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ARTICLE

Genomic characterization of malignant progression
in neoplastic pancreatic cysts
Michaël Noë et al.#

Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs)

are non-invasive neoplasms that are often observed in association with invasive pancreatic

cancers, but their origins and evolutionary relationships are poorly understood. In this study,

we analyze 148 samples from IPMNs, MCNs, and small associated invasive carcinomas from

18 patients using whole exome or targeted sequencing. Using evolutionary analyses, we

establish that both IPMNs and MCNs are direct precursors to pancreatic cancer. Mutations in

SMAD4 and TGFBR2 are frequently restricted to invasive carcinoma, while RNF43 alterations

are largely in non-invasive lesions. Genomic analyses suggest an average window of over

three years between the development of high-grade dysplasia and pancreatic cancer. Taken

together, these data establish non-invasive IPMNs and MCNs as origins of invasive pan-

creatic cancer, identifying potential drivers of invasion, highlighting the complex clonal

dynamics prior to malignant transformation, and providing opportunities for early detection

and intervention.

https://doi.org/10.1038/s41467-020-17917-8 OPEN

#A list of authors and their affiliations appears at the end of the paper.
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Pancreatic cancer is a deadly disease with a dismal prognosis
that is predicted to soon be the second leading cause of
cancer death in the United States1. However, like other

epithelial malignancies, pancreatic cancer arises from noninvasive
precancerous lesions that are curable if detected and treated early
enough. Although the majority of pancreatic cancers are believed
to originate in microscopic precancerous lesions (pancreatic
intraepithelial neoplasia or PanIN), a significant minority arise in
association with larger cystic neoplasms that can be detected
using currently available imaging technologies2. These neoplasms,
which include intraductal papillary mucinous neoplasms
(IPMNs) and mucinous cystic neoplasms (MCNs), are frequently
diagnosed incidentally on abdominal imaging, identifying a
cohort of at-risk patients with an important opportunity for
prevention of invasive pancreatic cancer2. However, prevention
must be balanced with potential overtreatment of low-risk lesions,
as pancreatic resection carries significant morbidity and even
occasional mortality3. There is a critical need to understand the
molecular alterations that are associated with the development of
invasive cancer, as these represent potential biomarkers to iden-
tify cysts at high risk for progression to carcinoma and thus
requiring clinical intervention.

Although genomic analyses have been performed on hundreds
of invasive pancreatic cancers, relatively few noninvasive neo-
plasms have been analyzed comprehensively. Whole exome and
targeted sequencing of small cohorts of IPMNs and MCNs have
revealed driver genes characteristic of each type of cystic neo-
plasm4–6, while targeted analyses in larger cohorts have con-
firmed the prevalence of specific driver gene mutations that
correlate with grade of dysplasia or histological subtype7. These
studies have confirmed that hotspot mutations in the oncogenes
KRAS and GNAS occur in low-grade lesions while mutations in
other driver genes, including CDKN2A, TP53, RNF43, and
SMAD4, occur with increasing prevalence in lesions with high-
grade dysplasia or associated invasive carcinoma8. Targeted next
generation sequencing has been used to analyze pancreatic driver
genes in different regions of IPMNs, revealing a surprising degree
of intratumoral genetic heterogeneity, even with respect to well-
characterized driver gene mutations9–12. However, the above
analyses were based on studies of either single regions from each
neoplasm or a limited number of genes from multiple regions,
and did not provide an analysis of the evolutionary relationship
between different regions of pancreatic cysts and associated
cancers. These limitations highlight the need for comprehensive
genomic analysis of these cysts and associated invasive cancers to
understand the molecular alterations that underlie the transition
to invasive carcinoma.

In this study we perform whole exome sequencing of IPMNs
and MCNs and their associated invasive carcinomas. Importantly,
we focus our study on small invasive carcinomas (<2.5 cm) in
order to more precisely analyze the genetic alterations that occur
at malignant transformation in pancreatic tumorigenesis. In
addition, in a subset of our samples, we perform deep targeted
next generation sequencing on a larger set of additional tissue
samples in order to assess mutated loci through entire neoplasms,
including areas of low-grade dysplasia, high-grade dysplasia, and
invasive carcinoma. These analyses reveal important features of
pancreatic tumorigenesis, including evolutionary relationships
between different regions within cystic neoplasms as well as
molecular alterations that may drive the transition from a non-
invasive precursor lesion to invasive cancer.

Results
Overall approach. In order to dissect the molecular relationships
between non-invasive dysplastic lesions and invasive pancreatic

cancers, we performed whole exome sequencing of 39 neoplastic
tissue samples from 18 patients with small invasive carcinomas
(<2.5 cm) associated with neoplastic pancreatic cysts, including
16 patients with IPMNs and 2 patients with MCNs (Supple-
mentary Data 1). Whole exome sequencing was performed on
one sample from the noninvasive component with high-grade
dysplasia and one sample from the invasive cancer in each case,
and for three cases an additional noninvasive sample with low-
grade dysplasia was also analyzed by whole exome sequencing.
Matched normal samples were analyzed by whole exome
sequencing in each case to exclude germline variants and to
identify somatic mutations. Whole exome sequencing was per-
formed with an average total coverage of 177× (distinct coverage
of 145×), generating 1.3 TB of sequencing data (Supplementary
Data 2).

In addition to whole exome analyses, we performed targeted
next generation sequencing of 109 microdissected tissue samples
from seven of the above cases (six IPMNs and one MCN). For
these targeted analyses, we performed laser capture microdissec-
tion to isolate neoplastic cells from every available tissue block of
the noninvasive cyst and cancer specimens. Separate samples
were microdissected based on grade of dysplasia, cell morphol-
ogy, architecture, and spatial location. This resulted in 8–22
additional samples per case. The targeted panel analyses included
all mutated loci identified in the whole exome sequencing of these
seven cases, as well as the entire coding regions of 15 well-
characterized pancreatic driver genes (Supplementary Data 3).
The targeted sequencing had an average coverage of 508×
(distinct coverage of 460×) (Supplementary Data 2).

