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Transcription Factor RUNX3
Mediates Plasticity of ThGM Cells
Toward Th1 Phenotype
Javad Rasouli 1, Giacomo Casella1, Weifeng Zhang1, Dan Xiao1, Gaurav Kumar2,
Paolo Fortina2,3, Guang-Xian Zhang1, Bogoljub Ciric1 and Abdolmohamad Rostami1*

1 Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States, 2 Sidney Kimmel Cancer Center,
Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States, 3 Department of Translation
and Precision Medicine, Sapienza University, Rome, Italy

GM-CSF-producing T helper (Th) cells play a crucial role in the pathogenesis of
autoimmune diseases such as multiple sclerosis (MS). Recent studies have identified a
distinct population of GM-CSF-producing Th cells, named ThGM cells, that also express
cytokines TNF, IL-2, and IL-3, but lack expression of master transcription factors (TF) and
signature cytokines of commonly recognized Th cell lineages. ThGM cells are highly
encephalitogenic in a mouse model of MS, experimental autoimmune encephalomyelitis
(EAE). Similar to Th17 cells, in response to IL-12, ThGM cells upregulate expression of T-
bet and IFN-g and switch their phenotype to Th1. Here we show that in addition to T-bet,
TF RUNX3 also contributes to the Th1 switch of ThGM cells. T-bet-deficient ThGM cells in
the CNS of mice with EAE had low expression of RUNX3, and knockdown of RUNX3
expression in ThGM cells abrogated the Th1-inducing effect of IL-12. Comparison of
ThGM and Th1 cell transcriptomes showed that ThGM cells expressed a set of TFs known
to inhibit the development of other Th lineages. Lack of expression of lineage-specific
cytokines and TFs by ThGM cells, together with expression of TFs that inhibit the
development of other Th lineages, suggests that ThGM cells are a non-polarized
subset of Th cells with lineage characteristics.

Keywords: ThGM, GM-CSF, RUNX3, T helper plasticity, neuroinflammation

INTRODUCTION

Granulocyte macrophage-colony stimulating factor (GM-CSF) is a pro-inflammatory cytokine that
can be expressed by both immune and tissue-resident cells (1–9). Among immune cells, T helper
(Th) cells are the most abundant source of GM-CSF (2, 10). Recent studies have revealed the crucial
role of GM-CSF-producing Th cells in autoimmune diseases, including in multiple sclerosis (MS)
(11, 12). It is widely accepted that in MS, and in its animal model, experimental autoimmune
encephalomyelitis (EAE), myelin-specific Th cells infiltrate into the CNS and initiate inflammation
by acting on myeloid cells. Infiltrated Th cells are reactivated by CNS antigen-presenting cells
(APCs), in particular, by dendritic cells (DCs) (13–16), and produce pro-inflammatory cytokines
such as GM-CSF, which licenses the inflammatory phenotype of monocytes and monocyte-derived
cells. These inflammatory monocytic cells produce reactive oxygen species (ROS) and reactive
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nitrogen species (RNS) that damage oligodendrocytes and
neurons, leading to demyelination, neuronal loss and
neurologic deficit (17, 18).

GM-CSF is expressed by several subsets of Th cells, including
the newly characterized subset known as ThGM cells. ThGM
cells lack expression of Th lineage-specific cytokines and master
transcription factors (TFs) (19, 20). ThGM cells have been
studied only minimally in health and disease, although their
elevated numbers have been reported in several autoimmune
diseases, including MS (6, 10, 21, 22). It has been shown that
ThGM cells are highly enriched in the cerebrospinal fluid of MS
patients (23). MS patients have increased frequencies of ThGM
cells in their peripheral blood, and immunomodulatory
therapies, such as IFN-b and dimethyl fumarate, normalize
their numbers (6, 10). In mice, ThGM cells can be highly
encephalitogenic in an adoptive EAE model, and they can be
readily identified in the periphery and CNS of mice with EAE
(19). ThGM cells, similar to Th17 cells, have plastic phenotype;
in the CNS of mice with EAE they upregulate T-bet and IFN-g,
and acquire Th1-like phenotype, which notably augments their
encephalitogenicity, as T-bet-deficient ThGM cells have low
capacity to induce EAE (19, 24, 25).

Although it has been well established that ThGM cells adopt
the Th1 phenotype in the CNS of mice with EAE, the mechanism
whereby this phenotype switch occurs has not been elucidated.
Here, we show that IL-12 induces IFN-g expression in ThGM
cells via upregulation of T-bet, both in vivo and in vitro.
Adoptively transferred myelin-specific ThGM cells upregulated
RUNX3 in the CNS of recipient mice in a T-bet-dependent
manner. Knockdown of RUNX3 expression in ThGM cells,
abrogated the phenotype switch upon stimulation with IL-12.
We also compared the transcriptomes of both human and mouse
ThGM cells with Th1 cells and identified a set of TFs
predominantly expressed by ThGM cells that possibly directs
the development of their unique phenotype.

RESULTS

IL-12 Induces ThGM to Th1 Phenotype
Switch In Vitro and in EAE
We have shown that ThGM cells acquire Th1 phenotype in the
CNS of mice with EAE (19). To investigate a potential role of IL-
12 in this phenotype switch, we first differentiated naive CD4+ T
cells to ThGM cells with IL-1b and blocking antibodies against
IFN-g and IL-4. ThGM cells were then re-activated in the
presence of IL-12. IL-12 induced notable IFN-g and T-bet
expression in ThGM cells, compared to ThGM cells reactivated
without addition of IL-12, which expressed less T-bet and little
IFN-g (Figures 1A, B). Next, we tested whether IL-12 induces T-
bet expression in ThGM cells in vivo. CD4+ T cells fromWT and
Il12rb2-/- mice were transferred into Rag1-/- mice, which were
then immunized for EAE induction. At the peak of disease,
proportions of GM-CSF+ WT and Il12rb2-/- CD4+ T cells in the
spleen were similar (Figures 1C, D), while the frequencies of
GM-CSF+ Il12rb2-/- cells in the CNS were somewhat reduced

compared to WT cells (Figure 1D). The percentages of GM-
CSF+ Il12rb2-/- Th1 cells were reduced in both the spleen and
CNS, whereas the frequencies of Il12rb2-/- ThGM (GM-
CSF+IFN-g-IL-17A-) cells (and Th17 cells) were increased
compared to WT T cells (Figures 1C, E). The reduction in T-
bet expression by Il12rb2-/- Th cells was not limited to a
particular subset, as all GM-CSF+ Th cells had reduced
numbers of T-bet+ cells (Figures 1E, F). These results show
that IL-12 signaling induces Th1 phenotype in ThGM cells by
upregulation of T-bet expression, both in vitro and in vivo.

T-Bet-Induced RUNX3 Is Required for
Phenotype Switch From ThGM to Th1
It has been shown that IL-12 induces Th1 phenotype switch in
Th17 cells via induction of expression of RUNX1 and RUNX3 in
a T-bet-dependent manner (26). To test whether these TFs play a
similar role in Th1 phenotype switch of ThGM cells, we
determined their levels in myelin-specific Th cells in adoptive
EAE. ThGM cells were differentiated from naïve CD4+ T cells of
2D2 and 2D2/Tbx21-/- mice and transferred into Rag1-/- mice.
2D2 and 2D2/Tbx21-/- ThGM cells had similar compositions at
the time of transfer, with comparable proportions of GM-CSF+

cells and low frequencies of IFN-g+, IL-17A+, and T-bet+ cells
(Figure 2A). Transferred 2D2 ThGM cells were highly
encephalitogenic, whereas 2D2/Tbx21-/- ThGM cells induced
markedly less severe disease (Figure 2B). 2D2/Tbx21-/- ThGM
cells had decreased expression of RUNX3 compared to 2D2
ThGM cells, whereas RUNX1 expression was not reduced by the
absence of T-bet (Figures 2C, D). To test the hypothesis that
RUNX3 induces IFN-g expression in ThGM cells, we knocked
out RUNX3 expression in 2D2 ThGM cells by using CRISPR/
Cas9 (Figures 3A–C), reducing the proportion of RUNX3+ cells
by approximately 70% (Figure 3D). This resulted in a 50%
decrease in numbers of IFN-g+GM-CSF+ Th cells upon IL-12
stimulation, and notably reduced IFN-g concentrations in cell
culture media (Figure 3E). Taken as a whole, these data show
that T-bet induces RUNX3 expression in ThGM cells, leading to
IFN-g expression.

