Revisional Bariatric Surgery for Weight Recurrence or Surgical Nonresponse

Erin Briggs
Sunjay Kumar
Francesco Palazzo
Talar Tatarian

Follow this and additional works at: https://jdc.jefferson.edu/surgeryfp

Part of the Dietetics and Clinical Nutrition Commons, and the Surgery Commons

Let us know how access to this document benefits you
Introduction

Obesity continues to be a rising health concern as worldwide prevalence has nearly tripled since 1975 and currently affects over 650 million people (1). The World Obesity Federation predicts that in 2030, 1 in 5 women and 1 in 7 men will be living with obesity (2). Bariatric and metabolic surgery has been a steadfast treatment for obesity and its related comorbidities. As the prevalence of obesity continues to rise, the number of bariatric procedures performed has continued to increase. In 2019, just prior to the coronavirus disease 2019 (COVID-19) pandemic, 260,000 bariatric procedures were performed in the United States alone (3).

Over the last decade, there has been a steady increase in the prevalence of revisional bariatric surgery. It accounted for 16.8% of all bariatric operations in 2019, making revisional surgery the third most common procedure type in the United States (3). Revisional bariatric surgery is an umbrella term encompassing conversion to another procedure type, correction of the index procedure, or reversal to normal or near-normal anatomy (4). The most common indication for revision is often weight recurrence or return of co-morbidities, accounting for two thirds of cases (5,6). Herein, we review the epidemiology of weight changes after the most common bariatric procedures and discuss treatment options for the management of weight recurrence or surgical non-response.

Terminology

Historically, when discussing postoperative weight changes, terms such as ineffective weight loss or weight regain were used to describe unsuccessful weight loss or maintenance following bariatric surgery. Such terminology imply that weight changes are a patient-related rather than a disease-related process. The AMSBS Post-Operative Weight Recurrence (or POWER) Task Force recently proposed implementing new terminology, using the terms “weight recurrence” and “surgical nonresponse” to describe weight changes following bariatric surgery, putting the onus on the disease rather than the patient (7).

Additionally, these terms are often used interchangeably but should likely be thought about and treated as different problems. Patients with weight recurrence may have behavioral, metabolic, and/or genetic factors that prevent long-term maintenance of treatment response. Those with surgical nonresponse may have a biologic or genetic predisposition causing early resistance to treatment effects. It is important to distinguish weight recurrence and surgical nonresponse as they are two separate disease-specific conditions. Unfortunately, there are no standardized definitions for these terms, limiting the ability to assess true incidence, clinical outcomes, and treatment algorithms.

Adjustable gastric banding (AGB)

AGB gained popularity in the early 2000’s as a reversible restrictive procedure. As long-term data became available, it quickly fell out of favor due to the risk of band complications and weight recurrence. AGB is now rarely performed as a primary operation, making up only 1.2% of
bariatric surgeries in 2020 (3). A 2012 retrospective review by Spivak et al. reported a >50% failure rate 10 years after AGB, defined as the percentage of patients with excess weight loss (EWL) <25% plus the cumulative percentage of band explants (8). In a systematic review by Puzziferri et al., the mean sample-size-weighted EWL was 45%, with less than 31% of cohorts reporting >50% EWL 2 to 5 years after AGB (9). In studies with long-term follow-up beyond 10 years, over 50% of patients had their band removed (10-12). Of these, 40% underwent revisional surgery for weight recurrence (10).

AGB removals and conversions make up the majority of revisional bariatric surgeries. A retrospective review of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) database from 2015–2017 found conversions to sleeve gastrectomy (SG) to be the most common, followed by conversion to Roux-en-Y gastric bypass (RYGB) (13). In patients undergoing conversion for weight recurrence or non-response without apparent band complications, a malabsorptive procedure is favored. In patients with non-response, superior weight loss has been demonstrated at 24 months after conversion to RYGB compared to SG (EWL 55% vs. 28%) (14). Patients who demonstrated successful weight loss and are presenting with band-associated complications (i.e., band erosion, slippage, pouch dilation), can be considered for restrictive or malabsorptive revisional options (15). Patient co-morbidities should be considered an important factor in choosing the optimal procedure. Patients with gastroesophageal reflux disease (GERD) or diabetes may be optimal candidates for conversion to RYGB, whereas those with super morbid obesity could be considered for biliopancreatic diversion/duodenal switch (BPD/DS) (16).

