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Ultra-fast conductive media for RNA electrophoretic 
mobility shift assays
Samantha Z Brown1, Lebaron C Agostini1, Henry L Thomsett1 & Jonathan R Brody*,1

ABSTRACT
The use of RNA electrophoretic mobility shift 
assays (REMSAs) for analysis of RNA–protein 
interactions have been limited to lengthy 
assay time and qualitative assessment. To 
vastly improve assay efficiency, feasibility 
and quality of data procured from REMSAs, 
we combine here some of the best-known 
labeling and electrophoretic techniques. 
Nucleic acid fragments are end-labeled 
with fluorescent tags, as opposed to the 
radioactive or biotin tags. The fluorescent 
probes may be detected directly from the 
electrophoresis gel, eliminating the need 
for cumbersome membrane transfer and 
immunoblotting. Modifying the REMSA 
protocol to include low-molarity, lithium 
borate conductive media and near-infrared-
labeled probes allows for a reduction assay 
time, quantitative comparison between 
experimental conditions and crisp band 
resolution (i.e., optimized results).

METHOD SUMMARY
We present an improvement in resolution, 
speed and ease of RNA electrophoretic 
mobility shift assays. First, sensitive and 
quantitative detection of gel shifts can 
be improved with near-infrared tagged 
RNA oligos, as opposed to more toxic and 
cumbersome labeling methods, such as 
radioisotopes or biotin tags. Second, for 
improvement of resolution and efficiency, 
traditional Tris-based conductive running 
media are replaced with low-molarity, lithium 
borate-conductive media. These improve-
ments to the methodology significantly 
reduce assay time, as well as improve the 
quality and overall utility of this technique in 
the study of RNA–protein interactions in vitro.

Gel electrophoresis mobility shift 
assay (EMSA) is a long-established 
biochemical technique for the quali-
tative assessment of nucleotide–protein 
complexes [1–4]. This method combines 
the principles of protein and oligonu-
cleotide electrophoresis to determine 
biochemical relationships between 
these species. Ribonucleotide-based 
EMSAs (REMSAs) are a modified version 
of this technique to evaluate ribonucle-
otide–protein complexes. Most often, 
REMSAs are employed for the validation 
of RNA-binding proteins (RBPs) to their 
regulated transcripts.

Although the current methodology 
of this application is informative, its 
output is largely qualitative, with a variety 
of resolution and sensitivity issues. 
Earlier renditions of this method used 
radioisotopes such as 32P for tagging 
oligonucleotides (oligos). Radioactive 
labeling is a labor-intensive process, 
resulting in issues with efficiency, cost 
and safety  [2,5–7]. To address these 
challenges, one major improvement has 
replaced radioisotope tagging with biotin 
conjugation. This labeling technique 
relies on its affinity against avidin-
based proteins for specific isolation of 
complexes [8–10].

Biotin end-labeled probes are easier 
and safer to use than radioisotope-based 
applications; however, this method still 
requires additional time-consuming steps 
after initial electrophoresis. Notably, after 
separating transcripts on a nondena-
turing gel, contents must be cross-linked 
and transferred to a matrix membrane. 
Anti-streptavidin–HRP conjugate and 
substrate are then needed to develop 
the blots and visualize gel shifts. These 
additional steps not only add to the 
overall process time (i.e., 4–6 h), but 
also add extra materials, cost and optimi-
zation time.

To further address the limitations 
of prior assays, we end-labeled RNA 

transcripts with near-infrared (NIR) 
fluorescent dyes  [4,11]. RNA oligos 
were ordered and synthesized from 
integrated DNA technologies (IDT, IA, 
USA) (Figure 1A). The specific NIR dyes 
and sequences of the transcripts that 
were used in the following experiments 
are described in Table 1. After electropho-
resis, gels were immediately imaged on 
an NIR scanner (LI-COR Odyssey scanner, 
NE, USA). The sensitivity of these conju-
gated dyes allows for quantitative 
analysis of bound and unbound probes 
(Figure 1B). Although not demonstrated 
here, the minimum detectable concen-
trations of probes may be optimized to 
save materials and to visualize protein–
oligonucleotide association. The cost of 
synthesizing each NIR-conjugated probe 
is roughly US$100 more than a biotin-
labeled probe; however, considering that 
the fluorescent signal can be quantitated 
directly, gel transfer to a membrane is 
not necessary to visualize samples, and, 
therefore, provides a more time-efficient 
and economical option.