ThGM Cells Have a Unique
Transcriptome Profile
To characterize ThGM phenotype in detail, we compared the
transcriptome of ThGM cells with that of Th1 cells, in both
mouse and human systems. We chose the comparison with Th1
cells because ThGM cells readily switch to Th1 cells, indicating
that they are perhaps the most similar. Human natural ThGM
cells (CCR4+CCR10+CXCR3-CXCR5-CD25-) were FACS sorted
from peripheral blood memory CD4+ T cells (TM cells;
CD4+CD45RA-) of six healthy donors, and then enriched
to >90% homogeneity by GM-CSF secretion assay-detection kit
(Supplementary Figure 1). Virtually all enriched ThGM cells
expressed GM-CSF, while having low expression of IFN-g, IL-
17A (Figure 4A), IL-4, IL-5, IL-9, and GATA3 (Supplementary
Figure 2). Th1 cells (CCR4-CCR10-CXCR3+CXCR5-CD25-)
were also FACS sorted, and half of Th1 cells were used to
enrich GM-CSF+ Th1 cells using a GM-CSF secretion assay-
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detection kit (Supplementary Figure 1). We next compared the
transcriptomes of ThGM, Th1, and GM-CSF+ Th1 cells using
RNA-seq. 469 genes were differentially expressed, with a 2-fold
difference in ThGM cells with 218 genes being upregulated and
251 genes downregulated (Figure 4B). Among the biological
pathways, five pathways were enriched in ThGM cells that are
mostly involved in immune response, cell migration, and
cytokine interactions (Figure 5A).

We previously showed that both human and mouse ThGM
cells have low expression of the master TFs that direct the
development of established Th lineages (19), suggesting the
possibility that ThGM phenotype is shaped by TFs selectively
expressed in ThGM cells. Further bioinformatics analysis
identified four TFs, TWIST1, MSC, TRERF1, and PPARG
enriched in ThGM cells (Figure 5B). We validated their
differential expression by RT-PCR, flow cytometry, and

determined the kinetics of their expression in vitro
(Figures 5C–E). TWIST1, MSC, and PPARG have been shown
to have inhibitory effects on the development of other Th
lineages by blocking expression of their signature cytokines
and TFs (27–31). This correlates well with negative regulation
of the transcription processes enriched in ThGM cells
(Figure 5A). ThGM cells had low expression of chemokines,
including CCL3, CCL4, CCL5, CCL20, CXCL8, CXCL10, XCL1,
and XCL2 (Figure 5B), but higher expression of CXCR6, a
known marker for the pathogenic Th cell (32). ThGM cells had
some features of tissue resident memory T cells, including higher
expression of CXCR6 and CD103 and lower expression of CD27
(Figures 5B). Low expression of CD27 indicates that ThGM cells
are terminally differentiated (33). These data show that human
ThGM cells have a unique transcriptome and that they express a
specific set of TFs to a greater extent than Th1 cells.

B

C D

E F

A

FIGURE 1 | IL-12 induces T-bet expression in ThGM cells. WT naïve CD4+ T cells were differentiated into ThGM cells in vitro and treated with IL-12 in the second
stimulation. (A) Representative flow cytometry dot plots showing GM-CSF, IFN-g, and T-bet expression by ThGM cells after IL-12 treatment. (B) Proportions (%) of Th1-
like cells after IL-12 treatment (left graph). Mean fluorescent intensity (MFI) of T-bet expression after IL-12 treatment (right graph). (C) WT (CD45.1) and Il12rb2-/- (CD45.2)
CD4+ T cells were transferred into Rag1-/- mice (n = 8). Recipient mice were immunized for EAE induction, and cells obtained from the spleen and CNS were analyzed at
the peak of disease. Representative flow cytometry dot plots showing GM-CSF, IFN-g, and IL-17A expression by WT and Il12rb2-/- CD4+ T cells in the spleen of mice
with EAE. (D) Proportions (%) of GM-CSF+ cells among WT and Il12rb2-/- CD4+ T cells analyzed in the spleen and CNS mice with EAE. Proportions (%) of different Th
lineages in WT and Il12rb2-/- GM-CSF+CD4+ T cells analyzed in (D). (E) Representative histograms showing T-bet expression by different Th lineages in WT and Il12rb2-/-

GM-CSF+CD4+ in the CNS. (F) MFI for T-bet expression by different Th lineages in WT and Il12rb2-/- GM-CSF+CD4+ in the spleen and CNS. Data shown are mean ±
SEM. P-values were calculated using unpaired Student’s t-test (A, B) and paired Student’s t-test with Bonferroni’s multiple comparison (C–F); *p < 0.05, **p < 0.01, ***p
< 0.001, NS, not significant.
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To characterize the mouse ThGM transcriptome, we
differentiated naïve CD4+ T cells from 2D2 mice into ThGM
and Th1 cells (Figure 6A) and collected their RNA at several
time points (4-72 h) post- activation. We identified 954 genes
that were upregulated in ThGM cells at different time points,
while 358 genes were significantly more expressed by Th1 cells
(Figures 6C, D). Unlike in the human system, in which ThGM
and Th1 cells had similar levels of GM-CSF expression, mouse
ThGM cells had significantly higher expression of GM-CSF than
Th1 cells (Figures 6A, B). Next, we compared transcriptomes of
human and mouse ThGM cells in order to identify commonly
expressed genes between them. We compared human ThGM-
specific genes with those selectively expressed in mouse ThGM
cells at different time points. Mouse and human ThGM cells both
had high expression of PPARG, TRERF1, LEF1, CCR4, CCR8,
LPAR6, ITGAE, ITGB7, TNFSF11, TNFSF8, and TNFSF4
(Figures 6E–G).

DISCUSSION

Our results suggest that ThGM cells require IL-12/T-bet/RUNX3
axis for switching to Th1-like cells (ex-ThGM cells) and
becoming encephalitogenic. ThGM cells, similar to Th17 cells
(24, 25), upregulate T-bet and IFN-g expression and acquire
Th1-like phenotype in the CNS of mice with EAE. Given that
IFN-g plays an overall suppressive role in the development of
EAE (34, 35), it is unlikely that IFN-g substantially contributes to
the encephalitogenicity of ex-ThGM cells. In the parallel case
with Th17 cells (and Th1 cells as well), it has been confirmed that

IFN-g is not required for their typical encephalitogenicity (36),
whereas T-bet is (37). Tbx21-/- ThGM cells could be less
encephalitogenic than WT ThGM cells simply because of their
poor survival upon transfer into recipient mice. However, a fairly
large population of transferred Tbx21-/- ThGM cells persisted in
the spleen of recipient mice, suggesting that their survival is not
affected by T-bet deficiency. In addition, transferred Tbx21-/-

ThGM cells re-isolated from the spleen expressed high levels of
GM-CSF, demonstrating that they are fully viable and responsive
(19). It is therefore unlikely that low encephalitogenicity of
Tbx21-/- ThGM cells could be explained by their low survival
rate. Furthermore, unlike adoptively transferred WT ThGM
cells, which infiltrated the CNS of recipient mice in appreciable
numbers, Tbx21-/- ThGM cells were largely absent from the CNS
(19). These findings show that Tbx21-/- ThGM cells fail to
accumulate in the CNS, and it remains unknown, which
feature(s), induced by T-bet expression, endows ex-ThGM and
ex-Th17 cells with enhanced encephalitogenicity compared to
their ThGM and Th17 precursors.

