






patients based on individual variations in either meta-
bolic load (M) or cell death sensitivity (βap). Both these
parameters had a similar effect on the threshold of fail-
ure of the virtual patients. In this section, we investi-
gated how the threshold of failure changes in virtual
patients based on simultaneous variations in these two
intrinsic perioperative parameters. We simulated the dy-
namic model by varying the two parameters (M and βap)
using a Sobol sample of size 50 × 50, and the remaining
parameters were fixed at human optimized value for
two-thirds resection (Fig. 1b; Table 1). Sobol sampling of
size 50 × 50 corresponds to metabolic load and cell death
sensitivity such that each value of metabolic load is
paired with all the values of cell death sensitivity and
vice-versa. This approach yielded a cohort of 2500 vir-
tual patients.
Based on the simulation results from 2500 virtual pa-

tients, we developed a map of the threshold of failure as
a function of metabolic M and cell death sensitivity βap
(Fig. 7a). Low values of both the parameters resulted in
a high threshold of failure (i.e., larger resections are

safe), and conversely high values of these two parameters
diminished the threshold of failure to low levels (i.e., only
small resections remain safe). The Fig. 7a map shows a
clear separatrix between the two regions corresponding to
recovery and failure. We analyzed the phase planes corre-
sponding to distinct locations in the Fig. 7a map. The
phase plane corresponding to a location on the separatrix
is shown in Fig. 7b. For this case, a resection of up to 58%
led to liver recovery. By contrast, the phase portrait for a
lower level of cell death sensitivity parameter, at same
metabolic load as in Fig. 7b, yielded a threshold of failure
of 79% (Fig. 7c). Increasing the cell death sensitivity for
the same level of metabolic load as in Fig. 7b, shifted the
system into the zone without a safe level of resection
(Fig. 7d). Correspondingly, holding the cell death sensitiv-
ity at the same level as in Fig. 7b, and altering the meta-
bolic load shifted the threshold of failure between the two
regions demarcated by the separatrix. The phase plane of
the virtual patient with the lower metabolic load yielded a
threshold of failure at 87% resection (Fig. 7e), whereas the
virtual patient with the higher metabolic load exhibited

Fig. 6 Phase portrait for quiescent (Q) and replicating (R) cell fractions with varying levels of metabolic load parameter M. All other parameters
were set to the optimal levels given in Table 1 The filled circle markers in a-c represent different levels of resection. The red dashed curves
represent trajectories for the critical level of resection at and above which failure occurs. a M = 4, yields a threshold of liver failure at 87%
resection. b M = 12, yields a threshold of liver failure at 56% resection. c M = 22, for which there is no safe level of resection. d Influence of
metabolic load on the threshold of liver failure. Red cross markers in panel d represent the threshold of failure for the corresponding phase
planes a-c
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liver failure for even a small level of resection (Fig. 7f).
These results demonstrate that, the phase portrait with a
high threshold of failure (green zone of the Fig. 7a map)
contains two attractors, corresponding to liver failure and
liver recovery modes. By contrast, the phase plane with a
low threshold of failure (red zone of Fig. 7a map) con-
tained only one attractor, corresponding to that of liver
failure. These results demonstrate the utility of the phase
transition map for determining the safe level of resection
for a given patient.

Discussion
We started with a quantitative model of liver regener-
ation response to resection and fine-tuned the parame-
ters to account for a normal liver recovery profile at
human-relevant time scales. We built on this initial
simulation and analyzed the distribution and modes of
response of a virtual patient cohort to varying level of
resection, which potentially account for differences due to
disease etiology, patient demographics, and perioperative
conditions. Notably, the range of parameter variation cov-
ered a full span of an individual virtual patient’s potential
response along three distinct modes: accelerated growth,
slower recovery, and failure. Our approach differs from
that of a population of models (POM) approach [24], in
which the objective is to account for the distribution of re-
sponses in clinical data, and the response of a virtual pa-
tient is accepted or rejected based on a specified tolerance

