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Phosphorylation of cyclophilin D at serine 191
regulates mitochondrial permeability transition
pore opening and cell death after
ischemia-reperfusion
Stephen Hurst 1, Fabrice Gonnot2, Maya Dia 2, Claire Crola Da Silva2, Ludovic Gomez2 and Shey-Shing Sheu1

Abstract
The mitochondrial permeability transition pore (mPTP) plays a critical role in the pathogenesis of cardiovascular
diseases, including ischemia/reperfusion injury. Although the pore structure is still unresolved, the mechanism through
which cyclophilin D (CypD) regulates mPTP opening is the subject of intensive studies. While post-translational
modifications of CypD have been shown to modulate pore opening, specific phosphorylation sites of CypD have not
yet been identified. We hypothesized here that phosphorylation of CypD on a serine residue controls mPTP opening
and subsequent cell death at reperfusion. We combined in silico analysis with in vitro and genetic manipulations to
determine potential CypD phosphorylation sites and their effect on mitochondrial function and cell death.
Importantly, we developed an in vivo intramyocardial adenoviral strategy to assess the effect of the CypD
phosphorylation event on infarct size. Our results show that although CypD can potentially be phosphorylated at
multiple serine residues, only the phosphorylation status at S191 directly impacts the ability of CypD to regulate the
mPTP. Protein-protein interaction strategies showed that the interaction between CypD and oligomycin sensitivity-
conferring protein (OSCP) was reduced by 45% in the phosphoresistant S191A mutant, whereas it was increased by
48% in the phosphomimetic S191E mutant cells. As a result, the phosphoresistant CypD S191A mutant was protected
against 18 h starvation whereas cell death was significantly increased in phosphomimetic S191E group, associated
with mitochondrial respiration alteration and ROS production. As in vivo proof of concept, in S191A phosphoresistant
rescued CypD-KO mice developed significantly smaller infarct as compared to WT whereas infarct size was drastically
increased in S191E phosphomimetic rescued mice. We conclude that CypD phosphorylation at S191 residue leads to
its binding to OSCP and thus sensitizes mPTP opening for the subsequent cell death.

Introduction
During myocardial infarction, reperfusion injury repre-

sents a significant amount of the resultant irreversible
damage1,2. Mitochondrial permeability transition pore

(mPTP) opening is recognized to replay a crucial role in
this phenomenon3–5. The identity of the current pore-
forming protein(s) of mPTP is still debated6. Although
recent publications show that mPTP formation does not
require the c, b, or oligomycin sensitivity-conferring
protein (OSCP) subunits of the ATP synthase7, other
studies suggest that subunit c is the conducting core8,9, or
the interface between two ATP synthases forms the
conductive mPTP10. It cannot be excluded that in addi-
tion to a core‐conducting structure, several alternative
structures exist as regulatory components.
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The prolyl isomerase cyclophilin D (CypD) in the
matrix is an important regulator of mPTP opening10,11.
CypD was identified as a target of the cyclosporine A
(CsA) drug, which inhibits mPTP opening12. In vitro, the
addition of CsA inhibits mitochondrial swelling and
increases mitochondrial calcium retention capacity
(CRC)13, conferring protection against lethal stress. In
vivo, the inhibition of CypD has been reported to reduce
infarct size in preclinical studies14–17, but failed to be
translated in human clinics18,19, highlighting the need for
new CypD inhibitors. Additionally, the molecular
mechanism of how CypD binds to the mPTP still remains
unknown.
Significant progress has been made regarding the

upstream regulation of the mPTP, particularly the post-
translational modification of CypD and how it modifies
pore sensitivity20–24. It was reported that Glycogen Syn-
thase Kinase-3β (GSK3β) inhibitors prevent CypD phos-
phorylation, yet the phosphorylation site(s) was (were) not
identified25,26. Indeed, the kinase GSK3β has been shown
to mediate mPTP opening by acting as a final integrator of
multiple signaling27. Moreover, we and others demon-
strated that GSK3β inhibition was required for pre/post-
conditioning mediated resistance to ischemia-reperfusion
(I/R) injury and mPTP opening27–30. Therefore, we deci-
ded to take advantage of in silico analysis of potential
CypD phosphorylation sites for GSK3β to reveal a new
CypD phosphorylation site crucial for mPTP sensitivity.
By combining genetic manipulations with both in vitro

and in vivo mouse heart models, we demonstrated that
the extent of myocardial damage is associated with the
CypD phosphorylation on its S191 residue, thereby
inducing its binding to OSCP, ROS production and the
subsequent mPTP opening.

