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Metabolic reprogramming of murine cardiomyocytes during
autophagy requires the extracellular nutrient sensor decorin
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The extracellular matrix is a master regulator of tissue home-
ostasis in health and disease. Here we examined how the small,
leucine-rich, extracellular matrix proteoglycan decorin regu-
lates cardiomyocyte metabolism during fasting in vivo. First, we
validated in Dcn�/� mice that decorin plays an essential role in
autophagy induced by fasting. High-throughput metabolomics
analyses of cardiac tissue in Dcn�/� mice subjected to fasting
revealed striking differences in the hexosamine biosynthetic
pathway resulting in aberrant cardiac O-�-N-acetylglycosyla-
tion as compared with WT mice. Functionally, Dcn�/� mice
maintained cardiac function at a level comparable with non-
fasted animals whereas fasted WT mice showed reduced ejec-
tion fraction. Collectively, our results suggest that reduced sens-
ing of nutrient deprivation in the absence of decorin preempts
functional adjustments of cardiac output associated with meta-
bolic reprogramming.

Decorin, a small, leucine-rich proteoglycan localized to the
extracellular matrix (1–3), regulates numerous functions to
maintain cellular homeostasis as well as to prevent tumorigen-
esis (4, 5), making it a bona fide “guardian from the matrix” (6).
Most recently, the research surrounding decorin has involved
studying its increasingly important role in the control of catab-
olism. Specifically, decorin initiates autophagy in endothelial
(7, 8) and glioma cells (9) and mitophagy in triple-negative
breast carcinoma cells (10) via its interaction with and signaling
through receptor tyrosine kinases (RTKs)2. Furthermore,
decorin is itself an autophagy-sensitive factor (11) where it is
induced in response to nutrient deprivation as well as following

direct mTOR inhibition. Additionally, we discovered that mice
lacking decorin are insensitive to starvation-induced cardiac
autophagy following a 1-day period of fasting (11).

In the context of metabolism and metabolic disorders, nutri-
ent and energy status are emerging as intimate partners with
autophagy and its deregulation. In particular, research in this
area illustrates that abnormal glucose metabolism results in
augmented flux through the hexosamine biosynthetic pathway
(HBP), leading to increased levels of protein O-GlcNAcylation
and consequent inhibition of autophagy (12, 13). Taken
together, because aberrations in both autophagy and metabo-
lism have been implicated in many cardiac disorders, we ques-
tioned whether decorin plays a role in linking these processes
with cardiac function.

In this study, we show that decorin is a crucial nutrient sensor
in vivo that is required for the induction of fasting-mediated
cardiac autophagy, a fundamental process that has been shown
to be cardioprotective (14, 15). Moreover, we show that Dcn�/�

mice differed from WT mice in their cardiac glucose utilization,
subsequently resulting in anomalous O-GlcNAcylation follow-
ing nutrient-related stress. We discovered that these differ-
ences in autophagy and metabolism altered cardiac function as
genetic ablation of decorin preserved ejection fraction follow-
ing fasting, and this could be reversed by systemic delivery of
recombinant decorin. Thus, we present a new role for an extra-
cellular matrix proteoglycan at the epicenter of autophagy and
metabolism, which modulates cardiac function. These results
contribute to a better understanding of how factors outside the
cell are imperative for regulating intracellular processes leading
to physiologic consequences. Hence, we propose that these
findings will pave the way for other discoveries of outside-in
signaling that will enhance our ability to regulate biochemical
processes in a manner that will ultimately be useful in a trans-
lational setting.

Results

Prolonged fasting cannot transcend the cardiac autophagic
defect in Dcn�/� mice

Because our previous work demonstrated the necessity of
decorin expression for cardiac autophagy in response to 25-h
nutrient deprivation (11) (Fig. S1), we investigated the possibil-
ity that prolonged fasting (48 h) could overcome this
autophagic impairment in Dcn�/� mice. To this end, we eval-
uated expression of the lipidated version of microtubule-asso-
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ciated light chain protein 3 (LC3-II). Because this lipidated
form of LC3 associates with the autophagosomal membrane,
quantification of its levels are often used as an accurate approx-
imation of autophagic activity (16). Interestingly, in WT mice,
we found that a 48-h fasting resulted in robust conversion of
cardiac LC3-I to LC3-II, indicating enhanced autophagic activ-
ity, whereas, under the same conditions of nutrient deprivation,
LC3-II levels were unchanged in the Dcn�/� hearts (Fig. 1A).
Indeed, 48-h fasted levels of cardiac LC3-II were significantly
lower in Dcn�/� vis-à-vis WT mice (Fig. 1B), illustrating that
their autophagic capability in response to nutrient deprivation