limit. By contrast, our approach is targeted at characteriz-
ing the entire range of responses to analyze the distinct
modes of response across all virtual patients. Such an un-
biased approach has been pursued in other studies with
informative results on parameter subspaces that distin-
guish qualitatively different patient responses [23]. Our
Sobol sampling-based wide range of simulations led us to
identify subsets of critical parameters and their combina-
tions that govern the transitions in the response of virtual
patients to varying levels of resection. Our approach to ac-
counting for dynamics of human liver regeneration re-
sponse to resection is different from that of Yamamoto et
al. [18] study from which we utilized the liver volumetric
data to tune the computational model parameters. Yama-
moto et al. [18] model was based on modification of a lo-
gistic model whose response is largely governed by the
sign of the initial rate of response to resection (positive
value leading to recovery, and negative value leading to
failure). This simplified representation allowed the devel-
opment of a discriminant function to correlate the rate of
liver regeneration to the pre- and perioperative clinical
factors, and then predicted the outcome based on a binary
classification of the initial rate of liver regeneration being
positive or negative. By contrast, we utilized a multi-scale
network model that contains a relatively more detailed
representation of molecular interactions and cellular
functional states, and tuned the parameters of the model
to account for the observed timescales of human liver

Fig. 7 a Heatmap showing influence of metabolic load and cell death sensitivity parameters on the threshold of liver failure in terms of fraction
of resection that is safe. Black cross markers represent the virtual patients for the corresponding phase portraits in panels b-f. b Phase plane for
metabolic load (M) = 2.293 and cell death sensitivity (βap) = 0.071, yielding a threshold of failure at 58% resection. This scenario corresponds to the
critical transition from high threshold to low threshold of liver failure on the heatmap in panel a. c M= 2.293 and βap = 0.053, yields a threshold
of failure at 79% resection. d M= 2.293 and βap = 0.085, yields a virtual patient for whom all levels of resection lead to failure. e M= 1.139 and
βap = 0.071, yields a threshold of failure of 87%. f M= 3.447 and βap = 0.071, yields a virtual patient for whom all levels of resection resulted in a
failure. The circular markers in the phase portraits represent different levels of resection and the red curves denote the critical level of resection
above which the system progresses towards the failure mode
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regeneration. We analyzed the influence of key parameters
on the outcome based on the level of resection, and exam-
ined the quantitative relationship between variations in
two key parameters and the threshold of failure.
Our study considered a cohort of virtual patients

based on two critical parameters: metabolic load and
cell death sensitivity. These two model-predicted crit-
ical parameters are perioperative factors and have the
potential to be estimated from patient-specific clinical
information. For instance, metabolic load can be empir-
ically related to mass, body mass index [25], and further
modified based on other factors such as age, gender,
etc. of the patient [26, 27]. We expect that cell death
sensitivity can be related to disease etiology, patient’s
medical history, and perioperative conditions such as
blood loss (Yamamoto et al. [18]). It is reasonable to
expect that certain patients may be more sensitive to
injury than others depending on the advanced versus
earlier stage of the underlying liver disease. In addition,
aging also has a significant impact on cell death sensi-
tivity [28, 29]. On the contrary, healthy liver donor
transplant is likely less sensitive to increase in meta-
bolic demand per unit of tissue and cell death sensitiv-
ity as compared to liver of a patient with underlying
chronic disease or a patient being operated to treat a
metastatic tumor. Understanding the combinatorial ef-
fect of these two intrinsic parameters, which likely vary
from patient-to-patient, on the mode of response to in-
jury can help with better characterization of the peri-
operative conditions under which liver surgery can lead
to a successful recovery or failure.
The determination of threshold of liver failure through