Ex-ThGM cells had high expression of RUNX1 and RUNX3
in the CNS of mice with adoptive EAE, but only expression of
RUNX3 was T-bet-dependent. RUNX3 has been shown to
interact directly with T-bet to induce IFN-g expression in Th1
cells (38). RUNX3 was also required for IFN-g expression in ex-
ThGM cells, as its knockout precluded IFN-g expression in these
cells even in the presence of T-bet. On the other hand, Th17 cells
require both RUNX1 and RUNX3 to become encephalitogenic
ex-Th17 cells (26). RUNX1 plays a crucial role in the
differentiation of Th17 cells by enhancing the expression and
transcriptional activity of RORgt (39). Enrichment of RUNX1 in

B

C D

A

FIGURE 2 | ThGM cells upregulate RUNX3 in the CNS of mice with adoptive EAE in a T-bet-dependent manner. WT and Tbx21-/- 2D2 naïve CD4+ T cells were
differentiated into ThGM cells and transferred into Rag1-/- mice (n = 10 mice/group). (A) Representative flow cytometry dot plots showing GM-CSF, IFN-g, IL-17A,
and T-bet expression by WT and Tbx21-/- ThGM cells before adoptive transfer. (B) Clinical severity score of Rag1-/- mice with adoptive EAE. (C) Representative
histogram of T-bet, RUNX3, and RUNX1 expression by WT and Tbx21-/- ThGM cells from the CNS of Rag1-/- mice with adoptive EAE. (D) MFI for T-bet, RUNX1,
and RUNX3 in WT and Tbx21-/- ThGM cells from the CNS of Rag1-/- mice with adoptive EAE. Data shown are mean ± SEM. For EAE, p-values were calculated
using two-way ANOVA with Bonferroni’s multiple comparison correction. Parametric datasets were analyzed using unpaired Student’s t-test with Bonferroni’s
correction; **p < 0.01, ***p < 0.001, NS, not significant.
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GM-CSF-producing Th cells and its role in promoting GM-CSF
expression by binding to the GM-CSF promoter and the
inducible enhancer (40, 41) suggest that RUNX1 may
contribute to GM-CSF production by ThGM cells rather than
their plasticity. This premise is strengthened by the fact that the
absence of T-bet did not alter the expression of RUNX1 and GM-
CSF in ThGM cells, whereas lack of T-bet precluded RUNX3
expression and transition of Tbx21-/- ThGM cells to ex-
ThGM phenotype.

We also show that IL-12 induces T-bet and RUNX3
expression in ThGM cells. However, upregulation of T-bet in
ThGM cells in vivo is not fully dependent on IL-12 signaling, as
a substantial portion of Il12rb2-/- ThGM cells expressed T-bet,
indicating that other signals also induce T-bet expression. In
addition to IL-12, other cytokines such as IL-7, IL-23, IFN-g,
and IL-18 can also induce IFN-g expression in Th cells (24, 42–
46). Even though both IFN-g and IL-18 are known to induce
IFN-g expression in T cells (45, 46), they did not have a

significant effect on the plasticity of ThGM cells in vitro (19).
Although using IL-7 to polarize both human and mouse ThGM
cells induced a great portion of IFN-g+ Th cells in them (19),
studying the role of IL-7 signaling on ThGM plasticity in vivo
can be challenging due to the prominent role of IL-7 in survival
and proliferation of T cells (47–49). IL-23 is another cytokine
that has been shown to induce Th1-like phenotype in Th17 cells
(1). Additionally, a recent study using GM-CSF fate reporter
mice showed that the lack of IL-23 signaling in GM-CSF-
producing Th cells reduced the number of GM-CSF+IFN-g+

Th cells in the CNS of mice with EAE (50). We previously
showed that IL-23 did not induce Th1 phenotype in either
human or mouse ThGM cells in vitro, which could have been
due to low expression of IL-23 receptors by ThGM cells
compared to Th17 cells (19). Even though IL-23 did not
upregulate IFN-g in expression in ThGM cells in vitro, it
would be worth determining whether IL-23 has an effect on
GM-CSF expression and plasticity of ThGM cells in vivo.

B

C

D

E

A

FIGURE 3 | ThGM cells require RUNX3 for their plasticity toward Th1-like phenotype. (A) Schematic showing structure of plasmid that carries mRunx3 sgRNA, Cas9,
and mScarlet under CMV promoter. (B) Schematic showing targets of sgRNAs and detection primers on the genomic DNA of mRunx3. (C) N2A-Cas9 cell line was
transfected with each mRunx3 sgRNA expressing plasmids; the efficiency of knockouts was analyzed by T7E1 assay. (D) RUNX3 expression in ThGM cells was knocked
out using CRISPR/Cas9 and remaining levels of RUNX3 in ThGMDRUNX3 cells were determined by flow cytometry. (E) ThGM and ThGMDRUNX3 cells were cultured with IL-
12 in the second stimulation and IFN-g concentration in cell culture supernatants was measured by ELISA. These experiments were conducted three times with similar
outcomes. Data shown are mean ± SEM. P-values were calculated using unpaired Student’s t-test with Bonferroni’s correction; **p < 0.01, ***p < 0.001.
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Our RNA-seq analyses of human and mouse ThGM versus
Th1 cells have failed to identify a unique TF in ThGM cells that
could be considered a candidate for the master TF that directs the
development of ThGM cells. However, we found a set of TFs
overexpressed in ThGM cells compared to Th1 cells and two of
them (PPARG and TRERF1) were differentially expressed by
both mouse and human ThGM cells. Based on the known
functions of these four TFs in CD4+ T cells, which is blocking
Th1, Th2, Th17, iTreg, and Tfh cell development (28–31, 51), we
propose that ThGM cells are de facto a “non-polarized” lineage.
This lack of polarization to a particular Th lineage is likely a
result of insufficient strength of polarizing signals required to
induce a particular Th phenotype (e.g. Th1) in recently activated
naïve CD4+ T cells. In this view, it is plausible that no single
master TF directs the development of ThGM phenotype; it
develops automatically when extracellular polarizing signals
(e.g. cytokines) fail to initiate a particular polarizing program
in CD4+ T cells with sufficient intensity to override the effects of
TFs that maintain “non-polarized” phenotype of ThGM cells. IL-
6 and IL-7 in the human system, and IL-1b in the mouse system,

can potentially be viewed as ThGM-polarizing cytokines, as they
increase proportions of GM-CSF+ ThGM cells. However, it is
more likely that they simply enhance GM-CSF expression (19),
as they also do in other lineages, but are not in themselves
ThGM-polarizing signals. GM-CSF is not a permanent trait of
Th cells, and ThGM cells, like other Th cells, eventually cease
GM-CSF expression. These “GM-CSF- ThGM” cells continued
to express other cytokines such as IL-2, IL-3, and TNF. This is
similar to GM-CSF expression by other Th lineages, such as Th1,
Th2, and Th17, in which some cells belonging to each lineage
express GM-CSF, while others do not, either because they never
expressed it or eventually ceased its expression (19). This concept
agrees with a recent study with GM-CSF fate reporter mice,
showing a high similarity of the epigenetic landscape of GM-
CSF-producing and ex-GM-CSF TM cells in the CNS of EAE
mice. These cells differed only in GM-CSF expression while
sharing a highly similar transcriptome (50).