Results
CypD Phosphorylation at serine 191 regulates the mPTP
opening
Post-translational modifications of CypD26,31–33 have

been suggested to alter mPTP regulation. We and others
have previously reported that inhibition of GSK3β abol-
ishes mPTP opening27,28,34,35 and that GSK3β can phos-
phorylate CypD in vitro26. To investigate whether CypD
may act as a potential substrate for GSK3β, we performed
CypD-in silico analysis for putative GSK3β phosphoryla-
tion sites (S/T-x-x-x-S/T)36. In silico sequence analysis
performed by NetPhos3.1 revealed 10 consensus phos-
phorylation sites on residues S38, S39, S40, S41, S42, S43,
S119, S123, S186 and S191 (Fig. 1a), suggesting that CypD
can potentially be phosphorylated at multiple serines by
GSK3β with a predictive score averaging 0.462 ± 0.019
(Fig. 1a).
To evaluate their impact on CypD phosphorylation

level, we individually mutated each identified serine to

alanine. Since S38 to 43 are a series of serines close to the
mitochondrial targeting sequence (MTS) cleavage zone
and to avoid any neighboring serine phosphorylation,
we have grouped them under a single mutant S38–43A.
CypD-FLAG-tagged mutant proteins were then over-
expressed in HEK cells. After FLAG immunoprecipita-
tion, our results showed that mutants S119A, S123A and
S186A did not significantly modify the global serine
phosphorylation level of CypD, averaging, respectively,
1.20 ± 0.62%, 3.10 ± 0.98% and 4.26 ± 1.66% vs. 3.63 ±
1.62% in the WT group (p > 0.05= ns, Fig. 1b). Surpris-
ingly, the mutant S38–43A induced a significant increase
of the serine phosphorylation level of CypD averaging
9.41 ± 2.27% (p= 0.0002), suggesting that serines S38 to
S43 may act as a negative regulator of the phosphorylation
status of CypD. More interestingly, when S191 was
mutated to alanine, the CypD phosphorylation was sig-
nificantly reduced, averaging 0.44 ± 0.09% vs. 3.63 ± 1.62%
in the WT group (p= 0.0481) (Fig. 1b), suggesting a key
role of the S191 in the global phosphorylation process
of CypD.
We next tested whether identified mutations could alter

mPTP opening. To this end, CRISPR/Cas9 was used to
knock out endogenous CypD in HEK cells and subse-
quently rescued with either WT or mutated CypD (Sup-
plementary Figure 2). As expected, WT cells exhibited a
significant mPTP sensitization to the calcium load aver-
aging 64.3 ± 9.6% vs. 100.8 ± 2.2% in the CypD KO group
(p < 0.05) (Fig. 1c). In S119A, S123A and S186A mutants,
the calcium retention capacity (CRC) was similar to the
WT group, averaging 64.3 ± 6.9%, 58.4 ± 3.6% and 63.3 ±
3.2% respectively (p= ns vs. WT) (Fig. 1c). While the
mutant S38–43A exhibited a significant reduction in CRC
ratio, averaging 48.5 ± 4.4% (p < 0.05 vs. WT; Fig. 1c), the
phosphoresistant mutant S191A was the only mutant to
elicit significant protection as compared to WT group
with a CRC ratio averaging 87.0 ± 8.2% and 64.3 ± 9.5%,
respectively, (p < 0.05). These data suggest that through-
out the putative serine residues identified in silico,
only the phosphoresistant mutant S191A afforded a
similar protection as loss of CypD in the regulation of the
mPTP opening.
To reinforce the specificity of S191 in mPTP regula-