We developed an integrated mutation calling pipeline to
rigorously assess mutations in all sample types in our analyses in
order to confidently identify even subclonal alterations in samples
with low neoplastic purity (see “Methods”) (Fig. 1, Supplemen-
tary Data 4). In addition, we utilized both on target and off target
reads to examine focal copy number changes as well as loss of
heterozygosity throughout the genome (Fig. 2, Supplementary
Data 5 and 6). From our whole exome sequencing analyses, we
identified an average of 66 somatic mutations in samples from
noninvasive components (range 26–111) and an average of
65 somatic mutations in invasive carcinoma samples (range
31–105) (Fig. 1a, Supplementary Data 4). An average of
47 somatic mutations were shared between the noninvasive and
invasive components, while 19 somatic mutations were unique to
samples from noninvasive components and 20 somatic mutations
were unique to samples from invasive cancer (Fig. 1a). We also
identified an average of five shared copy number alterations
between noninvasive and invasive components, as well as an
average of one copy number alteration unique to samples from
invasive cancer. A similar mean proportion of somatic mutations
and copy number alterations were unique to invasive samples
(0.28 for somatic mutations, 0.34 for copy number alterations).

Analysis of our combined whole exome and targeted sequen-
cing data provided multiple insights into IPMN and MCN
tumorigenesis. In every analyzed case, there were multiple shared
mutations between the noninvasive and invasive components.
These included both driver and passenger mutations, indicating
that they shared a common phylogenetic ancestor (Fig. 1a, b). In
addition, accumulation of unique mutations in both noninvasive
and invasive components demonstrated independent evolution
after the divergence of the subclone that gave rise to the invasive
cancer (Fig. 3, Supplementary Figs. S1–S18). Analysis of
additional adjacent low-grade or high-grade samples from the
same lesions revealed a subset of shared mutations, suggesting
that these dysplastic lesions preceded the development of the
invasive carcinoma (Fig. 3, Supplementary Figs. S1, S2, S3, S5,
and S16). Evolutionary analyses showed a branched phylogeny in
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each case, with multiple clonally related but distinct dysplastic
samples from each neoplasm (Fig. 4). Importantly, removal of
driver gene mutations from these analyses did not significantly
alter the resulting phylogenies, indicating that the evolutionary
relationships are supported by mutations in addition to driver
alterations (which might be shared by chance). Thus, the inferred
evolutionary relationships between IPMN/MCNs and cancer
samples are robust, as the probability of sharing a non-hotspot
mutation due to chance alone is vanishingly small (1 in ~50
million), while the mean number of shared point mutations was
47 (the vast majority of which did not occur in hotspots).

Another potential explanation for shared mutations in
noninvasive and invasive samples is the presence of a small
number of cancer cells (contamination) in IPMN/MCN samples.
Our detailed pathological characterization and macro- or micro-
dissection minimized the risk of this sample impurity. In
addition, variant allele frequencies (VAFs) of shared mutations
in IPMN/MCN and cancer samples can also help to evaluate the
likelihood of such contamination. In mutations shared between
the IPMN/MCN and cancer, the mean VAF in the noninvasive
samples was 0.38, with only 4% of shared mutations having a
VAF below 0.1 in the noninvasive samples. These high VAFs
indicate that the shared mutations were not the result of a small
number of cancer cells contaminating the noninvasive samples.
Overall, these data provide evolutionary evidence that IPMNs and
MCNs were precursors to invasive pancreatic cancer, with low-
grade regions usually preceding high-grade regions and ultimately
resulting in invasive carcinoma.

Driver genes of IPMN/MCN tumorigenesis. Through whole
exome and targeted sequencing analyses of 18 IPMNs/MCNs and
associated invasive carcinomas, we confirmed the high prevalence

of mutations in previously identified pancreatic driver genes,
including mutations of KRAS (89% of cases), GNAS (28%),
CDKN2A (44%), TP53 (67%), SMAD4 (50%), and TGFBR2 (17%)
(Fig. 1b). Somatic mutations were also identified in RNF43 (56%),
which has been previously highlighted for its role as a driver in
mucin-producing pancreatic cysts4. Somatic mutations were
observed at low prevalence in key positions in the PI3K (PIK3CA,
TSC2) and WNT (APC, CTNNA2, CTNNB1) signaling pathways
as well as in STK11 (Fig. 1b, Supplementary Data 4). Alteration of
these genes and pathways has been previously reported in a
fraction of IPMNs4,7,13,14. The two MCNs analyzed were similar
to the IPMNs in the cohort, with hotspot mutations in KRAS,
homozygous deletion of CDKN2A, and inactivating mutations in
RNF43, among others, but as expected these MCNs did not have
GNAS alterations (Supplementary Figs. S3, S7)6.

In addition to driver genes previously reported in IPMNs, our
data provide an opportunity to discover novel drivers of IPMN
tumorigenesis. We identified somatic mutations in the DNA
damage response gene ATM in 17% of lesions, including one
nonsense mutation (Fig. 1b, Supplementary Data 4). In addition
we identified alterations in Hedgehog pathway member GLI3 in 5
of 18 cases (28%) (Fig. 1b, Supplementary Data 4). We also
identified somatic mutations in a previously described hotspot in
SF3B1, which encodes a protein critical for RNA splicing (Fig. 1b,
Supplementary Data 4). Amplifications of the well-characterized
driver genes ERBB2 and MYC were each observed in a single case
and have not been previously reported in IPMNs (Supplementary
Data 5). Other altered genes with a previously unknown role in
IPMN tumorigenesis include MUC16 (four cases), PTPRT (four
cases), and CNTN5 (three cases) (Fig. 1b). Intriguingly, in one
case, an STK11 mutation was found in combination with biallelic
ATM loss and cancer-specific biallelic KEAP1 loss—the
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Fig. 4 Evolutionary reconstruction of samples analyzed by whole exome and targeted sequencing. In all cases, noninvasive samples (blue/green)
precede invasive samples (red/pink) in the evolutionary history. In MTP5, different invasive cancer samples are placed in different regions of the
phylogeny, highlighting multiple independent invasion events in this lesion. In MTP19, a sample of cancerization (purple) has descended from invasive
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combination of these three mutations has previously been
reported in lung cancers (Supplementary Fig. S3)15.