In other words, insufficiently potent polarizing signals (e.g.
IL-12, IL-4, TGF-b) received by recently activated naïve CD4+ T
cells fail to induce expression of polarizing master TFs (e.g. T-

B

A

FIGURE 4 | ThGM cells have a unique transcriptome profile. Human ThGM, Th1, and GM-CSF+Th1 cells were isolated from PB TM cells using a combination of FACS
sorting and cytokine capture assay (n=6 subjects). RNA was extracted and analyzed using RNA-seq analysis. (A) Representative flow cytometry dot plots showing GM-
CSF, IFN-g, IL-17A expression by total TM cells before separation, and of isolated Th1, GM-CSF+ Th1, and ThGM cells isolated from PB of healthy donors. (B) Volcano
plots showing 469 differentially expressed genes by Th1, GM-CSF+ Th1, and ThGM cells with 218 gense being upregulated and 251 genes downregulated by ThGM
cells in comparison to both Th1 and GM-CSF+Th1 cells.
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FIGURE 5 | ThGM cells express a unique set of transcription factors. Human ThGM, Th1, and GM-CSF+Th1 (Th1-GM+) cells were isolated from total TM
cells of PB of healthy donors (n = 6 subjects) using a combination of FACS sorting and cytokine capture assay. RNA was extracted and analyzed using
RNA-seq analysis. (A) Bar-graph showing enriched pathways for ThGM-specific genes. (B) Heatmap showing expression levels of ThGM- and Th1-specific
TFs, chemokines, and surface molecules. (C) RNA expression of TWIST1, TRERF1, MSC, and PPARG by FACS-sorted naïve CD4+, Th1, and ThGM cells
were determined by RT-PCR (n = 4 subjects). (D) Representative flow cytometry histograms for TWIST1, TRERF1, MSC, and PPARG expression by FACS-
sorted naïve CD4+, Th1, and ThGM cells. (E) Human naïve CD4+ T cells were differentiated into ThGM cells and RNA was extracted at several time points.
mRNA levels for TWIST1, TRERF1, MSC, and PPARG were quantified by RT-PCR. Data shown are mean ± SEM. P-values were calculated using unpaired
Student’s t-test with Bonferroni’s correction; *p < 0.05, **p < 0.01.
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bet, GATA3, FoxP3) in them, leading to the development of non-
polarized ThGM phenotype. However, this does not mean that
the phenotype of ThGM cells is not distinct, stable, or that
ThGM cells do not behave as a lineage. This concept is a
departure from the current view that all Th cells are polarized
to acquire specialized functions, such as fighting a particular class
of pathogens (e.g. Th1 for viruses). It introduces a concept of
non-specialized “generic” Th cells, which upon re-activation
secrete large quantities of basic inflammatory mediators, GM-
CSF, IL-2, and TNF, boosting in that way overall immunity
against pathogens. Hence, even though ThGM cells do not
produce cytokines specialized for clearance of a particular
type of pathogen (e.g. IFN-g), this does not mean that they
are functionally irrelevant, as their capacity to induce
EAE demonstrates.

The concept of non-polarized Th cells is not necessarily new.
The term Th0 cells has been in use since 1989 (52) but its
meaning has been arbitrary. It was initially introduced to
designate Th cell clones not conforming to definitions of Th1
and Th2 cells. The Th0 designation has also been used for Th
cells that develop in vitro in non-polarizing conditions, even if a
substantial portion of them were IFN-g-producing Th1 cells.
Alternatively, Th0 cells were considered to be recently activated,

immature, effector CD4+ T cells with a transient phenotype that
within a day or so progresses into either Th1 or Th2 phenotype.
However, recent findings are consistent with the view that
ThGM cells are Th0 cells but with stable phenotype, at least to
the extent that the phenotype of Th17 cells is stable. Several
important questions about ThGM cells and their relationship
with Th1 cells in vivo remain unanswered: 1. Should GM-CSF-

Th cells with overall phenotype similar to GM-CSF+ ThGM cell
phenotype be viewed as GM-CSF- ThGM cells? GM-CSF is not a
Th lineage-specific cytokine, and its expression is not permanent,
as most Th cells that express it eventually stop its expression (19).
Hence, it is possible that some “ThGM-like” cells never expressed
it, or stopped expressing it, without other major changes in their
phenotype; 2. What portion of Th1 cells in vivo originate from
ThGM cells that at some point switched their phenotype?
Findings suggest that the majority of Th1 cells in the CNS of
mice with EAE are ex-Th17 cells (24). It is therefore possible that
in certain contexts a substantial portion of Th1 cells originate
from ThGM cells; 3. How can we rigorously identify ThGM cells
ex vivo, as a portion of them could be cells of other Th lineages
that stopped expression of lineage-specific markers, such as IFN-
g; 4. What is the typical role of ThGM cells in immunity? Our
knowledge thus far suggests that they are not specialized for a

A
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E F G

C

FIGURE 6 | Mouse and human ThGM cells have similar transcriptomes. Mouse 2D2 naïve CD4+ T cells were differentiated into ThGM and Th1 cells, their RNA was
extracted at different time points and analyzed by RNA-seq. (A) Representaive flow cytometry plots showing GM-CSF and IFN-g expression by mouse ThGM and
Th1 cells. (B) FPKM at different time points were normalized relative to FPKM of naive CD4+ T cells (0 h). Graphs showing fold change expression of GM-CSF and
IFN-g by Th1 and ThGM cells. Heatmaps for ThGM (C) and Th1 (D) -specific genes at different time points. (E) Differentially expressed genes by mouse and human
ThGM and Th1 cells were compared. Heatmap showing expression of commonly expressed genes between in vitro-polarized mouse Th1 and ThGM, and natural
human ThGM, GM-CSF+Th1, and Th1 cells. (F) Heatmap showing expression of commonly expressed genes between in vitro-polarized mouse and natural human
ThGM and (G) Th1 cells. Data shown are mean ± SEM.
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particular type of pathogen, but rather enhance immune
responses in general by abundant expression of GM-CSF, TNF,
IL-2 and FASL, which, together, potently activate APCs and
induce IL-1b secretion from them (53).

In summary, our results show that ThGM plasticity toward
Th1-like phenotype is required for their pathogenicity. IL-12 in a
T-bet-dependent manner induces RUNX3 expression in ThGM
cells resulting in their transition to Th1-like phenotype. ThGM
cells have unique transcriptome, and their TF profile suggests
that ThGM cells are a non-polarized Th lineage with a relatively
stable phenotype.

MATERIALS AND METHODS

Mice and Rag1-/- EAE Induction
CD45.1, 2D2, Tbx21-/-, Il12rb2-/- and Rag1-/- mice were
purchased from Jackson Laboratory (Bar Harbor, ME, USA).
2D2/Tbx21-/- mice were generated by crossing 2D2 mice with
Tbx21-/- mice and used for adoptive EAE experiments. All
experimental procedures were performed with the approval of
the Institutional Animal Care and Use Committee of Thomas
Jefferson University.

To study the role of Il12rb2-/- in ThGM development, total
CD4+ T cells from WT and Il12rb2-/- mice were purified using a
CD4 isolation kit (Miltenyi Biotec). Three days before
immunization, 1x107 CD4+ T cells from WT and Il12rb2-/- mice
at a 1:1 ratio were transferred to Rag1-/- recipient mice. Rag1-/-

mice were immunized by subcutaneous injection of 200 mg
MOG35-55 (Genscript, CA, USA) in CFA. Mice received 200 ng
of pertussis toxin (Sigma-Aldrich) on days 0 and 2 p.i. and were
scored daily for clinical signs as follows: 0, no sign of clinical
disease; 1, paresis of the tail; 2, paresis of one hind limb; 3, paresis
of both hind limbs; 4, paresis of the abdomen; 5, moribund/death.