The decision to perform AGB conversion as a single- or two-stage procedure has been a matter of debate. Advocates for a staged procedure cite concerns for higher risk of morbidity and abdominal sepsis (specifically staple line leak) with a single-stage surgery (17). Delaying conversion to a second operation can allow the capsule to become thinner, minimizing the risk of staple line disruption. Alternatively, a single-stage operation can minimize the need for additional dissection in a re-operative field, as additional scarring is expected to occur after band removal. A recent analysis of the MBSAQIP database for the years 2020 and 2021 found that the majority of conversions are performed as two-stage procedures (59%) and most undergo conversion to SG (63%) (18). The authors found no difference in anastomotic leak, postoperative bleeding, reoperation, or mortality rates between the one- vs. two-stage cohorts. Compared to SG, conversions to RYGB had higher rates of serious complications and mortality, but there was no difference between one- vs. two-stage procedures. In those undergoing SG, the one-stage cohort experienced a higher rate of non-operative interventions (1.2% vs. 0.7%, P=0.04). In general, we prefer to perform a single-stage conversion except in cases of erosion, or in the setting of esophageal dilation and dysmotility when SG is favored by the patient.

SG

SG is the most common bariatric procedure performed worldwide. It gained popularity in 2012 due to favorable outcomes with weight loss and co-morbidity control with lower morbidity and mortality relative to other surgical options (i.e., AGB). In 2020, SG accounted for 61.6% of all bariatric surgeries and 71.3% of primary bariatric surgeries in the United States (3). The incidence of weight recurrence after SG is reported between 9–91%, depending on the definition used (19). This wide range further reinforces the need for a standardized evidence-based definition of weight recurrence in order to assess the true incidence and outcomes of proposed treatment strategies. An estimated 18–36% undergo revision for weight recurrence or non-response (20,21).

In patients presenting with weight recurrence or non-response, initial assessment should include anatomic evaluation for sleeve size or dilation. This is best accomplished with an upper gastrointestinal contrast study. Additionally, a thorough assessment should be made for maladaptive lifestyle behaviors. Complications such as reflux or vomiting can lead to maladaptive behavior and improper food choices, impacting weight loss outcomes. Pharmacotherapy should be considered as adjunct treatment while correcting dietary and lifestyle behaviors.

Re-SG has been reported for management of primary sleeve dilation or poorly constructed sleeve. In a single-center retrospective study, Andalib et al. reported comparable short-term (>6 and ≤18 months) EWL (re-sleeve 29.2%, RYGB 27.6%, BPD/DS 31.6%, P=0.707) and total weight loss (TWL, re-sleeve 7.6%, RYGB 10.1%, BPD/DS 14%, P=0.194) (22). Noel et al. recommended re-SG for non-super obese patients with localized dilation due to a poorly constructed sleeve, citing long-term success in 53.8% of patients [defined as excess body mass index (BMI) loss >50%] (23). A recent Delphi consensus of best practices recommended against re-SG as an acceptable option in
cases of “symptomatic GERD after SG + inadequate weight loss/weight recurrence” (24), as these patients would likely be better served by conversion to RYGB for concurrent management of GERD.

When considering surgical conversion, the indication for revision should be taken into consideration. In the setting of GERD or functional problems of the gastric sleeve (i.e., stricture, twisting, or narrowing at the incisura) conversion to RYGB is favored (25,26). If the primary indication is weight recurrence or non-response in the absence of functional issues, both RYGB and conversion to BPD/DS or single anastomosis duodenoeileal bypass (SADI) are options (25,26). The choice of procedure should be tailored based on patient co-morbidities and weight loss goals. In a multicenter cohort study, Dijkhorst et al. found superior weight loss with conversion to SADI vs. RYGB (5-year TWL 29.4% vs. 17.9%) (25). The authors did not find significant difference in the rate of complications, micronutrient deficiencies, or quality of life scores. Along the same line, Surve et al. assessed long term outcomes of SG conversion to SADI vs. RYGB in a retrospective cohort matched for sex, BMI, and baseline weight (26). TWL was higher after SADI (37.9% vs. 32.5%, P<0.001). Interestingly, approximately a third of patients remained surgical non-responders after conversion to RYGB (36.0% vs. 21.3%, P=0.028). The 30-day complication rates were similar between the two groups. In addition to superior weight loss outcomes, SADI showed significantly lower long-term complication (19.6% vs. 62.2%, P>0.001) and reintervention (14.7% vs. 39.3%, P=0.004) rates compared with RYGB. Two recent expert consensus panels favored BPD/DS to RYGB after SG for the treatment of super morbid obesity or as a secondary operation in a reliable patient with insufficient weight loss after SG (27,28). Conversely, conversion to RYGB is superior to BPD/DS in patients with gastroesophageal reflex and failed SG. Resolution of GERD after conversion of SG to RYGB is reported to be as high as 85% (29).