Although KRASmutations occur in the majority of IPMNs and
are thought to initiate tumorigenesis in these lesions, two IPMNs
lacked mutations in this gene. One case contained a hotspot
mutation in codon 227 of GNAS, another potential initiator of
IPMN tumorigenesis, as well as alterations in TP53 and RNF43
(Supplementary Fig. S15). The other case lacked mutations in any
of the frequently altered pancreatic driver genes but contained
hotspot mutations in both CTNNB1 (S45P) and SF3B1 (H662Q)
(Supplementary Fig. S10). These cases highlight alternative
pathways of initiation and progression in IPMNs lacking KRAS
mutations.

Order of genetic alterations in IPMN/MCN tumorigenesis. Our
multiregion sequencing approach of IPMNs/MCNs and asso-
ciated invasive carcinomas provided insights into the order of
specific genetic alterations in pancreatic tumorigenesis. In 17 of
the 18 cases, at least one somatic mutation in the initiating driver
genes KRAS and GNAS was shared between the noninvasive
component and associated invasive cancer, with the remaining
case lacking mutations in these genes. Somatic mutations in TP53
and CDKN2A were also shared in the noninvasive component
and associated invasive cancer in the majority of cases. In con-
trast, SMAD4 had alterations confined to the invasive carcinoma
in three cases and was shared between noninvasive and invasive
samples in four cases (Fig. 1b). The majority of SMAD4 altera-
tions in all sample types were bi-allelic, including 5/7 in non-
invasive samples and 6/7 in invasive samples (Supplementary
Data 7). Alteration of TGFBR2, which functions in the same
signaling pathway as SMAD4, was also restricted to the cancer in
one case (Fig. 1b). The other genes with mutations restricted to
the invasive cancer (CDKN2A, CNTN5, PIK3CA, KEAP1, and
RET) only had this pattern in a single sample (Fig. 1b).

Our study also identified driver mutations in subclones of
noninvasive neoplasms that diverged from and were not present
in invasive cancer. These included hotspots mutations in well-
characterized oncogenes and inactivating mutations in tumor
suppressor genes (e.g., PIK3CA p.E545K, CTNNB1 p.S45F,
SMAD4 p.E33fs, and multiple inactivating RNF43 mutations in
patient MTP3) (Supplementary Fig. S3). Mutations in RNF43
were a particularly striking finding in these cases, as some
noninvasive components contained several different RNF43
mutations, each limited to a small number of sections and none
involving the invasive cancer (Fig. 3, Supplementary Fig. S3). In
addition to heterogeneity in RNF43 in early lesions, we also
identified two cases with multiple mutations in KRAS in
precursor lesions, of which only one was present in the invasive
cancer. For example, in MTP19, KRAS p.G12V was present in the
majority of IPMN samples, as well as all the invasive cancer
samples, but there were an additional four other KRAS mutations
(all occurring in hotspot positions) that were present in a small
number of sections in low-grade IPMN samples (Fig. 3).
Intriguingly, these three low-grade IPMN regions shared no
mutations with the invasive cancer, suggesting that they
represented genetically independent clones.

Notably, while there were often many differences in the
somatic point mutations identified in the matched noninvasive
and invasive samples, the copy number profiles were quite similar
between IPMN/MCNs and invasive cancers (Fig. 2, Supplemen-
tary Data 6), and the proportion of copy number alterations
unique to cancer samples (0.34) was similar to that observed for
somatic mutations. While homozygous deletion of some genes
occurred in the invasive cancer but not the noninvasive
component, such as CDKN2A in MTP8 (Fig. 3), analyses of

chromosomal gains and losses through assessment of allelic
imbalance revealed that an average of 91% of the genome was
similar in copy number in matched noninvasive and invasive
samples (Fig. 2, Supplementary Data 6).

Insights into pancreatic neoplasia revealed by sequencing. The
samples analyzed by targeted sequencing were characterized
morphologically and meticulously isolated using laser capture
microdissection. Even with this process, we identified samples in
two cases that were characterized morphologically as IPMNs but
through genomic and evolutionary analyses were determined to
be identical to or descendants of the associated invasive cancers.
For example, in MTP19, some of the samples originally identified
morphologically as noninvasive IPMN (55, 9, 60, and T1) shared
all the mutations present in the invasive cancer sample (T2) and
contained additional mutations, suggesting that these samples
descended from the cancer (Figs. 3, 4). Evolutionary analyses
suggested that some of the morphologically identified IPMN
samples in this case (as well as MTP1) actually represented
intraductal spread of invasive carcinoma, also referred to as
cancerization of the ducts. In these cases, after invading the
stroma, the carcinoma invaded back into and colonized the cyst
such that it was morphologically indistinguishable from IPMN
with high-grade dysplasia.

In one case (MTP5), we also identified an interesting pattern of
multifocal invasion of the carcinoma. In this case, we analyzed
five different samples from invasive cancer—three samples were
isolated from a mucinous carcinoma, and two samples were
isolated from a ductal carcinoma. Based on evolutionary analyses
of the patterns of shared and distinct mutations in the cancers
and IPMNs, we conclude that there were multiple separate
invasion events in this lesion, as represented by the mutations
shared between the invasive cancers and noninvasive components
as well as those that were unique to the specific invasive cancers
(Fig. 4, Supplementary Fig. S5).

As our study represents the largest cohort of comprehensively
sequenced IPMNs/MCNs, we also analyzed mutational signatures
in our dataset. Intriguingly, our data contrast somewhat with the
mutational signatures previously reported in pancreatic ductal
adenocarcinoma (PDAC)16,17. Like PDAC, the most prominent
mutational signature was associated with age (Signature 1A),
which was identified in almost every case (Supplementary
Fig. S19). However, we also identified signatures associated with
APOBEC enzymes (four cases), smoking (three cases), and
mismatch repair deficiency (11 cases). Although smoking is
considered a risk factor for pancreatic cancer, until now the
mutational signature associated with smoking has not been
reported in pancreatic neoplasia18.