Mouse Th Differentiation
Naïve (CD62LhiCD44-CD25-CD4+) T cells from 2D2 mice were
FACS sorted and differentiated into ThGM cells as previously
described (19). Briefly, naïve T cells were cultured at a ratio of 1:4
with T cell-depleted splenocytes at a density of 1x106 cell/ml.
Naïve T cells were activated with MOG35-55 peptide (25 mg/ml)
for 72 h in different Th differentiation conditions. ThGM: IL-1b
(10 ng/ml), anti-IFN-g (10 mg/ml), anti-IL-12 (10 mg/ml), anti-
IL-4 (5 mg/ml) antibodies. Th1: IL-12 (20 ng/ml). For the second
stimulation ThGM cells were reactivated with anti-CD3/28 (2
mg/ml) in the presence or absence of IL-12 (20 ng/ml).

Adoptive Transfer EAE
To perform the adoptive transfer, 2D2 and 2D2/Tbx21-/- naïve
CD4+ T cells were activated and differentiated into ThGM cells as
described above. CD4+ T cells were purified using a CD4
isolation kit after the second stimulation (Miltenyi Biotec), and
1x107 cells were intravenously transferred to Rag1-/- mice and
were scored daily for clinical signs. Mice were sacrificed at
disease peak (day 20 post transfer) and mononuclear cells in
the CNS and spleen were analyzed by flow cytometry.

Isolation of CNS Mononuclear Cells
CNS mononuclear cells were isolated as previously described
(54). In brief, Rag1-/- mice with adoptive EAE were anesthetized
and perfused with ice-cold PBS, and brains and spinal cords were
collected. The CNS was digested in Liberase (Sigma-Aldrich) for
30 min at 37°C, then mechanically dissociated and mononuclear
cells were isolated using Percoll gradient (GE Healthcare).

Flow Cytometry and Intracellular Staining
For intracellular cytokine staining, cells isolated either from EAE
mice or culture were activated with 50 ng/ml Phorbol 12-
myristate 13-acetate (PMA) (Sigma-Aldrich), 500 ng/ml
ionomycin (Sigma-Aldrich), and 1 mg/ml of GolgiPlug (BD
Biosciences) for 4 h. Cells were washed and stained with
surface antibodies (Supplementary Table 1). Cells were
washed, fixed and permeabilized with Caltag Fix/Perm reagents
(Invitrogen) following the manufacturer’s instructions. Cells
were then stained with intracellular antibodies as listed in
Supplementary Table 1.

Human samples, similar to mouse, were activated with PMA/
Ionmycin/GolgiPlug, stained with surface and intracellular
antibodies (Supplementary Table 2). Data were acquired on a
FACSAria Fusion (BD Biosciences) and analyzed using FlowJo
software (TreeStar).

RNA-Seq Analysis
To perform bulk RNA-seq on human ThGM cells, total CD4+ T
cells were purified from PBMCs using negative-selection CD4
isolation kit (Miltenyi Biotec). TM cells were then purified from
total CD4+ T cells with negative-selection CD45RA microbeads
(Miltenyi Biotec) according to the manufacturer’s instructions.
TM cells were stained for CD4, CD45RA, CD25, CXCR5,
CXCR3, and CCR4 (Supplementary Table 2). ThGM (CD25-

CXCR5-CXCR3-CCR4+CCR10+) and Th1 cells (CD25-CXCR5-

CXCR3+CCR4-CCR10-) were FACS sorted. GM-CSF+-ThGM
and -Th1 cells were enriched based on their GM-CSF expression
using GM-CSF secretion assay kit (Miltenyi Biotec) according to
the manufacturer’s instructions (Supplementary Figure 1).
Duplicate samples from three donors were FACS sorted and
RNA from three cell types (ThGM, Th1, and GM-CSF+IFN-g+

CD4+ T cells) were extracted using RNeasy Plus Micro
kit (Qiagen).

Bulk RNA-seq analysis was performed on mouse ThGM cells
that developed in vitro. 2D2 naïve CD4+ T cells were
differentiated into ThGM and Th1 cells as described above.
CD4+ T cells were sorted from several time points (0, 4, 8, 16,
24, 48, and 72 h). Biological replicates were used for three out of
six time points (0, 16, and 72 h). RNA from each time point was
extracted using RNeasy Plus Mini kit (Qiagen) according to the
manufacturer’s instructions.

100 ng of total RNA from mouse or human samples was used
to prepare libraries using TruSeq Stranded Total RNA kit
(Illumina, CA, USA) following the manufacturer’s protocol.
The final libraries at the concentration of 4 nM were
sequenced on NextSeq 500 using 75bp paired-end chemistry.
Raw FASTQ sequencing reads were mapped against the
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reference genome of either Homo Sapiens Ensembl version
GRCh38 or Mus musculus Ensembl version GRCm38 utilizing
further information from the gene transfer format (.gtf)
annotation from GENCODE version GRCh38.p12 (for human)
and GRCh38.p12 (for mouse) using RSEM. Total read counts,
and normalized Transcripts Per Million (TPM) were obtained
using RSEM’s calculate-expression function. Beforehand,
differential expression, batch effects or sample heterogeneity
were tested using iSeqQC (https://github.com/gkumar09/
iSeqQC). Differential gene expression was tested using the
DESeq2 package in R/Bioconductor. Genes were considered
differentially expressed (DE) if they had adjusted p ≤ 0.05 and
absolute fold change ≥ 2. All the plots were constructed
using R/Bioconductor.

RT-PCR
RNA was extracted from mouse and human T cells using RNeasy
Plus Mini Kit (Qiagen). cDNA was then converted, and PCR was
performed using the following FAM conjugated primer‐probe
mixtures (Applied Biosystems): Trerf1 (Hs00363301), Twist1
(Hs01675818), Msc (Hs00231955), and Pparg (Hs1115513). Values
were normalized to VIC conjugated GAPDH (Hs02786624) and
compared to control samples.

CRISPR/Cas9 Mediated RUNX3 Knockout
pYX-Asc plasmid was purchased from Dharmacon. pmaxGFP
plasmid was purchased from Lonza. lentiCRISPR v2 was a gift
from Feng Zhang (Addgene plasmid # 52961) and AAV pCAG-
FLEX-mScarlet-WPRE was a gift from Rylan Larsen (Addgene
plasmid # 99280). U6-sgRNA backbone-EFS-Cas9-P2A-
Puromycin cassette was subcloned from LentiCRISPR v2 to
pYX-Asc plasmid. P2A-Puromycin cassette was replaced by
T2A-mScarlet amplified from pCAG-FLEX-mScarlet-WPRE.
EFS promoter was replaced by CMV-IE promoter amplified
from pmaxGFP plasmid. SV40pA was inserted after mScarlet.
The acquired plasmid was named pYX-CRISPR-mScarlet.

Four sgRNAs targeting mouse Runx3 genes were designed by
Benchling and synthesized from IDT (Integrated DNA
Technologies, Inc.) (Supplementary Table 3). sgRNA oligos were
annealed at room temperature and inserted into pYX-CRISPR-
mScarlet to obtain mRunx3 sgRNA expression plasmids. To detect
the cleavage efficiency of mRunx3 sgRNAs, mRunx3 sgRNA
expression plasmids were transfected into the N2A-Cas9 cell line
(Genecopoeia) separately by using lipofectamine 2000 (Invitrogen).
Cells were collected and genomic DNA was extracted 24 h after
transfection. A 569bp fragment flanking the sgRNAs binding sites
was amplified by PCR using detection primers, and then PCR
products were subjected to denaturation and reannealing using a
thermocycler, purified using a Monarch PCR & DNA cleanup kit
(NEB, Ipswich, MA, USA) and digested by T7E1 (T7 Endonuclease
1). Reactions were resolved using 2% TAE agarose gel
electrophoresis. To determine the editing efficiency Each band
was quantified with ImageJ (NIH). To perform genome editing,
naïve CD4+ T cells were differentiated into ThGM cells for 48 h and
transfected with mRunx3 sgRNA2 (5 mg per 1X106 cells) with Neon
transfection system (ThermoFisher Scientific) according to the
manufacturer’s instructions. 24 h later, mScarlet+ ThGM cells

were FACS sorted and reactivated in the presence of IL-12 (20
ng/ml) for another 48 h. RUNX3 expression was quantified by flow
cytometry and cell culture supernatant was collected for
cytokine quantification.