remained impaired even with protracted stimulation of this
catabolic pathway. We were curious as to the blunted
autophagic response to starvation in the Dcn�/�heart, and so
we delved deeper into the nuances of decorin-mediated cardiac
autophagy and found that Dcn�/� mice were less sensitive to
mTOR inhibition than their WT equivalents. Specifically, we
noted lower levels of LC3-II following Torin 1 administration in
mice lacking decorin than in WT controls (Fig. S2, A and B).
Moreover, after blocking autophagic flux in vivo via chloro-
quine administration, fasted Dcn�/� mice exhibited lower car-
diac LC3-II levels than fasted Dcn�/� mice, further supporting

Figure 1. Exogenous decorin treatment, but not prolonged nutrient deprivation, restores fasting-induced autophagy in Dcn�/� hearts. A, represen-
tative Western blotting of LC3 protein levels in WT and Dcn�/� hearts following 48 h of fasting. B, quantification of (A) via densitometric analysis. C–F,
representative sections of fed and fasted WT and Dcn�/� cardiac tissue demonstrating LC3-positive puncta (red). Nuclei are stained with DAPI (blue). Arrows
denote the puncta. Scale bar �10 �m. G, quantification of LC3-positive puncta seen in C–F. H, fed and fasted Map1lc3a expression levels in WT and decorin-
treated Dcn�/� hearts. I, Western blotting for cardiac LC3 protein levels in fed and fasted WT and decorin-treated Dcn�/� mice. J, quantification of (I). K,
phosphorylated (Tyr1135/36) and total Igf1r expression in WT and Dcn�/� hearts in fed and fasted states. L, quantification of P-Igf1r/total Igf1r in (K). Data
represent mean � S.E. p values calculated using Student’s t test.
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the idea that Dcn�/� hearts undergo lower levels of autophagy
than Dcn�/� mice (Fig. S2, C and D). In addition, we examined
the levels of another autophagic effector, Beclin 1, and found, as
others have (17), that fasting did not change appreciably the
levels of Beclin 1 in WT hearts, nor were Beclin 1 levels signif-
icantly altered between the two genotypes in either the fed or
the fasted state (Fig. S2, E and F).

We also recognized that our model relied on whole cardiac
tissue lysates. To determine which cell types were most affected
by lack of decorin, we localized LC3 in cardiac tissue sections
primarily to cardiomyocytes. As these cell types make up the
majority of the composition of the heart, we concluded that the
autophagic differences (quantified here via analysis of LC3-
positive puncta) between WT and Dcn�/� hearts were
potentially caused by the effects of circulating decorin on
these cardiac myocytes (Fig. 1, C–G). Thus, we hypothesized
that decorin acts as an essential nutrient sensor in vivo to
provoke this catabolic process in cardiac tissue when energy
levels are low.

Decorin treatment rescues cardiac autophagy levels in
response to nutrient deprivation

Of note, the protein core of decorin interacts with RTKs to
modulate intracellular signaling cascades (18 –23) whereas the
glycosaminoglycan chain is dispensable for most of its biologi-
cal activity (24, 25). This finding is especially true for its ability
to evoke autophagy as we have described previously (7). There-
fore, to test our hypothesis that decorin is a nutrient sensor in
vivo, we treated Dcn�/� mice with recombinant human decorin
protein core (10 mg/kg) and then assessed autophagy levels
following 25 h of fasting. We first examined expression of the
Map1lc3a gene encoding LC3, because this gene is inducible by
starvation in WT, but not Dcn�/� hearts (11). Remarkably,
treatment with exogenous decorin resulted in fasting-mediated
induction of this gene in Dcn�/� cardiac tissue, although to
levels lower than WT counterparts (Fig. 1H). More impor-
tantly, decorin treatment caused an increase in LC3-II protein
levels in fasted Dcn�/� hearts that was comparable with the
levels observed in WT mice following this same period of nutri-
ent deprivation (Fig. 1, I and J). Therefore, introducing decorin
into mice devoid of this proteoglycan rescues the fasting-re-
lated autophagic defect in the heart. Interestingly, decorin
treatment did not alter levels of LC3-II in the fed state of
Dcn�/� hearts compared with fed WT levels (Fig. 1, I and J).
Thus, the pro-autophagic effects of decorin must occur primar-
ily in a nutrient-depleted state, confirming a new role for this
small, leucine-rich proteoglycan as a cardiac nutrient sensor to
regulate catabolism.