To demonstrate the function of these 
probes within biologic contexts, we 
used a defined RBP–ribonucleic acid 
relationship between the RBP,  HuR/
ELAVL1 and one of its mRNA targets, 
COX-2 [12,13]. NIR probe concentrations 
were optimized through titration experi-
ments (Figure 1B). For these experiments, 
total protein was either extracted from 
crude cell lysate under nondenaturing 
conditions, or purchased as recom-
binant protein (Origene, MD, USA). To 
determine optimal protein concentration 
(i.e., whole-cell extracts or recombinant 
proteins), a fixed probe concentration 
was incubated with titrating amounts of 
lysate to visualize a gel shift (i.e., clear 
interpretable shifts in the bound probe 
as compared with the unbound probe) 
(Figure 1C & D). Nontargeted recombinant 
tRNA (Thermo Fisher Scientific, NE, USA) 
was included in to reduce nonspecific 
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binding between probes and HuR (Figure 1C 
& D). Complexes were incubated at room 
temperature for 30 min in the dark before 
being loaded in a 5% weight by volume (w/v) 
acrylamide gel. Table 2 outlines specific 
reaction components and concentrations 
are outlined in. Table 3 describes assay 
buffers in depth.

The second limitation of former REMSA 
methods is the use of Tris-based (Tris-HCL/
Boric Acid/EDTA, TBE) conductive media, 
most likely adapted from early electropho-

retic methods  [10]. Because of its poor 
conductivity and high heat of reaction 
owing to Ohm’s law, TBE causes poor oligo-
nucleotide resolution [9,10]. For this reason, 
TBE gels must be run for long stretches of 
time (>90 min) at low voltages to maintain 
gel–complex integrity. To resolve resolution 
issues and improve the reaction time, we 
exchanged TBE (Fisher Scientific, NH, 
USA) for a more effective low-molarity 
conductive media, lithium boric acid (LB) 
(Faster Better Media, LLC, MD, USA) [8]. It 