tion, we designed a phosphomimetic mutant by muta-
tion of serine 191 to glutamic acid (S191E). In these
conditions, our results showed that the mutant S191E
not only reversed the mPTP protection induced by the
phosphoresistant S191A mutant (p < 0.05) (Fig. 1c), but
also induced a significant sensitization of mPTP open-
ing with a CRC ratio averaging 55.0 ± 2.9% vs. 64.3 ±
9.6% in the WT group (p < 0.05) (Fig. 1c). Altogether,
these results suggest that the phosphorylation event of
CypD at serine 191 controls the Ca2+-sensitive mPTP
opening.
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Fig. 1 (See legend on next page.)
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CypD Phosphorylation at serine 191 regulates the binding
of CypD to the mPTP core component
It was recently demonstrated that CypD not only reg-

ulates the mPTP but also regulates the dynamic assembly
of mitochondrial ATP synthase37. To further define the
mechanism of how CypD regulates mPTP opening, we
then investigated whether S191 residue plays a role in
CypD binding with the mPTP. It has been recently
reported that CypD could bind to the OSCP subunit of
the ATP synthase, a proposed pore constituent10,38. We
here hypothesized that CypD phosphorylation on its
residue S191 induces its translocation and binding to the
OSCP to favor mPTP opening. To test our hypothesis, we
used three different strategies to measure the effect of
CypD phosphorylation on the interaction of CypD with
the pore. First, we designed a FRET system in which
OSCP was tagged with Clover GFP (Fig. 2a). Downstream
of an internal ribosomal entry site, either WT, phos-
phoresistant (S191A), or phosphomimetic (S191E) CypD
was tagged with the FRET pair Scarlet (Fig. 2a). Our
results showed that the FRET ratio between CypD and
OSCP was significantly decreased in phosphoresistant
S191A mutant averaging 1.29 ± 0.66 vs. 1.92 ± 0.76 in WT
group (p < 0.05), whereas the phosphomimetic mutant
S191E enhanced the FRET ratio up to 2.44 ± 0.94 (p < 0.05
vs. WT) (Fig. 2a). These results suggest that the OSCP/
CypD interaction was under the influence of the phos-
phorylation event of CypD at S191. These results were
confirmed by co-immunoprecipitation assays (Fig. 2b),
showing that the protein interaction between OSCP and
CypD was significantly reduced by 45% in the phos-
phoresistant S191A group, averaging 0.65 ± 0.04 vs.
1.00 ± 0.07 in WT group (Fig. 2b), whereas the phos-
phomimetic S191E mutant significantly increased the
OSCP/CypD interaction by 48%, averaging 1.48 ± 0.25 as
compared to the WT group (p < 0.05) (Fig. 2b). To further
illustrate these results in situ, we finally used a PLA
approach in our three mutant cell lines. As shown in
Fig. 2c, the decreased interaction between OSCP with

CypD afforded by the phosphoresistant S191A mutant
was significantly reversed in the phosphomimetic S191E
group (p < 0.05 vs. WT). These data suggest that the
phosphorylation event of CypD at serine 191 regulates the
binding of CypD to the OSCP subunit of the ATP syn-
thase, which is known to sensitize mPTP opening10,39.
Interestingly, in basal condition, although oxidative

phosphorylation did not seem to be different in WT,
S191A, and S191E mutants (Supplementary Fig. 3A), the
mortality and the ROS production of cells were sig-
nificantly higher in the S191E phosphomimetic mutant as
compared to the WT group (p < 0.05, Supplementary Fig.
3B, C), suggesting that the enhancement of the CypD/
OSCP interaction may predispose cells to injury and death.

CypD Phosphorylation at serine 191 regulates cell death
and infarct size
Since mPTP has long been known as one of the main

regulators of cell death40; and it has been suggested that
OSCP can modulate ATP synthase function and mediates
mPTP opening9,10, we next sought to determine whether
the phosphorylation of CypD at S191 affects cell death
following serum-nutrient starvation, which is a stress
model known to induce cell death through mitochondrial
depolarization and mPTP opening41,42. Cell death was
significantly increased in the S191E mutant in comparison
to S191A after 18 h starvation with a relative cell death
averaging 24.99 ± 6.72% and 13.77 ± 2.18%, respectively,
(Fig. 3a). In these conditions, the increase of the ROS
production measured by flow cytometry in S191E mutant
was significantly abrogated in S191A group (p < 0.05)
(Fig. 3b). Moreover, measuring mitochondrial respiration
after starvation with complex I, II or IV substrates, our
results showed that oxidative phosphorylation was
reduced by half in the S191E group as compared to the
S191A cells (p < 0.05) (Fig. 3c). Altogether, these results
suggest that the phosphorylation event of CypD on its
S191 residue controls cell death by alteration of mito-
chondrial function.