Because decorin is a well-documented pan-RTK inhibitor
(5), we surmised that decorin’s nutrient-sensing ability must
transpire via an outside-in receptor–mediated pathway. Given
that the insulin-like growth factor 1 receptor (Igf1r) is a known
decorin-binding partner (19, 25, 26) and because Igf1r signaling
is vital for both metabolic homeostasis and cardiac function
(27), we explored the possibility that Dcn�/� mice display dys-
regulated signaling through this RTK. Although we found sim-
ilar expression of total cardiac Igf1r between WT and Dcn�/�

mice in both fed and fasted states, we found differential phos-

phorylation of this receptor at the Tyr1135/36 residues (Fig. 1, K
and L). Specifically, there were relatively high levels of Igf1r
phosphorylation in the fed state in WT hearts, which were
reduced significantly upon 25-h fasting (Fig. 1, K and L). In
contrast, phosphorylated Igf1r in Dcn�/� mice was signifi-
cantly lower in the fed state and remained low following fasting
(Fig. 1, K and L). This dichotomy in Igf1r phosphorylation sta-
tus correlated with the relative insensitivity to nutrient-related
cues in the absence of decorin. Moreover, combining this aber-
rant Igf1r phosphorylation with the autophagic deficiency in
Dcn�/� hearts suggests potential metabolic irregularities in
these mice.

Dcn�/� mice exhibit global metabolism comparable with WT
mice

Given these findings, we compared common metabolic
parameters in WT and Dcn�/� mice to determine whether sys-
temic differences in metabolism might explain the suppressed
autophagy in Dcn�/� hearts. We began by measuring blood
glucose in the fed, 25-h fasted, and 48-h fasted states. We chose
a consistent time of day (morning) to measure the glucose levels
among many mice over multiple experiments to ensure scien-
tifically robust and accurate recordings, especially for the non-
fasted animals. Surprisingly, Dcn�/� mice had elevated fed
blood glucose levels vis-à-vis WT mice (Fig. 2A). However, both
standard (25 h) and extended (48 h) periods of fasting resulted
in similar levels of hypoglycemia in both genotypes (Fig. 2A).
Despite the higher glucose measurements in Dcn�/� mice in a
state of satiety, glucose tolerance was equivalent between WT
and Dcn�/� mice (Fig. 2B), suggesting intact glucose clearance
mechanisms. Moreover, fed and fasted plasma insulin levels
were nearly identical between WT and Dcn�/� mice, and both
genotypes responded appropriately to fasting by lowering cir-
culating insulin levels (Fig. 2C). Looking at other global and
cardiac metabolic markers, we again found no major changes
between WT and Dcn�/� mice. Specifically, quantification of
cardiac glycogen was similar (Fig. 2D), as was measurement of
circulating and cardiac free fatty acids, both in the fed and
fasted state (Fig. 2, E and F). Hence, WT and Dcn�/� mice
demonstrate comparable global metabolic parameters, includ-
ing glucose clearance and insulin sensitivity with no major per-
turbations in glycogen turnover or fatty acid metabolism.

High-throughput metabolomics analysis reveals abnormal
cardiac glucose utilization in Dcn�/� mice

Next, we considered metabolic differences in WT and
Dcn�/� cardiac tissue as they related to nutrient catabolism.
To this end, we performed an unbiased, high-throughput
MS-based metabolomics study (see also the supporting data-
set). Intriguingly, many differences were noted in pathways
involving glucose utilization, especially following fasting. We
detected a common pattern whereby fasting resulted in
increased levels of certain metabolites in WT samples, but this
increase was either attenuated or not evident in Dcn�/� hearts.
For example, glucose and glucose-6-phosphate were signifi-
cantly higher in fasted versus fed WT hearts (Fig. 3, A and B).
However, this same amount of nutrient deprivation resulted in
no significant increase in fasted glucose and a much lower

Decorin senses nutrient status for proper cardiac function
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increase in fasted levels of glucose-6-phosphate in Dcn�/� car-
diac tissue (Fig. 3, A and B). Indeed, the fasted levels of these
metabolites were significantly lower than the amounts mea-
sured in WT fasted samples (Fig. 3, A and B).