Statistical Analysis
Statistical analysis was performed by GraphPad Prism 9
software. EAE clinical scores were analyzed using Two-way
ANOVA. The paired, two-tailed student t-test was used to
analyze transferred WT and knockout T cells within the same
recipient mouse. The paired, two-tailed student t-test also was
used to analyzed human samples after treatment with cytokines.
Parametric data were analyzed using an unpaired, two-tailed
Student’s t-test. The Bonferroni correction was applied for
adjustment of the significance values for multiple comparisons;
adjusted p ≤ 0.05 was considered significant. Data represent
mean ± SEM.
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Supplementary Figure 1 | Sorting strategies for isolation of ThGM, Th1, and
Th1-GM+ cells. Total CD4+ T cells were purified from PBMCs using negative-
selection CD4 isolation kit. TM cells were then purified from total CD4+ T cells with
negative-selection CD45RA microbeads. TM cells were stained for CD4, CD45RA,

CD25, CXCR5, CXCR3, and CCR4. ThGM (CD25-CXCR5-CXCR3-

CCR4+CCR10+) and Th1 (CD25-CXCR5-CXCR3+CCR4-CCR10-) cells were FACS
sorted. ThGM and GM-CSF+ Th1 cells were enriched based on their GM-CSF
expression using GM-CSF secretion assay kit.

Supplementary Figure 2 | Sorted human ThGM cells do not express Th1, Th2,
and Th9 markers. TM, ThGM, and Th1 cells were FACS-sorted, activated with PMA/
Ionomycin/GolgiPlug and analyzed by flow cytometry. Representative flow
cytometry dot plots showing GM-CSF, IFN-g, IL-4, IL-5, IL-9, IL-13, and GATA3
expression by TM, ThGM and Th1 cells.

Supplementary Table 1 | Mouse flow cytometry antibodies.

Supplementary Table 2 | Human flow cytometry antibodies.

Supplementary Table 3 | Sequences of sgRNAs and detection primers.

REFERENCES

1. El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, et al. The
Encephalitogenicity of T(H)17 Cells Is Dependent on IL-1- and IL-23-
Induced Production of the Cytokine GM-CSF. Nat Immunol (2011) 12
(6):568–75. doi: 10.1038/ni.2031

2. Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D,
Dittel BN. GM-CSF Production by Autoreactive T Cells is Required for the
Activation of Microglial Cells and the Onset of Experimental Autoimmune
Encephalomyelitis. J Immunol (2007) 178(1):39–48. doi: 10.4049/
jimmunol.178.1.39

3. Timoshanko JR, Kitching AR, Semple TJ, Holdsworth SR, Tipping PG.
Granulocyte Macrophage Colony-Stimulating Factor Expression by Both
Renal Parenchymal and Immune Cells Mediates Murine Crescentic
Glomerulonephritis. J Am Soc Nephrol (2005) 16(9):2646–56. doi: 10.1681/
ASN.2004121107

4. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, et al.
Proinflammatory GM-CSF-Producing B Cells in Multiple Sclerosis and B
Cell Depletion Therapy. Sci Transl Med (2015) 7(310):310ra166. doi: 10.1126/
scitranslmed.aab4176

5. Zucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS.
Interleukin 1 Stimulates Fibroblasts to Produce Granulocyte-Macrophage
Colony-Stimulating Activity and Prostaglandin E2. J Clin Invest (1986) 77
(6):1857–63. doi: 10.1172/JCI112512

6. Rasouli J, Ciric B, Imitola J, Gonnella P, Hwang D, Mahajan K, et al.
Expression of GM-CSF in T Cells Is Increased in Multiple Sclerosis and
Suppressed by IFN-Beta Therapy. J Immunol (2015) 194(11):5085–93. doi:
10.4049/jimmunol.1403243

7. Imitola J, Rasouli J, Watanabe F, Mahajan K, Sharan AD, Ciric B, et al.
Elevated Expression of Granulocyte-Macrophage Colony-Stimulating Factor
Receptor in Multiple Sclerosis Lesions. J Neuroimmunol (2018) 317:45–54.
doi: 10.1016/j.jneuroim.2017.12.017

8. Yoshimura S, Thome R, Konno S, Mari ER, Rasouli J, Hwang D, et al. IL-9
Controls Central Nervous System Autoimmunity by Suppressing GM-CSF
Production. J Immunol (2020) 204(3):531–9. doi: 10.4049/jimmunol.
1801113

9. Rasouli J, Casella G, Ishikawa LLW, Thome R, Boehm A, Ertel A, et al. IFN-
Beta Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting
Proinflammatory Cross-Talk Between Monocytes and Th Cells. Front
Immunol (2021) 12:679498. doi: 10.3389/fimmu.2021.679498

10. Galli E, Hartmann FJ, Schreiner B, Ingelfinger F, Arvaniti E, Diebold M, et al.
GM-CSF and CXCR4 Define a T Helper Cell Signature in Multiple Sclerosis.
Nat Med (2019) 25(8):1290–300. doi: 10.1038/s41591-019-0521-4

11. Hamilton JA. GM-CSF in Inflammation. J Exp Med (2020) 217(1). doi:
10.1084/jem.20190945

12. Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in
Inflammation and Autoimmunity. Immunotargets Ther (2020) 9:225–40. doi:
10.2147/ITT.S262566

13. Giles DA, Duncker PC, Wilkinson NM, Washnock-Schmid JM, Segal BM.
CNS-Resident Classical DCs Play a Critical Role in CNS Autoimmune
Disease. J Clin Invest (2018) 128(12):5322–34. doi: 10.1172/JCI123708

14. Mundt S, Mrdjen D, Utz SG, Greter M, Schreiner B, Becher B. Conventional
DCs Sample and Present Myelin Antigens in the Healthy CNS and Allow
Parenchymal T Cell Entry to Initiate Neuroinflammation. Sci Immunol (2019)
4(31). doi: 10.1126/sciimmunol.aau8380

15. Kivisakk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, Tucky B, et al.
Expression of CCR7 in Multiple Sclerosis: Implications for CNS Immunity.
Ann Neurol (2004) 55(5):627–38. doi: 10.1002/ana.20049

16. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL,
et al. Dendritic Cells in Multiple Sclerosis Lesions: Maturation Stage, Myelin
Uptake, and Interaction With Proliferating T Cells. J Neuropathol Exp Neurol
(2006) 65(2):124–41. doi: 10.1093/jnen/65.2.124

17. Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F, Pelczar P, et al.
The Cytokine GM-CSF Drives the Inflammatory Signature of CCR2+
Monocytes and Licenses Autoimmunity. Immunity (2015) 43(3):502–14.
doi: 10.1016/j.immuni.2015.08.010

18. Croxford AL, Spath S, Becher B. GM-CSF in Neuroinflammation: Licensing
Myeloid Cells for Tissue Damage. Trends Immunol (2015) 36(10):651–62. doi:
10.1016/j.it.2015.08.004

19. Rasouli J, Casella G, Yoshimura S, Zhang W, Xiao D, Garifallou J, et al. A
Distinct GM-CSF(+) T Helper Cell Subset Requires T-Bet to Adopt a TH1
Phenotype and Promote Neuroinflammation. Sci Immunol (2020) 5(52). doi:
10.1126/sciimmunol.aba9953