a phase portrait approach is analogous to detection of
tipping point in a complex dynamical system. Tipping
point is a “point of no return” that results in a transition
from the state of normal functioning to a catastrophic
state [30]. Examples of tipping point are widespread,
such as extinction of species in ecological systems, and
heavy load on electrical grids or internet, etc. Once such a
catastrophic state is attained, the system collapses and
there is no going back. In the case of resection, the tipping
point corresponds to the threshold of resection beyond
which the liver cannot recover and will always progress to-
wards reduced mass and failure. Our analysis suggests that
the tipping point after resection is dependent on a com-
bination of the level of metabolic load and the extent of
cell death sensitivity [31].
We emphasize that the network modeling approach

presented in this study is a post hoc analysis of the dy-
namics of human liver regeneration. Additional work
on identifying patient-specific parameters and develop-
ing parameter signatures corresponding to different pa-
tient groups based on demographics, disease etiology,
etc., so that the dynamic modeling can serve as a pre

hoc predictive tool that can aid in clinical decision mak-
ing. Availability of detailed perioperative clinical informa-
tion opens new opportunities for developing a categorical
(e.g., classification-based) or a quantitative relationship
between these physiological parameters (M and βap)
and patient-specific clinical parameters [18], aiding
generalization of the dynamic modeling approach. For
example, if the model prediction suggests a likelihood
of liver failure following resection, interventions such
as portal vein embolization to induce regeneration and
enhance pre-resection liver mass [32], preoperative
dietary restriction [33] and nutritional changes [34] to
reduce the risk of ischemia-reperfusion injury, as well
as preoperative reduction in systemic inflammation [35,
36], so as to modulate the metabolic load and cell death
sensitivity parameters and thereby shift the likely re-
sponse to the region of full recovery of liver mass. In
addition, the phase portrait technique can be employed to
further aid in predicting the likely safe level of resection.
Thus far, the computational modeling efforts by us

and others have considered liver as a uniform tissue in
a single lumped compartment [6, 8, 9]. Opportunities
exist for computational modeling approaches that ex-
plicitly consider multiple lobes of differing size with po-
tentially distinct responses to resection [37]. In such a
scenario, the metabolic load and cell death sensitivity
parameters may need to be considered as heteroge-
neous across liver tissue. Non-invasive imaging tech-
niques, which are regularly employed in the clinic to
obtain whole organ physiological and functional param-
eters, can aid in evolving the dynamic models in such
potentially fruitful directions.

Conclusions
In the present study, we have extended and fine-tuned a
network model of liver regeneration to predict the dy-
namics of human liver response to resection. Analysis of
the computational model helped us identify two crucial
factors associated with the metabolic load and cell death
post resection, which can control the dynamics of liver
regeneration response. Our simulations indicate that the
balance between these two factors is critical to drive the
response towards liver recovery or failure. We evaluated
the distribution of responses in a cohort of virtual pa-
tients, and analyzed the responses using phase plane
analysis to identify how the threshold of liver failure var-
ies as a function of the model-predicted critical factors.
Our analysis demonstrates a model-based approach to
estimate the safe level of resection to increase the likeli-
hood of recovery. These results serve as a basis for fu-
ture efforts focused on relating the two model-predicted
critical factors to patient-specific pre- and perioperative
clinical parameters to aid in clinical decision making.
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Methods
Computational model
We employed the mathematical model of Cook et al.
[8] which is an extension of the model proposed by
Furchtgott et al. [6]. This model describes the hepato-
cyte growth after partial hepatectomy. In this model,
hepatocytes enter the cell cycle and is assumed to exist
in one of the three states quiescent (Q), priming (P) or
replicating (R) via a cascade of signals from cytokines
and growth factors [38, 39]. We assume the liver to be
a lumped system, and consequently, the molecular changes
in hepatocytes are considered to be spatially homogeneous
throughout the remnant liver mass in the present lumped
parameter model.
The dynamic response to partial hepatectomy is mod-