Because glucose and glucose-6-phosphate are shuttled
through several different pathways, we next examined glyco-
lytic intermediates. We found that 1,6-fructose-bisphosphate
followed the aforementioned paradigm, with a blunted
response in the fasted state in Dcn�/� hearts (Fig. 3C). In con-
trast, the late glycolytic intermediates, 3-phosphoglycerate and
its isomer 2-phosphoglycerate, trended toward being higher
than the WT levels, particularly in the fasted state (Fig. 3, D and
E). Analysis of the citric acid cycle intermediates aconitate and
succinate revealed minimal changes with fasting in WT hearts
(Fig. 3, F and G). In contrast, fasting resulted in decreased levels
in Dcn�/� cardiac samples (Fig. 3, F and G). Fasted WT hearts
also exhibited increased fumarate, whereas fasting did not alter
Dcn�/� fumarate levels, although the differences between gen-
otypes in the fasted state were not significant (Fig. 3H).

Like glucose, the pentose phosphate pathway intermediates
6-phosphogluconate and sedoheptulose-7-phosphate were
increased in fasted WT mice, whereas no significant changes
were found with fasting in Dcn�/� hearts (Fig. 3, I and J). Addi-
tionally, the UDP sugars UDP-glucose and UDP-galactose were
significantly decreased with fasting in WT hearts, but main-
tained or less significantly decreased with fasting in Dcn�/�

mice (Fig. 3, K and L).
Given these differences and given that the heart typically uses

fatty acid oxidation under starvation conditions, we focused on

glycolytic genes to investigate the possibility that the Dcn�/�

hearts primarily used glycolysis rather than lipid metabolism
during this stressor (Fig. S3, A–D). However, although we
found differential expression between genotypes of Pgam2 and
Eno1 following fasting for 25 h (Fig. S3, C and D), we did not find
any significant alterations in protein expression at this time
point (Fig. S3, E–H). There did appear to be lower levels of Eno1
protein expression in Dcn�/� hearts that had undergone 48 h of
fasting (Fig. S3, F and H). However, given that metabolomics
data were obtained at the 25 h time point, we did not follow
this finding. Thus, we considered an alternate glucose utili-
zation pathway occurring at 25 h to explain these metabolic
differences.

Dcn�/� hearts augment flux through the hexosamine
biosynthetic pathway following fasting resulting in increased
cardiac O-GlcNAcylation

Although only 2–5% of glucose enters the HBP, we scruti-
nized several of its intermediates, as it is a known nutrient and,
particularly glucose, sensing pathway. We identified the consis-
tent increase in many metabolites with fasting in WT hearts
(fructose, glutamine, glucosamine-6-phosphate), which was
attenuated in fasted Dcn�/� samples (Fig. 4, A–C). Notably, in
addition to less pronounced increases with fasting, many of
these Dcn�/� fasted measurements were significantly lower
than the levels in fasted WT tissue (Fig. 4, A–C). Of interest,
fasting decreased Dcn�/� GlcNAc-6-phosphate, whereas its
epimer, GlcNAc-1-phosphate, showed only modest differences
(Fig. 4, D and E). Perhaps most noteworthy, uridine diphos-

Figure 2. Dcn�/� mice exhibit global metabolism comparable with WT mice. A, blood glucose measurements of fed, 25-h fasted, and 48-h fasted WT and
Dcn�/� mice. B, glucose tolerance curves of WT and Dcn�/� mice at designated time points. C, fed and fasted WT and Dcn�/� plasma insulin levels measured
via ELISA. D, quantification of fed and fasted cardiac glycogen levels. E and F, fed and fasted free fatty acid levels in WT and Dcn�/� mice in plasma (E) and cardiac
tissue (F). Data points represent individual animals. In B, data represent mean � S.E. p values calculated using Student’s t test.
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phate levels were barely detectable in fasted WT hearts (Fig.
4F). However, although a slight decrease was apparent in fasted
Dcn�/� cardiac tissue, these levels were significantly higher
than those seen in the WT samples (Fig. 4F).

We must emphasize that this analysis was executed after 25 h
of fasting, as the differences in cardiac autophagy levels
between WT and Dcn�/� mice were unmistakable even with
this standard period of nutrient deprivation. Thus, because
these measurements were taken at one static time point, these
metabolic differences may be because of either increased or
decreased flux along these pathways. To gain insight into HBP
flux, we analyzed the expression of glutamine fructose-6-phos-
phate amidotransferase (Gfat), the rate-limiting enzyme of this
pathway. We specifically studied Gfat2, as this isoform is most
highly expressed in the heart. Remarkably, 25 h of fasting sig-
nificantly suppressed the expression of this protein in WT
hearts (Fig. 4, G and H). On the contrary, expression of Gfat2
remained constant with fasting in Dcn�/� cardiac tissue (Fig. 4,
G and H). Following these findings, we assessed total
O-GlcNAcylation and found that fasting did not significantly
alter this posttranslational modification in WT hearts, although

