-125a-5p miR-3473
miR-181a miR-145 miR-1247-3p
miR-150 miR-450a miR-127-3p
miR-483 miR-10a-5p miR-214-3p

miR-139-5p miR-24-1-5p
miR-181a miR-6318
miR-150 miR-211-3p
miR-328a miR-494-3p
miR-532-3p miR-501-3p
miR-362 miR-331-3p
miR-3593-3p miR-27b-3p

miR-149-3p
miR-150-3p
miR-92b
miR-133c
miR-139-3p
miR-290

These miRNA signatures were derived from previously published miRNA profiling data from primary rat hepatic stellate cells acti-
vated in culture (21), rat liver sinusoidal endothelial cells (LSECs) compared with other liver cell types (22), and mouse Kupffer cells
(KCs) at 3 days after 70% partial hepatectomy (PHx) (23). The subset of miRNAs overlapping with the present data set is indicated.

Table 1. Table of gene ontology terms from DAVID (ver-
sion 6.7) associated with predicted targets of miR-21,
miR-340-5p, miR-365, miR-146a, and let-7a

GO Term Gene Count FDR

Transcription (GO:0006350) 147 2.56E�08
Regulation of programmed cell death
(GO:0043067) 146 6.49E�08

Regulation of cell proliferation (GO:0042127) 138 1.47E�06
Response to hypoxia (GO:0001666) 54 1.67E�05
Response to wounding (GO:0009611) 95 1.94E�05
Positive regulation of developmental process
(GO:0051094) 74 7.91E�05

Positive regulation of cell differentiation
(GO:0045597) 59 0.003798

DAVID, Database for Annotation, Visualization and Integrated
Discovery; FDR, false discovery rate.
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tissue samples, their potential contributions to the liver
regeneration and ethanol-mediated disruption of response
to partial hepatectomy should not be discounted. Follow-on
studies focused on the role of individual nonparenchymal
cell types in mechanisms relevant to alcohol-associated liver
disease could be pursued using transcriptomics and small
RNA profiling, ideally at the single-cell resolution, as has
been recently demonstrated in the liver tissue (31–33). In
addition, in situ hybridization approaches can be informa-
tive in localizing the expression and changes in miRNA lev-
els to specific liver cell types. We note that several miRNAs
in the nonparenchymal cell associated signatures (particu-
larly for HSCs and KCs) are not specific to those cell types,
even as the pattern of change in miRNA expression may be
particular to those cells. Hence, analysis of the results from
in situ hybridization and single-cell profiling methods needs
to account for tissue-wide expression and probe for differen-
tial regulation likely to occur in a cell-type specific manner.

Gene ontology analysis of putative miRNA targets reveals
several critical functions, including regulation of cell death,
differentiation, and development, may be shifted by differen-
tial miRNA expression (Table 1). In particular, changes in the
TGF-b signaling pathway have been widely studied in the con-
text of liver injury and repair, and seem to be directly regu-
lated by several miRNAs, including miR-21 and miR-146a (26).

Beyond the TGF-b pathway, these two miRNAs have been
implicated in additional pathways and disease states including
several types of cancer and control regulation of protein phos-
phatase activity, matrix remodeling, and cytokine signaling,
among others. In addition to controlling the levels of targeted
genes directly, there is evidence for miRNA-miRNA regulation
through downstream effects. miR-21 and miR-146a displayed
pronounced anticorrelative expression patterns in both whole
tissue and cell isolates. In addition, miRs-16 and 199a showed
differential expression in human stellate cells in response to
either TGF-b or AM21, or both. These findings clearly show
that although miR-21 is not a master regulator of stellate cell
miRNA networks, it plays a critical role in regulating the acti-
vation response and ultimately contributes to overall liver
injury response. Taken together, these results reveal the com-
plexity underlying the regulation of liver regeneration and
demonstrate the need for further study with network analysis,
computationalmodeling, and experimental validation.

Our results suggest that the alteration of nonparenchymal
cell activity, in particular hepatic stellate cell function, and
corresponding loss of regenerative ability in alcohol-fed liv-
ers is due to a shift in miRNA expression levels, fundamen-
tally changing key gene regulatory networks involved in the
repair and regeneration response. Our analysis has shown
dramatic shifts in miRNA expression levels between ethanol-

Figure 4. Gene set enrichment analysis reveals changes
in miRNA expression patterns that reflect those seen in
hepatic stellate cell activation (11). At 24-h post-partial
hepatectomy (PHx), both control and alcohol-fed animals
show an enrichment in miRNAs upregulated with stellate
cell activation (A and B). Alcohol-fed animals prior to sur-
gery show a slight enrichment for miRNAs downregu-
lated with hepatic stellate cell activation (D), whereas
control animals do not appear to show enrichment for
these miRNAs in either condition (C).
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adapted and pair-fed animals during liver regeneration, which
can be further altered by inhibition of a singlemiRNA,miR-21.
Gene set enrichment analysis using curated sets of miRNAs
shows a distinct, specific signature of hepatic stellate cells
miRNAs within whole tissue data. These changes have been
borne out in the LX-2 primary human hepatic stellate cell line
as well. The dynamics between miR-21 and miR-146a have
been shown to play critical roles in the regulation of HSC-spe-
cific signaling networks, further supporting a potential mecha-
nism of action for the impairment of liver regeneration (26). In
summary, our results have identified novel targets for the
study of alcohol-associated liver disease and the role therein of
miRNA regulatory networks, which can be further explored
using in vitro models of HSC activation as well as in vivomod-
els of chronic ethanol consumption using manipulations of
the keymiRNAs identified in the present study.
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