RYGB

RYGB is the second most common bariatric procedure in the United States, comprising approximately 18% of primary procedures in 2019 (3). At 5 years post-RYGB, randomized controlled trials have reported 23% total body weight loss [Surgical Treatment and Medications Potentially Eradicate Diabetes Effectively (STAMPEDE)], 57% EWL [Laparoscopic Gastric Bypass Versus Sleeve Gastrectomy to Treat Morbid Obesity (SLEEVEPASS)], and 68.3% excess BMI loss [Swiss Multicentre Bypass or Sleeve Study (SM-BOSS)] (30-32). Surgical non-response or weight recurrence can pose a treatment challenge. As with all cases of weight recurrence, psychosocial and behavioral factors must be investigated. Upper endoscopy and upper gastrointestinal fluoroscopy should be performed to assess for anatomic factors. The presence of a gastrogastric fistula, enlarged gastric pouch (>6 cm long or >5 cm wide), or dilated gastrojejunostomy (>2 cm) may all contribute to weight recurrence and can be addressed surgically with pouch revision and recreation of the gastrojejunostomy (33). Endoscopic plication or stoma reduction is a newer endoscopic option that has shown promising results. Callahan et al. reported 5-year outcomes in a retrospective cohort of 70 patients who underwent endoscopic gastrojejunostomy revision 2–10 years after gastric bypass surgery (34). After endoscopic revision, patients were able to sustain 7.0%±23.8% EWL up to 5 years post-procedure with slightly favorable outcomes with a pursestring technique compared to interrupted sutures. There was, however, little effect on comorbidities.

Another anatomic factor that deserves consideration is limb distalization to reduce total alimentary limb length. This most commonly involves dividing the alimentary limb close to the jejunoojejunostomy and moving it distally to create a longer bilio pancreatic limb with more malabsorption. Different placements of the alimentary limb have been proposed, however the shorter the common channel, the greater the risk for protein calorie malnutrition. EWL is typically reported around 50%, with total alimentary limb length (roux length + common channel length) of at least 350 cm favored (35). Conversion of gastric bypass to DS may also be considered. Single institution studies have shown this to be an effective salvage procedure with up to 25–35% TWL (36,37) and 71% EWL (38) at 2 and 3 years, respectively. Similar to limb distalization, protein malnutrition and nutritional deficiencies are a concern and more intensive nutritional supplementation is required. As such, it is imperative to assess patient compliance and comorbidities before choosing this procedure. Conversion to DS can be performed in one or two stages. Parikh et al. found no statistical difference between these two approaches. Patients undergoing one-stage conversion showed 80.2% EWL overall compared to 78.44% EWL in the two-stage group. There was no difference in mortality, but it was noted that single-stage conversion is preferred due to the decreased risk of
complications such as adhesions (39).

Conclusions

With the projected increase in the prevalence of obesity, there remains a need for bariatric surgery for the durable treatment of obesity and its related comorbidities. As the post-bariatric surgery population grows, a subset will need revisional surgery for the management of weight recurrence/non-response. After thorough psychosocial, behavioral, and anatomic workup, medical and surgical management should be tailored to patient specific goals and co-morbidities.

Acknowledgments

Funding: None.

Footnote

Provenance and Peer Review: This article was commissioned by the Guest Editor (Maria S. Altieri) for the series “Minimally Invasive Metabolic and Bariatric Surgery” published in Annals of Laparoscopic and Endoscopic Surgery. The article has undergone external peer review.

Peer Review File: Available at https://ales.amegroups.com/article/view/10.21037/ales-23-15/prf

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://ales.amegroups.com/article/view/10.21037/ales-23-15/coif). The series “Minimally Invasive Metabolic and Bariatric Surgery” was commissioned by the editorial office without any funding or sponsorship. The authors have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

35. Hamed H, Ali M, Elmhady Y. Types, Safety, and Efficacy of Limb Distalization for Inadequate Weight Loss After Roux-en-Y Gastric Bypass: A Systematic Review and...

doi: 10.21037/ales-23-15

Cite this article as: Briggs E, Kumar S, Palazzo F, Tatarian T. Revisional bariatric surgery for weight recurrence or surgical nonresponse. Ann Laparosc Endosc Surg 2023;8:25.