Evolutionary timeline of high-grade IPMN to PDAC. To esti-
mate the time between the development of high-grade IPMN and
PDAC, we evaluated Bayesian hierarchical models for the number
of acquired mutations under a range of possible mutation rates.
These models estimate the time interval between a founder cell of
a PDAC and the ancestral precursor cell in the associated high-
grade IPMN assuming that mutation rates and cell division times
are constant throughout this period of development (see
“Methods”). We performed this analysis on the paired WES data
from 17 of our 18 cases (Supplementary Fig. S20). We excluded
MTP19 because our evolutionary analyses demonstrated intra-
ductal spread of invasive carcinoma and as such, we lacked WES
data from an IPMN sample in this case. In the 17 analyzed cases,
the average median time to progression from IPMN to PDAC was
3.7 years, but the models showed a bimodal distribution. This
median time was nearly 3 years for 13 patients, but nearly 7 years
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for 4 patients with more than 35 acquired mutations, highlighting
potential variability in progression time between patients. For
example, in patient MTP1, most models suggested an average of
2.8 years between the development of the IPMN and the PDAC
(90% CI, 1.3–6.7 years). In contrast, for patient MTP2 with 36
additional mutations acquired in the PDAC, the transition
appears to have been slower with an average estimate of 6.6 years
(90% CI: 3.9–11.4 years) from the Bayesian models. Overall, these
analyses suggest that for most patients there is a significant
window of time between development of high-grade dysplasia
and pancreatic cancer, providing an opportunity for surveillance
and intervention.

Discussion
This study represents the largest dataset of whole exome
sequencing of IPMNs and MCNs to date. Importantly, our data
established that both IPMNs and MCNs are direct precursors of
invasive pancreatic cancer (Fig. 4). This conclusion has been
previously suggested by the morphological relationship between
the noninvasive neoplasms and invasive cancer on traditional
histologic sections, as well as shared driver gene mutations in
targeted sequencing studies6,7,9–11. However, the presence of
many shared driver and passenger mutations clearly demon-
strated the common origin of IPMNs/MCNs and invasive pan-
creatic cancers in our study, and evolutionary analyses revealed
that dysplastic lesions precede invasive cancers. Evolutionary
analyses suggested that high-grade noninvasive lesions occur over
3 years before invasive carcinoma, providing a window of
opportunity for early detection and intervention.

In this study, we identified somatic mutations in driver genes
that had not been previously implicated in IPMNs/MCNs. For
example, we identified alterations in the DNA damage response
gene ATM in 17% of the analyzed cases. Germline mutations in
ATM have been recently reported in patients that developed
IPMNs, highlighting the potential importance of this gene in
IPMN risk19. In addition, mucinous (colloid) carcinomas are
significantly more common than typical ductal carcinomas in
patients with germline ATM mutations, further highlighting the
link between mutations in this gene and IPMNs20. Although the
ATM gene is large, potentially increasing the likelihood of pas-
senger or artifactual mutations, even larger genes such as TTN
had a lower mutation prevalence, suggesting that at least some of
the alterations identified in ATM are likely to be bona fide
somatic mutations. Somatic mutations in GLI3, which encodes a
component of the Hedgehog signaling pathway, were identified in
28% of cases. Somatic mutations in GLI3 were recently reported
in a distinct morphological variant of pancreatic carcinoma
(undifferentiated carcinoma with osteoclast-like giant cells) as
well as at a low prevalence in sporadic PDAC, suggesting that the
importance of GLI3 mutations and its signaling pathway in
pancreatic tumorigenesis may extend beyond IPMNs/MCNs21–23.
The hotspot mutations in SF3B1, which encodes a protein critical
for RNA splicing, are also potential drivers in the IPMN pathway.
However, somatic mutations in this gene have been reported in a
variety of other neoplasms, including hematologic malignancies
and uveal melanoma24–26.

We highlight somatic alteration of the SMAD4 pathway as a
putative driver of progression to invasive cancer, as mutations in
SMAD4 or TGFBR2 occurred only in invasive cancer samples in 4
of the 18 cases analyzed. SMAD4 was the only gene with cancer-
specific mutations in more than one case, highlighting the
potentially unique role this gene plays in pancreatic carcinogen-
esis. This role has been previously suggested by next generation
sequencing of high-grade PanINs showing an absence of SMAD4
mutations in precancerous lesions, as well as cancer-specific

SMAD4 mutations reported in a paired PanIN/carcinoma
analyses27,28. Loss of SMAD4 expression limited to invasive
carcinomas has been reported in MCN- and IPMN-associated
invasive cancers, and targeted sequencing of a small number of
IPMNs and matched cancers identified a single case with a
SMAD4 mutation occurring only in the cancer7,28,29. In our data,
there were also four cases where mutations in SMAD4 were
shared between noninvasive and invasive cancer samples, and two
where SMAD4 mutations were limited to the noninvasive com-
ponent. Although our whole-exome approach could not detect all
types of SMAD4 alterations (such as rearrangements or epigenetic
changes), the majority of SMAD4 mutations observed in both
noninvasive and invasive components affected both alleles. Taken
together, this suggests that the role of SMAD4 mutations may not
be universal and may depend on other factors, including cell
intrinsic (such as somatic mutations in other driver genes) and
cell extrinsic (such as stromal and immune microenvironment)
mechanisms.

Although some of our cases had SMAD4 mutations limited to
the invasive cancer, most of the IPMN/MCN-associated cancers
lacked driver gene alterations that were associated with invasive
disease, suggesting that malignant progression is not universally
driven by point mutations. Previous studies have specifically
demonstrated the importance of copy number alterations and
chromosomal rearrangements in pancreatic tumorigenesis30. We
did not identify large differences in the copy number profiles
between noninvasive components and associated invasive can-
cers, suggesting that global genomic instability may be important
as an early feature of tumorigenesis but is not likely to drive
malignant transformation in many cases.