eled as governed by 11 ordinary differential equations.
Three of these variables represent the hepatocyte pro-
portions in the three distinct functional states (quies-
cent, primed, and replicating). Seven of the remaining
equations describe the dynamics of molecular factors
that take into account the molecular regulation of hepa-
tocytes, e.g., cytokines signals from Kupffer cells for
priming of hepatocytes, and growth factor signals from
hepatic stellate cells. The last equation accounts for the
relative cell mass to incorporate hypertrophy along with
hyperplasia in the model. In this work, the model pro-
posed by Cook et al. [8] was modified to account for
senescent, non-replicating cells by modifying the meta-
bolic load per unit cell number (M / N). This variable
was replaced by metabolic load per unit of replication-
competent and senescent cells (M / (N+ε)), where N
represents cells that can grow via hyperplasia and hyper-
trophy and ε represents cells that do not grow but are
still functional. For the simulations in the present study,
we have assumed 1% cells as functional but not capable
of replication, and so ε = 0.01. This modification reduces
the numerical error encountered in simulations corre-
sponding to liver failure scenarios. The model equations
are given as below:

Cellular states:

dQ
dt

¼ −kQP IE½ �− IE0½ �ð ÞQþ kRQ ECM½ �R
þ kreqσreqP−kapσapQ ð1Þ

dP
dt

¼ kQP IE½ �− IE0½ �ð ÞQ−kPR GF− GF0½ �ð Þ
P−kreqσreqP−kapσapP

ð2Þ

dR
dt

¼ kPR GF½ �− GF0½ �ð ÞP−kRQ ECM½ �R
þkprolR−kapσapR

ð3Þ

Molecular factors:

d IL6½ �
dt

¼ kIL6
M

N þ ε
−

V JAK IL6½ �
IL6½ � þ KJAK

M

−κIL6 IL6½ � þ k1

ð4Þ

d JAK½ �
dt

¼ V JAK IL6½ �
IL6½ � þ KJAK

M

−κJAK JAK½ � þ k2 ð5Þ

d½STAT3�
dt

¼ VST3½ JAK �½proSTAT3�2
½proSTAT3�2 þ KST3

M ð1þ ½SOCS3�=KSOCS3
I Þ

−
V IE½STAT3�

½STAT3� þ KIE
M

−
VSOCS3½STAT3�

½STAT3� þ KSOCS3
M

−κST3½STAT3� þ k3

ð6Þ
d SOCS3½ �

dt
¼ VSOCS3 STAT3½ �

STAT3½ � þ KSOCS3
M

−κSOCS3 SOCS3½ � þ k4

ð7Þ

d IE½ �
dt

¼ V IE STAT3½ �
STAT3½ � þ KIE

M

−κIE IE½ � þ k5 ð8Þ

d GF½ �
dt

¼ kGF
M

N þ ε
−kup GF½ � ECM½ �

−κGF GF½ � þ k7

ð9Þ

d ECM½ �
dt

¼ −kdeg IL6½ � ECM½ �−κECM ECM½ � þ k6 ð10Þ

Relative cell mass:

dG
dt

¼ kG
M

N þ ε

� �
−kGM ð11Þ

where,

ε ¼ 0:01 ð12Þ

σap ¼ 0:5 1þ tanh
θap− N þ εð Þ=M

βap

 ! !
ð13Þ

σreq ¼ 0:5 1þ tanh
θreq− GF½ �

βreq

 ! !
ð14Þ
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N ¼ Qþ G P þ Rð Þ ð15Þ