(see figure on previous page)
Fig. 1 Multiple phosphorylation sites of CypD and mPTP regulation. a Table of the specific-GSK3β kinase post-translational phosphorylation site
of CypD from the amino acid sequence Human PPIF (Uniprot #P30405)50. NetPhos 3.1 score of potential serine phosphorylation sites of CypD, and
HTP (High Throughput papers) score from PhosphoSitePlus: number of records in which this modification site was assigned using only proteomic
discovery mass spectrometry. Non applicable (na), phosphorylation (p). b Top: representative western blot of the mitochondrial fraction of HEK cells
overexpressing FLAG-tagged mutants of CypD probed for phospho-serine (P-Ser) and FLAG. Merge was included to show that the P-Ser band is at
the same level than the CypD-FLAG band. Bottom: Quantification of P-Ser/Flag intensities (mean ± SD, n= 4/group independent experiments) (*p <
0.05 vs. WT). Differences in means among multiple groups were analyzed using one-way ANOVA with a Tukey′s post hoc test. c Left: typical curves of
calcium retention capacity (CRC) in HEK CypD-KO cells rescued with different CypD mutants. Right: Quantification of CRC in different CypD mutants
normalized to the protein content and maximum protection afforded by 1 µM CsA. Differences in means among multiple groups were analyzed
using one-way ANOVA with a Tukey′s post hoc test. (Mean ± SD, n= 3 independent experiments) (*p < 0.05 vs. KO, †p < 0.05 vs. WT, and ‡p < 0.05 vs.
S191A). CypD can be phosphorylated at multiple serine residues, but only the CypD phosphorylation at S191 seems to impact the ability of CypD to
regulate the mPTP opening. Differences in means among multiple groups were analyzed using one-way ANOVA with a Bonferroni′s or Tukey′s post
hoc test.
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It is worth noticing that the protein interaction of CypD
with OSCP was positively correlated with the level of cell
death. Indeed, as shown in the Fig. 3d, while the

protection provided by the S191A mutant displayed sig-
nificantly lower interactions of CypD with OSCP (p < 0.05
vs. S191E), these interactions were significantly increased

Fig. 2 (See legend on next page.)
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in injured S191E mutant cells after starvation. Altogether,
these data demonstrate that CypD phosphorylation at
S191 enhances binding of CypD to the OSCP, alteration
of mitochondrial function, and subsequent cell death,
suggesting that residue S191 is important in this
regulation.
Lastly, we tested whether the phosphorylation level of

CypD regulates in vivo I/R injury using a mouse model.
To rule out a possible effect of the adenovirus deliverance
and/or infection process on the infarct size by itself, a
pilot study using GFP adenovirus was used as a positive
infection control. As shown in the Supplementary Fig. 4A,
B, at 1 week after in vivo gene delivery, the overexpression
of GFP in the ventricle covered 35.2 ± 12.1% of the area at
risk (AR). In these conditions, with a comparable AR (p=
ns, Supplementary Fig. 4B) and without any inflammation
sites (data not shown), the GFP overexpression did not
modify the infarct size compared to the CTRL group (p=
ns, Supplementary Fig. 4B, C). These results demonstrate
that our virus injection protocol by itself has no effect on
the infarct size, suggesting that any observed infarct
modulation after a gene delivery is due to the direct gene
expression rather than to the adenoviral delivery process.
Therefore, we generated three adenovirus constructs