there was a slight trend toward decreased levels. In contrast,
fasting caused a nearly significant increase in O-GlcNAcylation
in Dcn�/� cardiac tissue vis-à-vis fed equivalents (Fig. 4, I
and J). In fact, fasted cardiac O-GlcNAcylation was signifi-
cantly higher in Dcn�/� mice when compared with fasted
WT counterparts (Fig. 4J). We conclude that Dcn�/� mice
utilize the HBP in cardiac tissue to a greater extent than WT
mice during fasting, resulting in amplified global cardiac
protein O-GlcNAcylation.

Dcn�/� mice preserve ejection fraction with fasting, which can
be reversed by systemic delivery of recombinant decorin

With regard to cardiac function, autophagy holds dual roles
as both a protective and pathological mechanism (28). Addi-
tionally, proper metabolism is particularly important for main-
taining cardiac homeostasis. Because Dcn�/� mice exhibit
impaired cardiac autophagy and aberrant glucose metabolism,
we posited that lack of decorin would cause anomalous cardiac
function. Structurally, we found no inherent differences
between WT and Dcn�/� hearts in terms of diastolic left ven-
tricular internal diameter (LVID), left ventricular posterior wall

Figure 3. High-throughput metabolomics analysis provides evidence that Dcn�/� mice demonstrate anomalous cardiac glucose utilization. Mass
spectrometry analysis of fed and 25-h fasted WT and Dcn�/� cardiac tissue. A and B, glucose and glucose-6-phosphate. C–E, glycolytic intermediates. F–H, citric
acid cycle by-products. I and J, pentose phosphate pathway metabolites. K and L, UDP sugars. Data points represent individual animals. p values calculated via
ANOVA contrasts.
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(LVPW) thickness, or interventricular septal (IVS) diameter
(Fig. 5, A–C). Thus, any functional differences arising between
the two genotypes would not be because of structural dispari-
ties, but rather because of purely functional alterations. In addi-
tion, no changes were noted between genotypes in the following
hemodynamic properties: systolic pressure, left ventricular end
diastolic pressure, and heart rate (Fig. 5, D–F).

Via M-mode echocardiography (Fig. 6, A–E), we calculated
the ejection fraction for both fed and fasted WT and Dcn�/�

mice (see also Videos S1–S5). In agreement with published data
(29, 30), we found that fasting significantly reduced ejection
fraction in WT mice (Fig. 6F). Surprisingly, ejection fraction
was maintained with fasting in Dcn�/� mice (Fig. 6F). Most
importantly, treatment with decorin protein core reverted the
fasted Dcn�/� ejection fraction to levels similar to those found
in the fasted WT mice (Fig. 6F). Hence, we conclude that
decorin is a critical nutrient sensor that is imperative for the
maintenance of normal cardiac function during low energy
states where its absence results in insensitivity to pro-au-
tophagic cues, altered downstream O-GlcNAcylation, and
inability to properly reduce cardiac output as a means of energy
preservation (Fig. 6G).

Discussion

The role of the extracellular matrix as a key regulator of in-
tracellular processes and organismal function is becoming
increasingly visible (31–40). Decorin is a keystone of this para-
digm, where it is implicated in a myriad of signaling pathways to
maintain a healthy environment as well as prevent pathology
associated with many different diseases, particularly cancer.
Our current study provides further evidence that decorin is a
significant regulator of critical cellular pathways via receptor-
mediated signaling where we have defined a new role for it as a
nutrient sensor that modulates cardiac autophagy and metab-
olism. Taken together, these functions position decorin as a
fundamental signaling effector to control cardiac output, espe-
cially under nutrient-deficient conditions.