Our study also revealed prevalent genetic heterogeneity in
driver gene mutations in early lesions, demonstrating more
complex processes than previously suggested by traditional linear
tumorigenesis models. Similar to our recently reported polyclonal
origin of IPMNs12, we identified multiple independent clones
initiated by distinct KRAS mutations in two cases in the current
study. In addition, our study identified multiple distinct inacti-
vating mutations in RNF43 limited to unique tumor subclones, a
pattern previously observed by our group and not shared by other
genes in our whole exome sequencing analyses12,31. In most cases,
RNF43 mutations were enriched in noninvasive components and
absent from the associated invasive cancers. More generally, we
observed multiple instances of clear driver mutations (including
hotspot mutations in oncogenes as well as inactivating mutations
in tumor suppressor genes) that were limited to the noninvasive
components and not present in the associated invasive cancer.
Thus, these mutations occur and clonally expand in the IPMN or
MCN but are not present in the subclone that subsequently
invades. Such independent evolution of premalignant lesions has
been observed in other organ sites and does not diminish the
conclusion of our evolutionary analyses that IPMNs/MCNs are
precursors of invasive pancreatic cancer32–34. Rather, these
observations suggest unique selective processes at different time
points in tumorigenesis, such that mutations selected in the
precancerous lesion are not selected for (or are even selected
against) in the invasive cancer.

In addition to these observations about clonal evolution in
noninvasive lesions, our data also provide genetic evidence for
multiple underappreciated processes in pancreatic neoplasia.
First, we provide genetic evidence for intraductal spread of
invasive carcinoma, also known as cancerization35. In two of our
cases (MTP1 and MTP19), the identified somatic mutations
suggested that samples that were morphologically thought to be
IPMN were actually of the same clone or clone descended from
invasive cancer. These cases confirmed the morphological
impression of the prevalence of this cancerization phenomenon,
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which likely has confounded many previous studies of pre-
cancerous pancreatic lesions35. In addition, we describe one case
of IPMN with multiple independent invasion events (MTP5).
This case contained invasive cancer with two different
morphologies, one with typical ductal morphology and one with
mucinous (colloid) morphology. Evolutionary analyses demon-
strated that the ductal and mucinous carcinomas arose through
independent invasion events and suggested that the multiple
mucinous cancer samples comprised unique subclones that
invaded independently from the IPMN. Although multifocal
invasion has been described morphologically in IPMNs with
multiple anatomically discrete invasive foci, in this case all the
invasive carcinoma samples came from the same grossly defined
tumor, suggesting that multifocal invasion may be an under-
appreciated phenomenon in IPMNs.

The results of our study should also be considered in the
context of studies of other precancerous lesions and associated
invasive cancers. Previous molecular studies of IPMNs and
associated invasive carcinomas have been limited to targeted gene
panels9–11. These studies demonstrated a small number of shared
and distinct driver gene mutations in lesions from the same
patient. The results of these studies are largely consistent with our
study, but the limited panels prevent comprehensive evolutionary
conclusions. In addition, complementary studies that have
employed whole exome sequencing to characterize microscopic
pancreatic precancerous lesions (PanINs) and their co-occurring
invasive carcinomas highlight the common evolutionary origin of
PanINs and co-occurring PDACs27,36. Similar to our study, these
studies reported a lack of consistent specific driver genes asso-
ciated with invasive cancer, although cancer-specific SMAD4
mutations were reported in two cases in one study27. Importantly,
in our study the sequencing of additional precancerous samples
(beyond the original paired samples analyzed by whole exome
sequencing) provided a more detailed analysis of precancerous
clonal evolution than previous studies.

As with all genomic analyses, our study does have some lim-
itations. Compared to other genomic analyses of invasive pan-
creatic cancer, the sample size in our study is relatively small, with
multi-region whole exome sequencing performed on 18 patients.
Nevertheless, the whole exome and targeted analyses of
148 samples from these patients represents the largest genomic
study of precancerous pancreatic lesions to date. In addition, our
combined approach of whole exome and targeted sequencing may
not have identified all mutations in all regions of these compre-
hensively analyzed IPMNs. Despite these limitations, the analyses
provide a detailed view of the acquisition of mutations that
characterize the invasive carcinoma, as well as genetic hetero-
geneity in well-characterized pancreatic driver genes. Finally, in
this study, we focused entirely on genetic alterations, as the role of
these mutations in driving tumorigenesis has been well docu-
mented. Our study provides evidence that the evolution to
invasive cancer is likely to be driven by non-genetic mechanisms
in some lesions, highlighting an important direction of future
investigation.

In this study, we present a comprehensive evolutionary analysis
of precancerous pancreatic cysts and associated invasive carci-
nomas. We demonstrate that IPMNs and MCNs are precursors of
invasive pancreatic cancer, that alterations in ATM, GLI3, and
SF3B1 are present in these lesions, and that SMAD4/TGFBR2
alterations are likely drivers of invasion in a subset of cases.
Analyses of the evolutionary timeline between high grade pre-
cancerous lesions and pancreatic cancer suggest a window of
more than 3 years for acquisition of these invasive characteristics.
These data provide critical insights into pancreatic tumorigenesis
and highlight an opportunity for surveillance of precancerous
pancreatic cysts and early detection of pancreatic cancer.

Methods
Specimen acquisition. An IRB protocol was submitted and approved at the Johns
Hopkins University. Additional IRB protocols were submitted and approved in
collaborating institutions when a local IRB was required. Samples came from the
Johns Hopkins Hospital, Baltimore (United States); University Medical Center,
Utrecht (The Netherlands); University and Hospital Trust, Verona (Italy); Asan
Medical Center, Seoul (Republic of Korea); National Cancer Center Hospital,
Tokyo (Japan); Royal North Shore Hospital, Sydney (Australia), University Hos-
pital, Ghent (Belgium); Academic Medical Center, Amsterdam (The Netherlands);
Laboratory for Pathology Eastern Netherlands, Hengelo (The Netherlands); Tho-
mas Jefferson University, Philadelphia (United States); Aichi Cancer Center Hos-
pital, Nagoya (Japan); Medica Sur Clinic and Foundation, Mexico City (Mexico);
Emory University Hospital, Atlanta (United States). Informed consent was
obtained from all participants in accordance with IRB requirements. The pathology
archives were searched for cases meeting the following inclusion criteria: syn-
chronous IPMN or MCN and pancreatic cancer, whereby the IPMN or MCN is
larger than the invasive component and the invasive component is smaller than 2.5
cm. We specifically sought small pancreatic cancers to isolate the alterations that
occur at the time of malignant progression (rather than those that accumulate
during further growth of the invasive cancer). The H&E slides were evaluated by
experienced pathologists with a subspecialty in gastrointestinal pathology (L.D.W.,
R.H.H., L.A.A.B., G.J.O.), and the different components (noninvasive cyst and
invasive cancer) were annotated.