containing either the WT, the phosphoresistant S191A, or
the phosphomimetic S191E CypD mutant which were
injected into the anterolateral wall of the left ventricle of
CypD-KO mice. After 7 days of recovery, CypD-rescued
mice underwent 45min ischemia followed by 24 h
reperfusion. The AR was comparable among groups,
ranging from 25.5 ± 10.5% to 28.8 ± 11.2% of the LV (p=
ns among groups) and the CypD protein rescue level was
also comparable among groups (p= ns) (Supplementary
Fig. 5A), with a specific localization into mitochondria
(Supplementary Fig. 5B). Mice rescued with the WT
CypD exhibited a significant increase of infarct size
compared to CypD KO mice, averaging 38.2 ± 7.4% and
23.9 ± 5.3% of AR respectively (p < 0.05) (Fig. 4a). It is
worth mentioning that the infarct size of these CypDWT-
rescued mice was equivalent to our standard C57BL/J6

mice (p= ns; Fig. 4a). When necrosis was plotted with
area at risk (Fig. 4b), most data points for S191A group
were below the WT rescue regression line, indicating that
for any size of AR, these hearts developed significantly
smaller infarcts, averaging 29.0 ± 5.1% vs. 38.2 ± 7.3% of
AR in WT (p < 0.05 vs. WT) (Fig. 4a, b). Conversely, most
data points for S191E rescue mice were above the WT
regression line, indicating that these hearts developed not
only higher infarcts, averaging 52.6 ± 14.5% of AR (p <
0.05 vs. WT) (Fig. 4a, b), but also higher mortality at
reperfusion (Supplementary Table 2). In summary, these
data suggest that the phosphorylation event of CypD at
S191 induces the binding of CypD to OSCP, favoring
mPTP opening and subsequent cell death at reperfusion.

Discussion
The present study suggests that the CypD phosphor-

ylation at S191 controls cell death and the extent of
myocardial infarction in vivo, via the modulation of the
mPTP opening which is dependent of the binding state of
CypD with OSCP, the mitochondrial electron transport
chain coupling and the ROS generation.
Although the pore structure is still debated, the

mechanism through which CypD regulates mPTP open-
ing is the subject of intensive studies. Post-translational
modifications of CypD have been shown to modulate pore
opening22,26,31–33. Based on publications suggesting that
GSK3β/CypD complex plays a pivotal role in the regula-
tion of the mPTP26,28,35,43, and although it has been
reported that the consensus sequence S/T-X-X-X-S/T is
neither essential nor sufficient to guide GSK3β-dependent
phosphorylation39,44, our in silico analysis shows that
CypD presents no less than ten potential target sites for
GSK3β. Even if the role of GSK3β on CypD has been
recently questioned45, these results are in line with a
previous report showing that GSK3β can directly phos-
phorylate CypD at Ser/Thr in vitro26. We assume that
these preferential domain-specific kinase-substrate rela-
tionships can be used only to distinguish cognate kinase-
substrate pairs from all other non-cognate combinations

(see figure on previous page)
Fig. 2 Phosphorylation event of CypD at serine 191 modulates the binding of CypD to the mPTP. a Left panel: Representative images of HEK
cells transfected with OSCP-Clover with WT or CypD mutants Scarlet downstream of an IRES site. Scale bar 10 µm. Cells were excited with a 458 nm
laser and emission at 505–540 nm and 575–620 nm with a 560 nm barrier filter. Right panel: Quantification of FRET efficiency in WT, phosphoresistant
(S191A) and phosphomimetic (S191E) CypD mutants (mean ± SD; n= 31–43 on 3 different experimental days with ~10–12 cells per day) (*p < 0.05 vs.
respective group). Differences in means among multiple groups were analyzed using one-way ANOVA with a Tukey′s post hoc test. b Left panel:
Representative immunoblots of CypD and OSCP following OSCP immunoprecipitation in HEK CypD mutant cell lines. Right panel: Quantification of
the immunoprecipitation OSCP probed for CypD in WT, S191A, and S191E CypD mutants (fold vs. WT mean ± SD; n= 4 independent experiments)
(*p < 0.05 vs. respective group). Differences in means among multiple groups were analyzed using one-way ANOVA with a Tukey′s post hoc test.
c Proximity ligation assay between OSCP and CypD in HEK CypD-KO cells rescued WT, S191A and S191E CypD mutants. Left panel: representative
confocal microscopy images of in situ OSCP-CypD interactions depicted as red dots. Nuclei appear in blue. Scale bar 10 µm. Right panel:
quantification of the interactions per cell presented as a fold of WT (n= 5 different experimental days with 4 fields of 20–50 HEK cells per well) (*p <
0.05 vs. respective group). Differences in means among multiple groups were analyzed using a two-way ANOVA followed by a Tukey′s post hoc test.
Scale bar 10 µm. The phosphorylation event of CypD at serine 191 regulates the binding of CypD with the mPTP pore component OSCP.
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Fig. 3 (See legend on next page.)
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and that further studies are required to provide the proof
that CypD is a bona fide substrate for GSK3β.
In this context, we show that the global phosphorylation