has long been demonstrated that agarose-
based electrophoresis LB media is able to 
rapidly separate DNA and RNA species 
at high voltages, without compromising 
resolution or sensitivity [8–10]. Moreover, 
the cost of 1 liter of 10× TBE is the same as 
commercial liter bottles of 10× LB buffer at 
roughly US$50 unit purchase. To evaluate 
the improved buffering capacity of the LB 
method, 5% w/v gels were cast and ran with 
1× TBE or LB medium, as indicated (Table 3). 
The temperature, current and integrity of 
the gel were evaluated at fixed run times 
and at high voltage (300 V) (Figure 2). Under 
each run time, LB was able to separate 
oligos with enhanced resolution, demon-
strating a more pronounced gel shift, as 
indicated by clear separation of ‘probe 
only’ and ‘probe plus HuR protein’ lanes 
(Figure 2). As expected, the final tempera-
tures of the TBE gel were elevated over the 
LB-based method, despite similar volumes 
of media used and equal thickness of the 
gels prepared [9,10]. When we separated 
the glass gel sandwich, we noted that the 
physical integrity of the TBE gel was signif-
icantly impaired compared with the solid 
matrix of the LB gel. In addition, we noted 
that the TBE gels showed an increased 
temperature of 5°C over the running of the 
assay, whereas LB gels increased roughly 
3°C or lower. In terms of conductance, 
LB gels ran at a constant 30 milliamps, 
whereas the TBE gels rose from 40 to 80 
milliamps. This expected relationship 
between conductance and temperature 
was previously described in agarose gel 
electrophoresis systems [10,12]. Based on 
these results, we demonstrate that higher 
voltages over a shorter period of time are 
possible without deleterious temperature 
increases that may impact gel integrity and 
assay resolution (Figure 2). Here, we refer 
to this improved protocol as lithium-based, 
near-infrared REMSA (LI-REMSA). 
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Figure 1. Near-infrared-labeled oligonucleotides provide sensitive and quantitative detection of 
protein–RNA complexes. (A) RNA oligonucleotides synthesized with near-infrared (NIR) labels by 
Integrated DNA Technologies (IA, USA). (B) (1:1) Titration of [1 μM] IR-labeled probe in 1× LB running 
buffer. (C & D) A fixed concentration of NIR-labeled probe [62.5 nM] run with titrated nondena-
turing, crude-cell lysate versus recombinant HuR (Origene, MD, USA). Reactions run at 250 V for 
10 min at room temperature. Gels were imaged directly on an infrared scanner (Licor, NE, USA) at 
a wavelength corresponding to the tagged NIR dye (690 nm). All gels comprised 1× LB (MD, USA), 
5% acrylamide/bis, 10% APS, and TEMED (BioRad, CA, USA). Data in (C & D) are representative of at 
least two separate experiments.
APS: Ammonium persulfate; LB: Lithium boric acid; NIR: Near-infrared; TEMED: Tetramethylethyl-
enediamine.

Table 1.  Near-infrared labeled RNA oligonucleotides.

Name Sequence Use
COX2-3′UTR 
(49 bps)

5′-/5IRD700/UCUAUUAAUUUAAUUAUUUAAUAAUAUUUAUAUUAAACUCCUUAU-3′ Positive control

WEE1-EXON2 
(49 bps)

5′/5IRD700/GAAACAGACCUGCUAAGGUGUGUGAAGAGGCUGGAUGGAUGCAGAACG-3′ Negative control

WEE1-10T (49 bps) 5′/5IRD700/UGUGUGUCCAUCUUAUAUUUCUUUUUUUUUUAAUUGUGAAUUAGACUU-3′ Experimental

bp: Base pair; NIR: Near-infrared; 3′UTR: 3′-Untranslated region.
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Table 2.  Lithium-based, near-infrared RNA electrophoretic mobility shift assay reagents.

Nondenaturing lysis buffer† Final concentration

Tris–HCl (pH 7.5) 75 mM

Sodium chloride (NaCl) 150 mM

Magnesium chloride (MgCl2) 1 mM

Nonidet P-40 (or IGEPAL-CA630) 1% (v/v)

Phenylmethane sulfonyl fluoride (PMSF) 1 mM

Protease inhibitor cocktail (PI) 1 mM

Sodium orthovanadate (Na3VO4) 1 mM

5× binding buffer  Final concentration

HEPES (pH 7.4) 75 mM

Potassium chloride (KCl) 50 mM

Glycerol 50% (v/v)