Sample preparation and whole exome sequencing. The formalin-fixed paraffin-
embedded (FFPE) tissue blocks were cored separately for the different components:
high-grade IPMN/MCN, invasive cancer, and matched normal sample from the
duodenum or spleen. As these are human tissue blocks from pathology archives of
the participating hospitals, these materials are not available to the public. In three
cases, a low-grade IPMN/MCN was also cored. DNA was extracted from these
cases using the Qiagen QIAamp DNA FFPE Tissue Kit according the manu-
facturer’s protocol (Qiagen). After purification, the final DNA concentration was
measured with the Qubit 2.0, dsDNA high sensitivity assay. Noninvasive lesions
invariably had a higher neoplastic cellularity, as assessed during pathology review.
Twenty cases were selected for whole-exome sequencing (WES) of the noninvasive
component(s), cancer, and matched normal at Personal Genomic Diagnostics
(PGDx, Baltimore). Briefly, genomic DNA was fragmented, followed by end-repair,
A-tailing, adapter ligation, and polymerase chain reaction. PCR products were
purified, and exonic regions were captured in solution using the Agilent Sure Select
kit according to the manufacturer’s instructions (Agilent). Pair-end sequencing was
performed on a Hi-Seq2500 next-generation sequencing instrument (Illumina).
Primary processing of sequence data was performed using Illumina CASAVA
software (v1.8). Two cases (MTP15 and MTP20) failed quality control during
sequencing and were excluded from further analysis. Fastq-files were further
processed according to the GATK best practices workflow: BWA (v0.7.17) for
alignment to hg19, picard (v2.18.1) for duplicate reads flagging and GATK (v3.7)
for base quality score recalibration.

Somatic mutation identification from whole exome sequencing data. Non-
synonymous mutations were called with PGDx’s VariantDX mutation caller, and
synonymous mutation were called using Mutect2 (in GATK v3.7), both using
default parameters37,38. All identified mutations were confirmed by visual
inspection using the Integrated Genomics Viewer (v2.3.80; IGV)39. In order to
assess mutated sites in additional samples from the same patient, a separate ana-
lysis was performed with Manta (v1.4.0) and Strelka (v2.9.9)40. To obtain infor-
mation on the mutated positions across all samples from each patient, Strelka was
used to obtain metrics at each mutated position in all matched samples. Then,
mutations were filtered based on the several metrics. A mutation was called when
the normal sample had a depth of at least 10 distinct reads and the mutation found
had a mutant allele fraction of <2% in the normal. Further filtering is described in
“Integrated mutation analysis” below. In addition, analysis of each candidate
mutation was performed using BLAT (v36)41. A sequence of 101 bases (with the
mutated position in the middle) was used as the query sequence (http://genome.
ucsc.edu/cgi- bin/hgBlat). Candidate mutations were removed from further ana-
lysis if the analyzed region resulted in >1 BLAT hits with 90% identity over 70
SCORE sequence length. All candidate alterations were verified by visual inspection
in IGV.

In order to analyze the mutational signatures, we combined the single
nucleotide variants found in both the noninvasive sample(s) and the invasive
sample into a set of unique mutations. Each mutation was classified into one of the
96 trinucleotide contexts18. The contribution of each signature to each tumor
sample was estimated using the deconstructSigs (v1.8.0) R package.

Sample preparation and targeted sequencing. Additional blocks were available
from seven of the analyzed IPMNs/MCNs, allowing multi-region sampling of both
the precursor lesion and the pancreatic cancer. Twenty to thirty serial sections of
FFPE tissue from each available block were cut onto membrane slides (PEN 1.0, Zeiss,
Oberkochen, Germany) for laser capture microdissection. After deparaffinization in
xylene and rehydration in ethanol, the slides were stained with hematoxylin.
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Morphologically homogeneous regions were microdissected using the LMD7000
(Leica, Wetzlar, Germany). Genomic DNA was extracted from the microdissected
tissues. In brief, the microdissected samples were incubated with proteinase K for 16 h
at 56 °C. The digested mixture was transferred to a 130 μL microtube (Covaris,
Woburn, MA) for shearing. Following fragmentation, the sample was further digested
for 24 h at 56 °C followed by 1 h incubation at 80 °C to inactivate proteinase K. DNA
purification was then performed using the QIAamp DNA FFPE Tissue kit following
the manufacturer’s instructions (Qiagen, Valencia, CA). Fragmented genomic DNA
from tumor and normal samples were used for library preparation according to the
Agilent Sure Select Target Enrichment System (Agilent, Santa Clara, CA). The tar-
geted panel (Agilent) was constructed, containing all the regions with the mutations
identified in the WES from these seven cases. The protein coding regions of 15
pancreatic cancer driver genes (APC, ATM, BRAF, CDKN2A, CTNNB1, GNAS,
KRAS, MAP2K4, PIK3CA, PTEN, RNF43, SMAD4, STK11, TGFBR2, TP53) were also
included in the targeted panel12. Library preparation was performed using the Agilent
Sure SelectXT Target Enrichment System (Agilent) following the manufacturer’s
instructions with the following modifications: genomic DNA was sheared prior to
library preparation (see above). In addition, half of the volume of capture library was
used per reaction, and supplemented with water. Finally, both pre- and post-capture
PCR cycle number was increased by 0 or 1 for DNA inputs of 200 ng or 50–100 ng,
respectively. Paired-end sequencing was performed using the Illumina MiSeq (Illu-
mina, San Diego, CA).