level of CypD is dependent on the phosphorylation of
some in silico identified serines and that the phosphor-
ylation event of CypD seems to control the mPTP open-
ing. Our results are in line with recent reports showing
that the phosphorylation of CypD could be associated
with increased mPTP opening22,26. The study by Parks
et al. addressed the question why the hearts from global
MCU-KO mice are not protected from ischemic injury by
investigating whether adaptive alterations occur in cell
death signaling pathways. Their results show that MCU-
KO mitochondria exhibit an increase in phosphorylation
of CypD-S42 which decreases mPTP calcium sensitivity
thus allowing activation of mPTP in the absence of an
MCU-mediated increase in matrix calcium. Using a
phosphoresistant S42A strategy, they conclude that the
phosphorylation of CypD at S42 seems to regulate mPTP.
However, in the present study, in silico results show that
CypD can be also potentially phosphorylable on neigh-
boring serines 38, 39, 40, 41, and 43. Since making a
targeted mutation into a residue-long flanking regions is
known to involve a risk for the kinase to phosphorylate
neighboring serines +1, 2, 3 or 446, their mutant S42A has
an high risk to have a phosphorylation compensation
which was not discussed. For this reason, we chose to
regroup all serines in a single mutant S38–43A, avoiding
any possible phosphorylation compensation in neighbor-
ing serines. Our results show that the S38–43A mutant
significantly increases the global phosphorylation level of
CypD associated with a significant decrease of the CRC as
compared to the WT group. Conversely to Parks′ results,
these results might suggest that the multiple mutations of
serines could potentiate the phosphorylation of CypD and
the over-sensitization of the mPTP opening. Altogether,
these results suggest that the domain S38–43, located just

after the MTS and before the cyclophilin-isomerase-
domain, seems to play a role in the phosphorylation
process of CypD and the activation of the mPTP opening.
But the mechanism by which this domain regulates mPTP
opening by phosphorylation, modification of the protein
addressing and/or the modification of the isomerase
activity requires additional work.
On the other hand, our results show that only the

phosphoresistant mutant S191A is able to completely
abolish the phosphorylation of CypD, and confers resis-
tance of mPTP opening against calcium. Since cardio-
protection requires inhibition of multiples kinases28,47,
these results suggest that even if other serines are func-
tionally actives (including S42), S191 seems to plays a
preponderant role on the regulation of mPTP opening
through the phosphorylation event of CypD26.
Growing data indicate that CypD, in addition to its role

in mPTP, may play a pivotal role in regulating overall cell
metabolism. Studies including genetic or pharmacological
inhibition of CypD revealed its contribution to the reg-
ulation of respiratory function48,49 and oxidative phos-
phorylation49,50. Our results add to this by showing that
the phosphorylation event of CypD at S191 regulates
mitochondrial function, such as OXPHOS and ROS
production. Indeed, while protected phosphoresistant
S191A cells exhibit improved mitochondrial respiration
associated with a reduction of ROS production, phos-
phomimetic S191E cells are more sensitive to cell death
stress due to an alteration of oxidative phosphorylation
and consecutive ROS production. Thus, our result are in
line with previous studies showing that the Ca2+ overload
induced by the extensive ROS generation causes necrosis
through the enhancement of the permeability of the
mitochondrial membrane and mPTP opening51,52. Alto-
gether, our results suggest that CypD phosphorylation at
S191 not only regulates mPTP opening but also seems to
be a crucial regulator of ROS production, underlining the