k1 ¼ V JAK

1þ K JAK
M

−kIL6
M

Nss þ ε
þ κIL6 ð16Þ

k2 ¼ κJAK−
V JAK

1þ KJAK
M

ð17Þ

k3 ¼ −
VST3 proSTAT3½ �2

proSTAT3½ �2 þ KST3
M 1þ 1=KSOCS3

I

� �
þ V IE

1þ KIE
M

þ VSOCS3

1þ KSOCS3
M

þ κST3

ð18Þ

k4 ¼ −
VSOCS3

1þ KSOCS3
M

þ κSOCS3 ð19Þ

k5 ¼ −
V IE

1þ KIE
M

þ κIE ð20Þ

k6 ¼ kdeg þ κECM ð21Þ

k7 ¼ −kGF
M

NSS þ ε
þ kup þ κGF ð22Þ

NSS ¼ 0:99 ð23Þ
Here, the parameters k1 … k7 are defined such that the

rate of change of molecular species over time is set to
zero under normal functioning of the liver, i.e. a steady
state, prior to resection. These parameters correspond
to homeostatic in- and out-fluxes in the liver at steady
state, and are not altered during the liver regeneration
process. NSS is the steady state of the non-senescent
liver mass before resection. NSS and ε together constitute
the steady state of the total liver mass prior to surgery.

Initial conditions:

Q0 ¼ remnant liver fraction;P0 ¼ 0;R0 ¼ 0

½IL60� ¼ 1; ½ JAK 0� ¼ 1; ½STAT30� ¼ 1;

½SOCS30� ¼ 1; ½IE0� ¼ 1; ½GF0� ¼ 1; ½ECM0� ¼ 1

G0 ¼ 1
N0 ¼ Q0 þ G0ðP0 þ R0Þ ¼ Q0

ð24Þ

Simulation and parameter optimization
The Matlab code used for model simulation in this study
is available as supplemental information in Additional file 8.
Simulations were performed in Matlab using ode15s. The
initial guess values of the parameters for optimization
were based on the values given in Cook et al. [8] for hu-
man population. The parameters of the model were opti-
mized using the sparse regularization technique of elastic

net, which is a combination of ridge regression and Lasso
[40, 41]. We sampled the parameter space using Sobol
sampling [42, 43] with a few parameters varied over a
ten-fold range and the remaining parameters varied within
a two-fold range around the initial value (Additional file 9:
Table S3). The parameter ranges were so chosen to avoid
the numerical integration error since the system of equa-
tions for the model is stiff. The Matlab code for parameter
optimization is available as supplemental information in
Additional file 10.

Metabolic scaling from rat to human based on body mass
For the comparative analysis of parameter tuning we
considered two alternative approaches to multivariate
optimization. We calculated the metabolic load (M) based
on the empirical scaling relationship between M and body
mass, as published in Young et al. [21] and Cook et al. [8].
In the case of Young et al. [21], the M value is calculated
as:

M ¼ 23:409 x Body Mass−0:118 ð25Þ

In the case of Cook et al. [8], the M value is calculated
as:

M ¼ 47:315xBodyMass−0:1825 ð26Þ

where Body Mass is in grams in Eqs. (25) and (26).
In addition to M, we also modified the relative cell mass

growth constant (kG) to 6.5675e-4 when simulating the
model according to the parameter tuning published by
Cook et al. [8] to translate from rat to the human case.
For each patient, the body mass was calculated from

the available body mass index (BMI) data from Yama-
moto et al. [18]. The BMI values were converted to body
mass values based on average height of Japanese adult
men (1.72 m) and women (1.58 m) [44], as follows:

Body Mass ¼ 1000xBMI xheight2 ð27Þ

where BMI is in kg/m2, Body Mass is in grams and
height is in meters.

Virtual patient cohort generation
In order to identify the critical factors controlling both
the mechanism of liver recovery and failure, we gener-
ated in silico cohorts of virtual patients [23, 45] starting
with specific patient data (ID71) from Yamamoto et al.
[18] and introducing wide variation in specific parame-
ters as detailed in the Results. We utilized a Sobol sam-
pling approach that yields a space-filling sample with
little bias [43]. The model-predicted critical factors were
first varied one at a time and then in combination to
analyze their influence on the individual patient liver re-
sponse to surgical resection. The Matlab code for virtual
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patient cohort analysis is available as supplemental infor-
mation in Additional file 11.