Somatic mutation identification from targeted sequencing data. Samples with
an average sequencing depth of >150× in the targeted regions were included for
further analysis. Mutations were identified by Strelka, specifying the union of
mutations found in the samples of the each patient as input for a second round of
analysis40. This approach yielded mutation metrics (reference and alternate read
counts) across all samples from each patient. Only mutations identified in the
whole exome data of each patient or mutations found in the 15 driver genes that
were fully sequenced were considered for further analysis. Newly discovered
mutations in the fully sequenced genes were visually inspected in IGV.

Integrated mutation analysis. The following criteria were applied to establish
presence or absence of mutations in each analyzed sample profiled by whole exome
or targeted sequencing, which subsequently informed the phylogenetic analysis. To
start, the median depth of coverage over the capture region was calculated for each
sample. The mutated loci selected for analysis in each patient were required to have
a sequencing depth of coverage exceeding 20% of the median coverage of the
sample, in all sequenced samples of the patient. This strategy enabled exclusion of
loci where insufficient or inconsistent capture efficiency might restrict the power to
detect mutations. In a whole exome sequenced samples, a minimum mutant allele
fraction of 10% and five mutant reads was used to define mutation presence
(primary mutation calls). However, our analysis of tumor purity revealed a marked
difference between the level of normal contamination in precursor and cancer
lesions. Given that reduced tumor purity results in lower levels of mutant allele
fraction and mutant read counts, for mutations marked as present in at least one
sample of each patient, a minimum of two mutant read counts was deemed suf-
ficient to call the mutation present in a whole exome sequenced samples (secondary
mutation calls). In samples analyzed by targeted sequencing, a minimum mutant
allele fraction of 5% and a sample-specific minimum mutant read count were
applied to mark a mutation as present. The lowered mutant allele fraction was
applied to take advantage of the fact that the higher depth of coverage in targeted
sequencing can allow sensitive mutation detection at lower MAF levels without
compromising accuracy. The sample-specific minimum mutant read count was
obtained by scaling the value 5 (threshold used for whole exome sequenced sam-
ple), by the ratio of the median coverage of the targeted sample to the average
median coverage of the whole exome samples of that patient. Increasing the
minimum required value for the mutant read count helped avoid false positive calls
due to sequencing errors at increasingly high levels of coverage.

Copy number evaluation. In samples analyzed by whole exome sequencing, we
applied FACETS (v0.5.14) to determine the tumor purity and ploidy of the sample,
as well as allele-specific copy number for regions across the genome42. In each
tumor sample, we investigated focal copy number aberrations (focal CNAs) by
focusing on genomic regions with length <3Mb where the estimated copy number
was at zero (homozygous deletion), or was greater than or equal to three times the
estimated ploidy of the sample (focal amplifications). We filtered the focal copy
number aberrations to those that passed the visual review in the following cate-
gories: (1) In samples with tumor purity of 30% or above, any aberrations affecting
the 15 driver genes frequently mutated in pancreatic cancer regardless of their
estimated cancer cell fraction were reviewed. In addition, we reviewed other focal
CNAs with cancer cell fraction of 75% or above (likely clonal). (2) In samples with
tumor purity below 30%, we reviewed all changes affecting an in-house set of 195
cancer driver genes if their estimated cancer cell fraction was 75% or above. Finally,
we visually inspected each detected focal CNA in the other whole exome sequenced
samples from the same individual to enable recovery of potentially false negative
calls due to technical issues. This step allowed us to use focal CNAs as an additional
class of features in phylogenetic analysis.

In whole exome sequenced samples, the allele specific copy number values
estimated by FACETs were used to determine whether a locus harboring a
somatic mutation has undergone LOH, as indicated by minor copy number of
zero. In seven cases where a number of lesions were profiled by targeted
sequencing, the small size of the panel (~185 kb) prohibited analysis by
conventional tools. Therefore, we applied a custom analysis pipeline to evaluate
the copy number status of the 15 driver genes whose coding sequence was fully
covered by the panel as follows. First, the base level depth of coverage for all
positions on the panel were calculated and summarized by taking the median
across each interval on the panel. Next, these values were then normalized by
the median of the coverage for all the intervals on the panel, and corrected for
GC content. The resulting copy ratio values were aggregated for each driver
gene by taking the median of all corresponding genomic intervals. Finally,
homozygous deletion was defined as a copy ratio value below −1.25 in
log2 scale (using a 0.25 margin of error to allow differentiation from
hemizygous deletion), and focal amplification was defined as a copy ratio value
exceeding 1.6 in log2 scale (corresponding to copy number 6 or above in a
largely diploid genome).

Genome-wide assessment of allelic imbalance and LOH. A comparative ana-
lysis of LOH across the tumor samples of each patient was performed to identify
structural alterations occurring in the course of tumor evolution as described
previously32. Given the difference in the breadth of genome coverage in whole
exome and targeted sequenced samples, the number of informative loci
(germline heterozygous SNPs) widely varies between the two approaches.
Therefore, our analysis started by evaluation of LOH in whole exome samples
and was later extended to targeted samples in regions were SNPs with sufficient
coverage were available in targeted sequencing data. Circular binary segmenta-
tion was applied to the minor allele frequency (mAF) of germline heterozygous
SNPs in each whole exome sequenced sample to determine genomic region with
a constant level of allelic imbalance43. In each sample, a difference of 0.1 between
the segment mAF of tumor and matched normal samples was required to label a
region as harboring LOH. Across genomic segments with lengths exceeding 10
Mb and overlapping at least 20 SNPs, the minimum of segmental mAF was
recorded and used as proxy measure reflecting the purity of the tumor sample.
The confidence in LOH calls for each segment was determined by comparison of
the segment mAF with the minimum sample-level mAF and reported in three
tiers: (1) high confidence tier: segment mAF is within 0.1 distance of minimum
sample-level (2) intermediate confidence tier: segment mAF distance to mini-
mum sample-level maf is in 0.1–0.2 range (3) low confidence tier: segment mAF
exceeds the minimum sample-level mAF by at least 0.2. Next, the union of the
genomic coordinates for segment breakpoints across all whole exome sequenced
samples of each patient was derived and the segmental mAF and the number
informative SNPs in each sample was calculated in the intervals defined by each
pair of consecutive breakpoints (patient-level segments). The resulting segments
were filtered to those spanning a minimum of 10 Mb, overlapping 20 informative
SNPs, and belonging to the high confidence LOH tier in at least one sample of
the patient. The segments passing the above filters were categorized into two
sets: those uniformly present across all, and those differentially present in a
subset of whole exome sequenced samples. To increase the specificity, the latter
set was further narrowed down to the set where there was a minimum difference
of 0.1 between the segmental mAF of samples with and without LOH. To avoid
overestimation of the number of independent structural alterations, LOH seg-
ments with boundaries within a 5 Mb window and identical LOH calls across all
samples analyzed were merged together.