Our recent findings that Dcn�/� mice exhibit reduced car-
diac autophagy even with prolonged nutrient deprivation and
the ability of exogenous decorin to provoke an autophagic
response in these same mice provide a new model for outside-in
signaling. Specifically, the fact that decorin only rescues
autophagic levels in vivo following fasting suggests that it is not
so much the mere presence of decorin, but rather its localiza-

Figure 4. Dcn�/� mice augment flux through the hexosamine biosynthetic pathway during fasting, resulting in increased cardiac O-GlcNAcylation.
A–F, MS analysis of hexosamine biosynthetic pathway intermediates in the heart. G, representative Western blotting of Gfat2 in fed and 25-h fasted WT and
Dcn�/� cardiac tissue. H, quantification of (G). I, analysis of global cardiac O-GlcNAcylation following 25-h fasting in WT and Dcn�/� mice. J, quantification of (I).
Data represent mean � S.E. p values calculated using either ANOVA contrasts (A–F) or Student’s t test (H and J).
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tion and/or binding partners during nutrient deprivation that
promote autophagy. Our investigation of Igf1r signaling sup-
ports this idea in that in both the fed and fasted states of Dcn�/�

hearts, there is minimal phosphorylation of this receptor, sig-
nifying insensitivity to extracellular cues in the absence of
decorin. As decorin binds and signals through Igf1r via its pro-
tein core, it is likely that this receptor–ligand interaction is
responsible for these findings. Alternatively, as decorin binds
several growth factors, including Igf-1 (1, 19), this deviant sig-
naling could also be because of impaired presentation of the
growth factor to its receptor. However, given that recombinant
decorin core was able to restore normal autophagy in response
to fasting, it is more likely that the former rather than the latter
is at play. Further study must be undertaken in this avenue to
parse out the exact role that decorin plays in these processes
with a focused emphasis on which binding partners are mem-
bers of this intricate assembly.

Given the differential phosphorylation of cardiac Igf1r in the
absence of decorin, we were somewhat surprised to find few
alterations in common metabolism markers between WT and
Dcn�/� mice. Although the Dcn�/� mice display elevated fed
blood glucose levels, they are not glucose intolerant or insulin
resistant, suggesting they are not overtly diabetic or even pre-
diabetic. Intriguingly, anecdotal observations from our lab note
that some, but not all, Dcn�/� mice demonstrate increased
abdominal adiposity when compared with WT mice, especially
as they age. Interestingly, proteomic analysis of obese patients

illustrates an accumulation of decorin in adipose tissue (41).
However, these studies were purely observational and no real
function for increased decorin expression in adipose tissue has
been elucidated as of yet. Therefore, we believe that decorin is
important for global metabolic homeostasis, although the exact
mechanism is still to be determined.

Despite only subtle global metabolic differences, we were
encouraged to find conspicuous cardiac metabolic disparities
vis-à-vis WT mice, particularly prominent in the HBP. Impor-
tantly, an independent metabolomics study similarly reported
altered cardiac metabolism in Dcn�/� mice (42), although in
the context of atrial fibrillation and not starvation. These met-
abolic aberrations may help explain the Dcn�/� autophagic
defect, as recent evidence supports the hypothesis that
increased O-GlcNAcylation inhibits autophagy. In a diabetic
model, pharmacologically increasing O-GlcNAcylation blunts
autophagic signaling specifically in cardiac tissue (13). Other
studies provide a role for O-GlcNAcylation as a means to pre-
vent autophagosome maturation by interfering with SNARE
proteins (43). In addition, Torin 1, a potent pro-autophagic
compound, inhibits O-GlcNAc transferase, the enzyme that
catalyzes O-GlcNAcylation, while simultaneously inducing the
antithetic O-GlcNAcase, which removes these posttransla-
tional modifications (44). Finally, loss of expression of Gfat, the
HBP rate-limiting enzyme, enhances autophagy as measured by
increases in LC3-positive puncta (43). Moreover, acute
increases in O-GlcNAcylation can act as a stress response.

Figure 5. There are no apparent structural disparities between WT and Dcn�/� hearts. A–C, echocardiography analysis of (A) left ventricular inner
diameter (LVIDd), (B) left ventricular posterior wall thickness (LVPWd), and (C) interventricular septal diameter (IVSd) in diastole. D–F, hemodynamic analysis of
(D) systolic pressure (SP), (E) left ventricular end diastolic pressure (LVEDP), (F) heart rate (HR). Data represent mean � S.E. p values calculated using Student’s
t test.
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Thus, the higher baseline levels of glucose in the fed state and
increased O-GlcNAcylation seen in fasted Dcn�/� cardiac tis-
sue indicate that this altered sugar usage could be an unortho-
dox mechanism in response to nutrient-related stress, which
may directly inhibit an autophagic response. Perhaps even
more interestingly, our earlier work shows that decorin is up-
regulated in the heart during periods of fasting (11). Hence, it is
possible that, during fasting, the WT heart moves toward a
biosynthetic state resulting in the diversion of UDP-GlcNAc
into proteoglycan synthesis, whereas in the absence of decorin,
the cardiac extracellular matrix improperly shunts this moiety
toward global O-GlcNAcylation.