(see figure on previous page)
Fig. 3 Phosphorylation of CypD at serine 191 regulates mitochondrial function and cell death. a Left panel: typical cytometry histograms of PI
staining in different CypD mutant cell lines, with the corresponding percentage of PI positive cells. Right panel: Percentage of cell death measured by
flow cytometry after 18 h starvation stress in WT, phosphoresistant (S191A) and phosphomimetic (S191E) CypD cell lines. Differences in means
among multiple groups were analyzed using one-way ANOVA with a Tukey′s post hoc test. (mean of PI-positive cells ± SD, n= 15 different
experimental days with 10 000 events/assay) (*p < 0.05). b ROS level production of mutants measured by flow cytometry (mean of H2DCFDA
fluorescent intensity ± SD, n= 9 different experimental days with 10 000 events/assay) (*p < 0.05). Differences in means among multiple groups were
analyzed using one-way ANOVA with a Tukey′s post hoc test. c Oxidative phosphorylation measured on permeabilized CypD mutant cell lines after
18 h starvation stress. After permeabilization of CypD mutant cells with digitonin (10 μg/ml), consumption of oxygen was strongly activated by 2 mM
ADP. Successive additions of rotenone (0.5 μM), succinate (complex II substrate; 10 mM), TTFA (40 μM), TMPD/ascorbate (complex IV substrates; 0.3
and 3mM respectively), and then azide (15 mM), allowed determination of sensitive rates of oxidative phosphorylation using complex I, II, and IV
substrates, respectively (mean of sensitive respiration rate ± SD, n= 5 different experimental days with 1–2 million cells/assay, *p < 0.05). Differences
in means among multiple groups were analyzed using one-way ANOVA with a Tukey′s post hoc test. d Proximity ligation assay between OSCP and
CypD in HEK CypD-KO cells rescued with WT, S191A or S191E CypD mutants following 18 h starvation. Left panel: representative confocal microscopy
images of in situ OSCP-CypD interactions depicted as red dots. Nuclei appear in blue. Scale bar 10 µm. Right panel: quantification of the protein-
protein interaction presented as fold of WT (n= 5 different experimental days with 4 fields of 20–50 HEK cells per well) (*p < 0.05). Differences in
means among multiple groups were analyzed using a two-way ANOVA followed by a Tukey′s post hoc test.
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key role of the triangle CypD-phosphorylation/ROS-pro-
duction/mPTP-opening in cell death pathway, especially
during ischemia-reperfusion in the heart in vivo51,52.
In this context, the most significant finding to emerge

from this study is that the extent of myocardial damage is
dependent on the CypD phosphorylation event on its
S191 residue. To our knowledge, this is the first in vivo
research study to have demonstrated that the phosphor-
ylation of CypD on a precise serine residue is involved in
acute myocardial infarction. Our results show not only
that the infarct size is dependent of the CypD-S191
phosphorylation, but also that phosphorylation inhibition

of this same serine significantly reduces the infarct size,
providing new insight in cardioprotection. Moreover,
although we did not observe any heart rate alteration or
any arrhythmic event after the CypD rescue in our acute
mouse model (data not shown), these potential mechan-
isms underlying S191 phosphorylation of CypD are of
interest for future LV remodeling studies.
Regarding possible mechanisms for the modulation of

mitochondrial function and subsequent cell death in our
model, in addition to post-translational modifications, it
has been demonstrated that interaction with proteins in
the matrix and IMM can modulate the CypD activity and
mPTP opening. Numerous studies provided evidence that
CypD can interact with other proteins including
ANT53,54, PiC

55 and the FOF1-ATP synthase subunit
OSCP50 and thus stimulate mPTP induction. Our data
further show that the CypD/OSCP interaction is positively
correlated with the sensitization of mPTP opening and
that the phosphorylation event of CypD at S191 regulates
the binding of the CypD with the mPTP.
One may question whether mitochondrial calcium entry

may be affected in our mutants (i.e. MCUR1)56. Such
mechanisms remain to be investigated in-depth in future
studies. However, although we notice a difference of CRC
in our mutants, the slope of mitochondrial calcium uptake
is similar in all groups (Fig. 1c) suggesting that our
mutants exhibit more a difference in the threshold of
mPTP opening rather than a calcium entry dysfunction.
In summary, our work identifies S191 of CypD as a key

regulator of ROS production, mPTP opening and cell
death. As illustrated in Fig. 5, we propose that CypD
phosphorylation at S191 induces the translocation and
favors binding of CypD to OSCP, which is associated to an
OXPHOS alteration, increased ROS production, and
mPTP opening leading to subsequent cell death at
reperfusion.