Decision boundary and threshold of failure
The decision boundary demarcating the normal liver
growth from the other classes of liver response were drawn
using a support vector machine approach with a third
order polynomial kernel using fitcsvm function in Matlab
with BoxConstraint in the range of 1 to 104, for different
levels of resection [46]. For each virtual patient, the thresh-
old of failure was calculated by evaluating the response to
varying level of resection, ranging from 5 to 90%. The re-
sponse was considered as liver failure if the liver mass frac-
tion was below 0.1 at the 2 year time point post-surgery.
Responses of a virtual cohort of patients were simulated
for different levels of resection to identify the threshold of
resection beyond which any given virtual patient under-
goes liver failure.

Response mode analysis
The in silico generated regeneration profiles of differ-
ent virtual patients are classified as normal growth
when the liver mass fraction at 2.5 years post-surgical
resection is within 0.9–1.1 and as suppressed mode for
fraction below 0.9 for recovered patients. Liver failure
modes are those where the liver mass fraction is below
0.1 after a 2 year post surgery. The unresponsive mode
corresponds to the case where the virtual patient does
not show any change in the liver mass fraction after
surgery.

Clinical data set
The data used for the present work has been obtained
from Yamamoto et al. [18], which contained information
on liver volume post liver resection in 196 patients. We
analyzed the data to identify the subset of patients who
recovered fully i.e., the patients whose final liver volume
was in the range of 90 to 100% of the preoperative liver
volume. There were a total of 101 patients whose liver
volume recovered fully. These patients were further cat-
egorized based on the temporal profile of liver growth.
Some patients showed delayed liver growth, while others
exhibited suppressed but continuous liver growth.

Model reproducibility
Simulations presented in the current work were repro-
duced independently by a laboratory colleague, not asso-
ciated with the study, who developed new Matlab code
based on the model equations and parameter values in-
cluded in this manuscript. See Additional file 12: Figure
S6 for details. The original and reproduced model are
provided in the Additional files 1 and 13.

Additional files

Additional file 1: Table S1. Comparison of the metabolic load calculated
by the three different approaches of Young et al. [21], Cook et al. [8]
and present multivariate optimization approach with the corresponding
sum square errors for fit to the liver volume time series data from
Yamamoto et al. [18]. (PDF 29 kb)

Additional file 2: Figure S1. Comparison of the three alternative
approaches of Young et al. [21], Cook et al. [8] and present multivariate
optimization for model tuning to fit liver volume time series data
corresponding to patient ID74 from Yamamoto et al. [18]. (PDF 235 kb)

Additional file 3: Figure S2. Pairwise correlation between optimized
model parameters with clinical data of the 27 patients from Yamamoto
et al. [18]. (PDF 268 kb)

Additional file 4: Figure S3. Correlation between the optimization-
based parameters across 27 patients. (PDF 337 kb)

Additional file 5: Table S2. Classification of model parameters of Cook
et al. [8] model based on their directional influence on liver response.
(PDF 161 kb)

Additional file 6: Figure S4. Comparison of the impact of intrinsic
perioperative factors, metabolic load (M) and cell death sensitivity (βap)
between rat and human liver regeneration scenarios. (PDF 478 kb)

Additional file 7: Figure S5. Determining the safe level of resection
based on cell death sensitivity (βap), an intrinsic perioperative factor.
(PDF 392 kb)

Additional file 8: Matlab code to generate the regeneration profiles and
phase plane portrait for predicting the threshold of failure. (M 11 kb)

Additional file 9: Table S3. Description of model parameters with their
bounds considered in the optimization. (PDF 174 kb)

Additional file 10: Matlab code to optimize the model parameters
using elastic net technique. (M 10 kb)

Additional file 11: Matlab code for virtual patient cohort analysis. (M 11
kb)

Additional file 12: Figure S6. Model reproducibility. Using the model
equations and parameters given in the main text. (PDF 484 kb)

Additional file 13: Matlab code used to reproduce the results of the
original model implementation. (M 19 kb)
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