Our findings regarding cardiac functional differences were
quite remarkable. Just as we found, other studies report that
fasting reduces ejection fraction (29, 30). Although autophagy
may be the main mechanism to recycle nutrients to sustain
cardiac homeostasis in WT hearts, the reduction in ejection
fraction may be an additional fail-safe to further support car-
diomyocyte survival when food availability is low. In contrast,
the ability for Dcn�/� mice to maintain cardiac output with
fasting aligns with our previous observation that these mice do
not detect differences in nutrient status. Interestingly, data
from a hemorrhagic model study show that glucosamine infu-
sion increases cardiac O-GlcNAcylation and cardiac output

Figure 6. Dcn�/� mice preserve ejection fraction following fasting, which can be reverted to WT levels upon decorin treatment. A–E, representative
echocardiograms in fed and fasted WT and Dcn�/� hearts. Blue lines represent LVID in diastole and red lines represent LVID in systole (see Videos S1–S5). F,
quantification of calculated ejection fraction as seen in (A–E). G, schematic demonstrating the finding that decorin is necessary to invoke autophagy and reduce
ejection fraction during starvation. Data represent mean � S.E. p values calculated using Student’s t test.
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(45). Therefore, the increased O-GlcNAcylation during fasting
may be the cause of sustained ejection fraction in the Dcn�/�

mice. Of note, although this preservation of cardiac function
with fasting appears at first glance to be advantageous, it may
also be problematic as continual normal cardiac function in the
context of reduced nutrient supply may lead to adverse events,
such as myocardial infarction, especially if nutrient deprivation
is combined with another stressor, such as extreme exercise or
sepsis.

Additionally, we must comment that O-GlcNAcylation
enhances the expression of hyaluronan synthase 2 (HAS2), a
critical mediator of hyaluronan synthesis (46, 47). Although
our study did not address this consequence of increased
O-GlcNAcylation, it is possible that there exists aberrant hya-
luronan expression and signaling in these Dcn�/� hearts, par-
ticularly during fasting. Additionally, especially under periods
of prolonged nutrient deprivation, there may be a complex
interplay between the adenosine monophosphate kinase
(AMPK)–signaling axis and HAS2 regulation, as AMPK activa-
tion has been shown to reduce HAS2 activity (48). Further
investigation is warranted to identify a connection among the
autophagic defect including AMPK signaling, the preserved
ejection fraction, and the hyaluronan signaling pathway in the
absence of decorin.

Taken together, these new findings illuminate decorin as a
fundamental extracellular signaling molecule that simultane-
ously regulates cardiac autophagy, metabolism, and function
during nutrient deprivation. Given this information, decorin
may prove to be important as both a prognostic and diagnostic
marker for heart disease and could also be an effective thera-
peutic option to regulate cardiac metabolism in the setting of
obesity or diabetes. Furthermore, we believe that future inves-
tigation will yield many more extracellular proteoglycans and
other associated matrix members as key players in this elabo-
rate network. Thus, we provide an additional meaningful func-
tion to decorin’s already extensive repertoire and further
underscore the importance of the extracellular matrix for nor-
mal cell signaling.

Experimental procedures

Chemicals and antibodies

Antibodies were purchased as follows: Actb (Abcam,
ab8227), Beclin 1 (Cell Signaling Technology, 3738), Eno1
(Abcam, ab49343), GAPDH (Cell Signaling Technology,
2118), Gfat2 (Abcam, ab155926), total Igf1r (Santa Cruz Bio-
technology, sc-713), P-Igf1rTyr1135/36 (Cell Signaling Technol-
ogy, 3024), LC3 (Sigma, L7543), O-GlcNAc CTD.110.6 (Cell
Signaling Technology, 9875), and phosphoglycerate mutase 2
(Abcam, ab187147). All antibodies were used at a 1:1000 dilu-
tion for Western blotting and 1:500 for immunofluorescence
except Actb and GAPDH, which were used at 1:10,000. Decorin
was purified as described previously (49). Goat anti-rabbit and
anti-mouse secondary antibodies conjugated with HRP (12–
348, 12–349) were purchased from EMD Millipore and used
at 1:4000 dilution. Torin 1 (42– 471-0) was purchased from
Tocris.