Dithiothreitol (DTT) 1 mM

Magnesium chloride (MgCl2) 25 mM

Binding reaction components Final concentration

tRNA 5 μg

Fluorophore-tagged RNA ‡

Protein lysate or recombinant protein ‡

5× binding buffer 1×

5× loading dye 1×

†Only for protein extraction with whole-cell lysates.
‡Optimize based on the assay requirement.
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Figure 2. Improved resolution and assay time 
with lithium boric acid conductive media versus 
Tris-boric acid-disodium EDTA method.  
(A) 1× TBE gel and (B) 1× LB gel ran fast (300 V) 
for 7 min, as indicated. (C & D) Gels may be 
run longer without compromising resolution, 
in which the same gels were returned to the 
reservoirs, and run for an additional 5 min (total 
assay time: 12 min). After run time, gels were 
removed from the reservoirs and were imaged 
using infrared scanner (LICOR, NE, USA) at 
a wavelength corresponding to the tagged 
NIR dye (690 nm). Data shown in the figure 
are representative of at least three separate 
experiments. Gel temperatures were monitored 
by placing standard thermometer directly in 
reservoir before and after completion of the run.
LB: Lithium boric acid; TBE: Tris-boric acid-
disodium EDTA; T0: Initial temperature;  
TF: Final temperature.
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REMSAs are classically used for 
validation of RBP target sequences within 
an mRNA transcript of interest in vitro. Here, 
we validated a previously predicted binding 
site of a HuR-regulated transcript, WEE1 (the 
G2/M mitotic checkpoint inhibitor) mRNA, 
using LI-REMSA (Figure 3) [14]. Each probe 
was incubated with either recombinant HuR 
or FOXP3, a negative control transcription 
factor (i.e., that should not bind to WEE1 

mRNA). A sequence within the second 
exon of the WEE1 mRNA was used as a 
negative control. The WEE1 Exon2 mRNA 
probe, which lacks adenylate-uridylate-
rich elements required for HuR recognition, 
demonstrated unresolved resolution with 
a large percentage of unbound free probe, 
indicating weak to no binding in these assay 
conditions (Figure 3). Notably, the 3′ UTR 
WEE1 probe showed significant protein 

binding, with no evidence of unbound, ‘free’ 
target at concentrations used in this assay 
(Figure 3).

This work optimizes an existing method 
of RBP-ribonucleotide assessment by 
improving band resolution and decreasing 
total process time over traditional and more 
recent REMSA methods (i.e., total assay time 
<1 h). Moreover, the examples here can be 
expanded or modified to address experi-

Table 3.  Tris-boric acid-disodium EDTA versus lithium boric acid method components.

1× TBE gel components Final concentration

Sterile DI H2O -

30% acrylamide/bis (29:1 acrylamide:bis ratio) 5% (w/v)

10× TBE 1×

Ammonium persulfate (APS) 10% (v/v)

TEMED (N,N,N′,N′-Tetramethylethylenediamine) 1% (v/v)

Sterile DI H2O -

1× TBE running buffer  Final concentration

10× Tris-boric acid-disodium EDTA 1×

1× LB gel components Final concentration

Sterile DI H2O -

30% acrylamide/bis (29:1 acrylamide:bis ratio) 5% (w/v)

20× LB medium 1×

APS 10% (v/v)

TEMED (N,N,N′,N′-Tetramethylethylenediamine) 1% (v/v)

1× LB running buffer Final concentration

APS: Ammonium persulfate; LB: Lithium boric acid; TBE: Tris-boric acid-disodium EDTA; v/v: Volume by volume; w/v: Weight by volume.
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Figure 3. LI-RNA electrophoretic mobility shift 
assays used for detection and validation of 
new RNA-binding protein target sequences. 
NIR-labeled probes were incubated in binding 
buffer with recombinant FOXP3 (negative 
control protein), HuR or none as indicated above 
(Origene, MD, USA). A total of 5 μg of tRNA 
(Thermo Fisher Scientific, MA, USA) were used 
for each reaction to control for nonspecific 
binding. The 1× LB gels were run for 10 min at 
250 V. Data are representative of at least two 
separate experiments.
LB: Lithium boric acid; LI-REMSA: Lithium-
based, near infrared RNA electrophoretic 
mobility shift assay; NIR: Near infrared;  
3′UTR: 3′-Untranslated region.
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mental needs based on the interactions 
being investigated. Others have shown the 
feasibility of additional end-labeled probes 
(i.e., alternative dyes) for assessment of 
competition or kinetics [5,15]. Furthermore, 
when using recombinant proteins for in vitro 
determination of binding to RNA sequences, 
electrophoresed gels do not need to be trans-
ferred for visualization of bound complexes 
in our assay protocol. The modifications 
presented here optimize the REMSA method, 
particularly in process time and ease of use.
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