20. Noster R, Riedel R, Mashreghi MF, Radbruch H, Harms L, Haftmann C, et al.
IL-17 and GM-CSF Expression are Antagonistically Regulated by Human T
Helper Cells. Sci Transl Med (2014) 6(241):241ra80. doi: 10.1126/
scitranslmed.3008706

21. Al-Mossawi MH, Chen L, Fang H, Ridley A, De Wit J, Yager N, et al. Unique
Transcriptome Signatures and GM-CSF Expression in Lymphocytes From
Patients With Spondyloarthritis. Nat Commun (2017) 8(1):1510. doi: 10.1038/
s41467-017-01771-2

22. Knoop J, Gavrisan A, Kuehn D, Reinhardt J, Heinrich M, Hippich M, et al.
GM-CSF Producing Autoreactive CD4(+) T Cells in Type 1 Diabetes. Clin
Immunol (2018) 188:23–30. doi: 10.1016/j.clim.2017.12.002

23. Restorick SM, Durant L, Kalra S, Hassan-Smith G, Rathbone E, Douglas MR,
et al. CCR6(+) Th Cells in the Cerebrospinal Fluid of Persons With Multiple
Sclerosis are Dominated by Pathogenic non-Classic Th1 Cells and GM-CSF-
Only-Secreting Th Cells. Brain Behav Immun (2017) 64:71–9. doi: 10.1016/
j.bbi.2017.03.008

24. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, et al. Fate
Mapping of IL-17-Producing T Cells in Inflammatory Responses. Nat
Immunol (2011) 12(3):255–63. doi: 10.1038/ni.1993

25. Kwong B, Rua R, Gao Y, Flickinger J Jr, Wang Y, Kruhlak MJ, et al. T-Bet-
Dependent NKp46(+) Innate Lymphoid Cells Regulate the Onset of TH17-
Induced Neuroinflammation. Nat Immunol (2017) 18(10):1117–27. doi:
10.1038/ni.3816

Rasouli et al. RUNX3 Mediates Plasticity of ThGM to Th1

Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 91258311

https://www.frontiersin.org/articles/10.3389/fimmu.2022.912583/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.912583/full#supplementary-material
https://doi.org/10.1038/ni.2031
https://doi.org/10.4049/jimmunol.178.1.39
https://doi.org/10.4049/jimmunol.178.1.39
https://doi.org/10.1681/ASN.2004121107
https://doi.org/10.1681/ASN.2004121107
https://doi.org/10.1126/scitranslmed.aab4176
https://doi.org/10.1126/scitranslmed.aab4176
https://doi.org/10.1172/JCI112512
https://doi.org/10.4049/jimmunol.1403243
https://doi.org/10.1016/j.jneuroim.2017.12.017
https://doi.org/10.4049/jimmunol.1801113
https://doi.org/10.4049/jimmunol.1801113
https://doi.org/10.3389/fimmu.2021.679498
https://doi.org/10.1038/s41591-019-0521-4
https://doi.org/10.1084/jem.20190945
https://doi.org/10.2147/ITT.S262566
https://doi.org/10.1172/JCI123708
https://doi.org/10.1126/sciimmunol.aau8380
https://doi.org/10.1002/ana.20049
https://doi.org/10.1093/jnen/65.2.124
https://doi.org/10.1016/j.immuni.2015.08.010
https://doi.org/10.1016/j.it.2015.08.004
https://doi.org/10.1126/sciimmunol.aba9953
https://doi.org/10.1126/scitranslmed.3008706
https://doi.org/10.1126/scitranslmed.3008706
https://doi.org/10.1038/s41467-017-01771-2
https://doi.org/10.1038/s41467-017-01771-2
https://doi.org/10.1016/j.clim.2017.12.002
https://doi.org/10.1016/j.bbi.2017.03.008
https://doi.org/10.1016/j.bbi.2017.03.008
https://doi.org/10.1038/ni.1993
https://doi.org/10.1038/ni.3816
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


26. Wang Y, Godec J, Ben-Aissa K, Cui K, Zhao K, Pucsek AB, et al. The
Transcription Factors T-Bet and Runx are Required for the Ontogeny of
Pathogenic Interferon-Gamma-Producing T Helper 17 Cells. Immunity
(2014) 40(3):355–66. doi: 10.1016/j.immuni.2014.01.002

27. Pham D, Walline CC, Hollister K, Dent AL, Blum JS, Firulli AB, et al. The
Transcription Factor Twist1 Limits T Helper 17 and T Follicular Helper Cell
Development by Repressing the Gene Encoding the Interleukin-6 Receptor
Alpha Chain. J Biol Chem (2013) 288(38):27423–33. doi: 10.1074/
jbc.M113.497248

28. Niesner U, Albrecht I, Janke M, Doebis C, Loddenkemper C, Lexberg MH,
et al. Autoregulation of Th1-Mediated Inflammation by Twist1. J Exp Med
(2008) 205(8):1889–901. doi: 10.1084/jem.20072468

29. Wu C, Chen Z, Dardalhon V, Xiao S, Thalhamer T, Liao M, et al. The
Transcription Factor Musculin Promotes the Unidirectional Development of
Peripheral Treg Cells by Suppressing the TH2 Transcriptional Program. Nat
Immunol (2017) 18(3):344–53. doi: 10.1038/ni.3667

30. Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, et al. The Nuclear
Receptor PPAR Gamma Selectively Inhibits Th17 Differentiation in a T Cell-
Intrinsic Fashion and Suppresses CNS Autoimmunity. J Exp Med (2009) 206
(10):2079–89. doi: 10.1084/jem.20082771

31. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, et al. PPAR-
Gamma is a Major Driver of the Accumulation and Phenotype of Adipose
Tissue Treg Cells. Nature (2012) 486(7404):549–53. doi: 10.1038/nature11132

32. Hou L, Rao DA, Yuki K, Cooley J, Henderson L.A., Jonsson AH, et al. SerpinB1
Controls Encephalitogenic T Helper Cells in Neuroinflammation. Proc Natl Acad
Sci U S A (2019) 116(41):20635–43. doi: 10.1073/pnas.1905762116

33. Fritsch RD, Shen X, Sims GP, Hathcock KS, Hodes RJ, Lipsky PE. Stepwise
Differentiation of CD4 Memory T Cells Defined by Expression of CCR7 and
CD27. J Immunol (2005) 175(10):6489–97. doi: 10.4049/jimmunol.175.10.6489

34. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L,
et al. Mice With a Disrupted IFN-Gamma Gene are Susceptible to the
Induction of Experimental Autoimmune Encephalomyelitis (EAE).
J Immunol (1996) 156(1):5–7.