Animal experiments

C57BL/6 mice were purchased from The Jackson Labora-
tory. Global Dcn�/� mice were generated as described previ-
ously (50). Animal experiments were performed as per the
Guide for Care and Use of Laboratory Animals and the Institu-
tional Animal Care and Use Committee of Thomas Jefferson
University. Mice were of both male and female sex ranging from
2– 4 months of age. Fasting experiments involved withholding
food for 25 or 48 h, but water was allowed ad libitum. Equal
numbers of male and female mice were used for each experi-
ment. After animals were euthanized, organs were removed
and immediately snap-frozen in liquid N2. For rescue experi-
ments, mice were injected intraperitoneally with 10 mg/kg of
purified human decorin protein core every other day for 1 week
before fasting and sacrifice. For in vivo flux experiments, mice
were fasted for 25 h and 6 h before sacrifice were injected intra-
peritoneally with 100 mg/kg chloroquine. Torin 1 was admin-
istered via intraperitoneal injection at a concentration of
5 mg/kg.

Echocardiography

Cardiac function was assessed via echocardiography, which
was performed with the VisualSonics VeVo 2100 imaging sys-
tem in animals anesthetized with 1.5% v/v isoflurane. The inter-
nal diameter of the left ventricle was measured in the short-axis
view from M-mode recordings in end diastole and end systole.
Hemodynamic measurements were obtained via carotid artery
catheterization.

Metabolomics analysis

Cardiac tissue from WT and Dcn�/� mice that had been
either fed ad libitum or subjected to 25 h fasting were analyzed
by Metabolon, Inc. using a predetermined dataset of 554 com-
pounds. Cardiac metabolites were measured with a high-reso-
lution accurate mass platform of ultrahigh performance LC/MS
and GC/MS. All analyses included acquisition of raw data, peak
identification, and comparison with several quality control
samples. The complete dataset can be found as supporting
information.

Measurement of metabolic parameters

Blood glucose was measured using a standard blood glucom-
eter. Insulin levels were assessed using an ELISA specific for
mouse insulin (Crystal Chem, 90080). Glycogen and free fatty
acid levels were measured using colorimetric assays as per the
manufacturer’s directions (Sigma, MAK016 and MAK044). For
glucose tolerance tests, mice were fasted for 4 h followed by oral
gavage of 2g/kg 25% glucose solution. Blood glucose was mea-
sured via glucometer at 0, 15, 30, 60, 90, and 120 min.

Western blotting and immunofluorescence analysis

Tissue samples were lysed in T-Per Reagent with EDTA and
protease inhibitor (Life Technologies, 78510). Samples were
separated by SDS-PAGE and transferred to nitrocellulose
where specific antibodies were used to visualize the proteins.
Immunofluorescence was performed as described previously
(51, 52). In brief, cardiac sections were fixed with paraformal-
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dehyde and stained with an LC3-specific antibody. Nuclei were
visualized with DAPI. Quantification of LC3 puncta was per-
formed using a macro specific for ImageJ software that was
designed by Ruben Dagda (University of Nevada School of
Medicine) (53, 54).

Quantitative real-time PCR analysis

One mm3 of tissue was lysed in 750 �l of TRIzol® reagent (Life
Technologies, 15596 – 026). RNA was isolated using a standard
RNA isolation kit (Zymo Research, R2052). One �g of RNA was
annealed with oligo(dT) primers (Life Technologies, 18418 –
012), and cDNA was synthesized using SuperScript Reverse
Transcriptase II (Life Technologies, 18064 – 022) according to
the manufacturer’s directions. The target genes (primer
sequences can be found in Table S1) and housekeeping gene
(Actb) were amplified in independent reactions using the Bril-
liant SYBR Green Master Mix II (Agilent Technologies,
600828). Samples were run in duplicate on a LightCycler480-II
(Roche Applied Science) and the cycle number (Ct) was
obtained for each reaction. The -fold change determinations
were made utilizing the comparative Ct method for gene
expression analysis.

Quantification and statistical analysis

Experiments were repeated three or more times and all data
are expressed as means � S.E. Paired and unpaired two-tailed
Student’s t-tests were used to analyze significance using the
SigmaStat program. p � 0.05 was considered statistically signif-
icant. For the metabolomics analysis, following log transforma-
tion and imputation of missing values, if any, with the mini-
mum observed value for each compound, analysis of variance
(ANOVA) contrasts were used to identify biochemicals that
differed significantly between experimental groups. A sum-
mary of the numbers of biochemicals that achieved statistical
significance (p � 0.05), as well as those approaching signifi-
cance (0.05 � p � 0.10) were noted (see supporting dataset).
Analysis by two-way ANOVA identified biochemicals exhibit-
ing significant interaction and main effects for experimental
parameters of genotype and feed status.
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