This analysis was extended to include targeted sequenced samples as follows.
First, the number of reference and alternate alleles at each germline heterozygous
SNP were determined and the SNPs were filtered to those with minimum distinct
coverage of 20×. For each segment, the count and average mAF of the overlapping
SNPs were calculated. LOH of each candidate segment from whole exome analysis
was determined using the criteria described above, and segments with LOH were
classified into the three confidence tiers. This approach yielded a candidate set of
LOH changes which can be used in conjunction with somatic mutations to inform
the phylogenetic analysis. Moreover, the LOH status across the genome can be used
to annotate mutations in each sample, and highlight cases where the absence of
mutation in a sample is due to structural alterations as opposed to intra-tumoral
heterogeneity across the samples.

Phylogenetic analysis. To derive a parsimonious description of tumor evolution
in each patient, the set of somatic alterations (mutations, LOH changes, focal
CNAs) identified was first represented as binary matrix reflecting their presence
in each analyzed sample. The unique patterns of presence/absence observed
across samples of each patient were determined and used to define alteration
clusters. These clusters comprise of the entire set of alterations with a common
pattern of presence across the samples. To avoid spurious assignment of singular
alterations to individual clusters due to false positive or negative calls, the initial
set of clusters were filtered to those with at least two alterations. The remaining
set of alterations belonging to singleton clusters were reviewed to determine
whether they can be merged with any of the existing clusters, by considering the
quality of mutation or LOH calls in samples where they differed; i.e., the distance
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of mutation/LOH change metrics from the thresholds used to establish the calls
and evaluating the possibility of mutation loss due to LOH of the mutated loci
and copy number loss. At this point, the presence pattern of each cluster was
assumed to represent that of all its constituent mutations and was used to correct
any erroneous calls identified through the review process. In 13 patients where
all samples were whole exome sequenced and allele-specific copy number was
uniformly available across all the samples, mutations where the absence in subset
of samples could be explained by either copy number loss or intra-tumoral
heterogeneity were excluded from phylogenetic analysis to avoid ambiguity.

Given the focus of the current study on evaluation of heterogeneity and
evolution among lesions in each patient and not the clonal heterogeneity within
each lesion, the genotype of cancer cells within each lesion was assumed to be
uniform and defined by the presence of alterations identified. However, in cases
where a subset of samples are defined by co-existence of two or more clonal
populations, such an assumption will result in inaccurate phylogenetic
reconstruction on the level of samples as the mixed samples cannot be represented
by a unique genotype. Therefore, we sought to identify cases with possible clonal
mixing and applied a correction method inspired by one of conceptual framework
of SCHISM (v1.1.2) as follows44. First we evaluated all pairs of mutation clusters
and identified the subset where neither of the two members of the pair can be
ancestral to the other in the phylogenetic tree; i.e., the set of samples harboring
each member of the pair are not nested within each other. Such pairs indicate
mutation clusters acquired on distinct branches of the phylogenetic tree, and
should not co-occur in any tumor samples in absence of clonal mixing. The set of
mutation cluster pairs (ai, bi) is narrowed down such that no potential ancestor of
ai is present with bi as a pair in the set and vice versa. Next, the set is further filtered
down to mutation cluster pairs that do co-occur with each other in at least one
tumor sample. Finally, any tumor sample harboring both members of such a
mutation cluster pair is represented as two distinct populations of cancer cells
(subclones) each defined by the presence of one member of the pair and the
absence of the other and its potential descendants (mutation clusters present in a
subset of samples where the original cluster is present).

The binary matrix resulting from the analysis above were used as inputs to the
maximum parsimony phylogeny module (pars) in PHYLIP (v3.695, http://
evolution.genetics.washington. edu/phylip/), and the resulting phylogenetic trees
were visualized using the ggtree (v1.4.11) module in R.

Analysis of timing of malignant progression. Our sampling model for the
number of additional mutations acquired in PDAC sample i is Poisson with mean
θi. The average number of mutations θi can be factored as the product of the
mutation rate μ (assumed to be the same for all patients) and the number of years
Ti during which the yi mutations accumulated. The second stage of the model
posits a Gamma sampling distribution for the timing between the birth of the high-
grade IPMN and the PDAC. Finally, we use diffuse priors for the shape and rate
parameters of the Gamma. The model implemented in JAGS version 4.3.0 is

yi � PoissonðθiÞ
θi ¼ μTi

Ti � Gammaða; bÞ
a ¼ 1þm � b

b ¼ mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 4 � s2p

2s2

m � Uniformð0; 100Þ
s � Uniformð0; 100Þ;

where m and s correspond to the mode and standard deviation of the gamma prior
for T. As the mutation rate μ is not known, we implemented this model for a range
of plausible values (1 mutation/year–10 mutations/year).

Statistics and reproducibility. All neoplastic samples were sequenced once:
through whole exome sequencing or through targeted sequencing. In cases with
both whole exome and targeted sequenced, normal samples were sequenced both
with the whole exome probes and the targeted probes. Otherwise, normal samples
were sequenced once.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
When permitted by the relevant IRBs (77 samples), whole exome and targeted
sequencing data has been deposited in the European Genome-phenome Archive with
accession EGAS00001004473.

Code availability
Code for the analysis of the timing of malignant progression is available at https://gitlab.
com/cancer-genomx/ipmn-timing.
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