35. Chu CQ, Wittmer S, Dalton DK. Failure to Suppress the Expansion of the
Activated CD4 T Cell Population in Interferon Gamma-Deficient Mice Leads
to Exacerbation of Experimental Autoimmune Encephalomyelitis. J Exp Med
(2000) 192(1):123–8. doi: 10.1084/jem.192.1.123

36. Kroenke MA, Chensue SW, Segal BM. EAE Mediated by a non-IFN-Gamma/
non-IL-17 Pathway. Eur J Immunol (2010) 40(8):2340–8. doi: 10.1002/
eji.201040489

37. Yang Y, Weiner J, Liu Y, Smith AJ, Huss DJ, Winger R, et al. T-Bet is Essential
for Encephalitogenicity of Both Th1 and Th17 Cells. J Exp Med (2009) 206
(7):1549–64. doi: 10.1084/jem.20082584

38. Djuretic IM, Levanon D, Negreanu V, Groner Y, Rao A, Ansel KM.
Transcription Factors T-Bet and Runx3 Cooperate to Activate Ifng and
Silence Il4 in T Helper Type 1 Cells. Nat Immunol (2007) 8(2):145–53. doi:
10.1038/ni1424

39. Zhang F, Meng G, Strober W. Interactions Among the Transcription Factors
Runx1, RORgammat and Foxp3 Regulate the Differentiation of Interleukin
17-Producing T Cells. Nat Immunol (2008) 9(11):1297–306. doi: 10.1038/
ni.1663

40. Bowers SR, Calero-Nieto FJ, Valeaux S, Fernandez-Fuentes N, Cockerill PN.
Runx1 Binds as a Dimeric Complex to Overlapping Runx1 Sites Within a
Palindromic Element in the Human GM-CSF Enhancer. Nucleic Acids Res
(2010) 38(18):6124–34. doi: 10.1093/nar/gkq356

41. Oakford PC, James SR, Qadi A, West AC, Ray SN, Bert AG, et al.
Transcriptional and Epigenetic Regulation of the GM-CSF Promoter by
RUNX1. Leuk Res (2010) 34(9):1203–13. doi: 10.1016/j.leukres.2010.03.029

42. Arbelaez CA, Glatigny S, Duhen R, Eberl G, Oukka M, Bettelli E. IL-7/IL-7
Receptor Signaling Differentially Affects Effector CD4+ T Cell Subsets
Involved in Experimental Autoimmune Encephalomyelitis. J Immunol
(2015) 195(5):1974–83. doi: 10.4049/jimmunol.1403135

43. Lee LF, Axtell R, Tu GH, Logronio K, Dilley J, Yu J, et al. IL-7 Promotes T(H)1
Development and Serum IL-7 Predicts Clinical Response to Interferon-Beta in
Multiple Sclerosis. Sci Transl Med (2011) 3(93):93ra68. doi: 10.1126/
scitranslmed.3002400

44. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, et al. Late
Developmental Plasticity in the T Helper 17 Lineage. Immunity (2009) 30
(1):92–107. doi: 10.1016/j.immuni.2008.11.005

45. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 Regulates
Both Th1 and Th2 Responses. Annu Rev Immunol (2001) 19:423–74. doi:
10.1146/annurev.immunol.19.1.423

46. Smeltz RB, Chen J, Ehrhardt R, Shevach EM. Role of IFN-Gamma in Th1
Differentiation: IFN-Gamma Regulates IL-18R Alpha Expression by
Preventing the Negative Effects of IL-4 and by Inducing/Maintaining IL-12
Receptor Beta 2 Expression. J Immunol (2002) 168(12):6165–72. doi: 10.4049/
jimmunol.168.12.6165

47. von Freeden-Jeffry U, Vieira P, Lucian LA, Mcneil T, Burdach SE, Murray R.
Lymphopenia in Interleukin (IL)-7 Gene-Deleted Mice Identifies IL-7 as a
Nonredundant Cytokine. J Exp Med (1995) 181(4):1519–26. doi: 10.1084/
jem.181.4.1519

48. Seddon B, Tomlinson P, Zamoyska R. Interleukin 7 and T Cell Receptor
Signals Regulate Homeostasis of CD4 Memory Cells. Nat Immunol (2003) 4
(7):680–6. doi: 10.1038/ni946

49. Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R Expression in T
(-)B(+)NK(+) Severe Combined Immunodeficiency. Nat Genet (1998) 20
(4):394–7. doi: 10.1038/3877

50. Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, et al. Fate-
Mapping of GM-CSF Expression Identifies a Discrete Subset of Inflammation-
Driving T Helper Cells Regulated by Cytokines IL-23 and IL-1beta. Immunity
(2019) 50(5):1289–1304.e6. doi: 10.1016/j.immuni.2019.04.006

51. Pham D, Vincentz JW, Firulli AB, Kaplan MH. Twist1 Regulates Ifng
Expression in Th1 Cells by Interfering With Runx3 Function. J Immunol
(2012) 189(2):832–40. doi: 10.4049/jimmunol.1200854

52. Firestein GS, Roeder WD, Laxer JA, Townsend KS, Weaver CT, Hom JT, et al.
A New Murine CD4+ T Cell Subset With an Unrestricted Cytokine Profile.
J Immunol (1989) 143(2):518–25.

53. Jain A, Irizarry-Caro RA, Mcdaniel MM, Chawla AS, Carroll KR, Overcast
GR, et al. T Cells Instruct Myeloid Cells to Produce Inflammasome-
Independent IL-1beta and Cause Autoimmunity. Nat Immunol (2020) 21
(1):65–74. doi: 10.1038/s41590-019-0559-y

54. Casella G, Rasouli J, Boehm A, Zhang W, Xiao D, Ishikawa LLW, et al.
Oligodendrocyte-Derived Extracellular Vesicles as Antigen-Specific Therapy
for Autoimmune Neuroinflammation in Mice. Sci Transl Med (2020) 12(568).
doi: 10.1126/scitranslmed.aba0599

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Rasouli, Casella, Zhang, Xiao, Kumar, Fortina, Zhang, Ciric and
Rostami. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Rasouli et al. RUNX3 Mediates Plasticity of ThGM to Th1

Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 91258312

https://doi.org/10.1016/j.immuni.2014.01.002
https://doi.org/10.1074/jbc.M113.497248
https://doi.org/10.1074/jbc.M113.497248
https://doi.org/10.1084/jem.20072468
https://doi.org/10.1038/ni.3667
https://doi.org/10.1084/jem.20082771
https://doi.org/10.1038/nature11132
https://doi.org/10.1073/pnas.1905762116
https://doi.org/10.4049/jimmunol.175.10.6489
https://doi.org/10.1084/jem.192.1.123
https://doi.org/10.1002/eji.201040489
https://doi.org/10.1002/eji.201040489
https://doi.org/10.1084/jem.20082584
https://doi.org/10.1038/ni1424
https://doi.org/10.1038/ni.1663
https://doi.org/10.1038/ni.1663
https://doi.org/10.1093/nar/gkq356
https://doi.org/10.1016/j.leukres.2010.03.029
https://doi.org/10.4049/jimmunol.1403135
https://doi.org/10.1126/scitranslmed.3002400
https://doi.org/10.1126/scitranslmed.3002400
https://doi.org/10.1016/j.immuni.2008.11.005
https://doi.org/10.1146/annurev.immunol.19.1.423
https://doi.org/10.4049/jimmunol.168.12.6165
https://doi.org/10.4049/jimmunol.168.12.6165
https://doi.org/10.1084/jem.181.4.1519
https://doi.org/10.1084/jem.181.4.1519
https://doi.org/10.1038/ni946
https://doi.org/10.1038/3877
https://doi.org/10.1016/j.immuni.2019.04.006
https://doi.org/10.4049/jimmunol.1200854
https://doi.org/10.1038/s41590-019-0559-y
https://doi.org/10.1126/scitranslmed.aba0599
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Transcription Factor RUNX3 Mediates Plasticity of ThGM Cells Toward Th1 Phenotype
	Let us know how access to this document benefits you
	Recommended Citation
	Authors

	Transcription Factor RUNX3 Mediates Plasticity of ThGM Cells Toward Th1 Phenotype
	Introduction
	Results
	IL-12 Induces ThGM to Th1 Phenotype Switch In Vitro and in EAE
	T-Bet-Induced RUNX3 Is Required for Phenotype Switch From ThGM to Th1
	ThGM Cells Have a Unique Transcriptome Profile

	Discussion
	Materials and Methods 
	Mice and Rag1-/- EAE Induction
	Mouse Th Differentiation
	Adoptive Transfer EAE
	Isolation of CNS Mononuclear Cells
	Flow Cytometry and Intracellular Staining
	RNA-Seq Analysis
	RT-PCR
	CRISPR/Cas9 Mediated RUNX3 Knockout
	Statistical Analysis

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