Material and methods
Material and methods are detailed in the Supplemental

methods and figure legends. The data, analytic methods,
and study materials will be/have been made available to
other researchers for purposes of reproducing the results
or replicating the procedure.

Animals
Experiments were conducted in accordance with the

Guide for the Care and Use of Laboratory Animals (NIH
Publication No. 85–23, revised 1996), and were approved
by local institutional animal research committees′
#19896–201903212127912 and #901I.

Starvation protocol
HEK cells were serum starved in serum-free high-glu-

cose DMEM in the presence of pyruvate for 18 h57.

Fig. 4 Phosphorylation event of CypD at S191 regulates
Myocardial infarction. a Infarct size (AN) expressed as a % of the area
at risk (AR) in C57BL/6J, CypD KO and CypD mutant rescue (WT, S191A
and S191E) mice (mean ± SD, *p < 0.05 vs. respective group).
Differences in means among multiple groups were analyzed using
one-way ANOVA with a Tukey′s post hoc test. b Scatterplot of AN over
the AR of CypD KO hearts infected with 5 × 108 WT, S191A, or S191E
CypD virus particles per mouse. Area of necrosis was positively
correlated to the AR in WT, S191A and S191E groups with a Pearson
r value of 0.806, 0.802, and 0.747, respectively. Most data points for
S191A group were below the WT rescue regression line, indicating
that for any size of AR, these hearts developed significantly smaller
infarcts. Conversely, most data points for S191E rescue mice were
above the WT regression line, indicating that these hearts developed
higher infarcts, suggesting that the phosphorylation event of CypD at
S191 controls the extent of infarct size at reperfusion. Scale bar 3 mm.
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Following starvation, cells were collected and resuspended
in PBS or respiration buffer before analysis.

In vivo model of ischemia/reperfusion (I/R)
Mice were randomized to receive 25 µl of an adenovirus

solution (CypD mutants at 5 × 108 PFU), which was
injected in 10–12 different sites of the LV wall to cover
the maximum area of the area at risk58. The chest cavity
was closed, and the mice were allowed to recover for
1 week prior to I/R surgery. Mice underwent I/R surgery
as previously described29 (Supplementary Fig. 1).

Statistical analysis
Data for multiple experiments were quantified and

expressed as mean ± SD where indicated. Differences in
means among multiple groups were analyzed using one-
way ANOVA with a Bonferroni’s or Tukey’s post hoc test
to determine significance between groups. For results
with two groups, normal distribution of values was ver-
ified using the Kolmogorov–Smirnov test and the dif-
ferences between groups were then determined using a
two-tailed paired students t-test. For results with 2 vari-
ables, a two-way ANOVA followed by a Tukey′s post hoc
test was performed. Statistical significance was set at a
threshold of p ≤ 0.05. No data/animals were excluded

from the study. The data were computed using GraphPad
Prism 6.1 software.
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Fig. 5 Proposed GSK3β/CypD signaling axis for mPTP regulation. Under baseline condition (WT group), the phosphorylation of CypD by a kinase
(e.g. GSK3β) at S191 induces its translocation to the OSCP, to favor mPTP opening and subsequent cell death at reperfusion. When CypD cannot be
phosphorylated in S191A mutant, the CypD/OSCP interaction is reduced, maintaining mPTP in its closed conformation and providing protection
against cell death. In contrast, in phosphomimetic S191E mutant cells, the interaction of CypD with the OSCP is amplified, which is associated to a
mitochondrial dysfunction to enhance ischemia-reperfusion injury.
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