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ABSTRACT Classical ecology provides principles for construction and function of
biological communities, but to what extent these apply to the animal-associated
microbiota is just beginning to be assessed. Here, we investigated the influence
of several well-known ecological principles on animal-associated microbiota by
characterizing gut microbial specimens from bilaterally symmetrical animals (Bilat-
eria) ranging from flies to whales. A rigorously vetted sample set containing 265
specimens from 64 species was assembled. Bacterial lineages were characterized by
16S rRNA gene sequencing. Previously published samples were also compared, al-
lowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla
was found to account for the great majority of gut colonists. Gut microbial composi-
tion was associated with host phylogeny and diet. We identified numerous gut bac-
terial 16S rRNA gene sequences that diverged deeply from previously studied taxa,
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identifying opportunities to discover new bacterial types. The number of bacterial
lineages per gut sample was positively associated with animal mass, paralleling
known species-area relationships from island biogeography and implicating body
size as a determinant of community stability and niche complexity. Samples from
larger animals harbored greater numbers of anaerobic communities, specifying a
mechanism for generating more-complex microbial environments. Predictions for
species/abundance relationships from models of neutral colonization did not match
the data set, pointing to alternative mechanisms such as selection of specific colo-
nists by environmental niche. Taken together, the data suggest that niche complex-
ity increases with gut size and that niche selection forces dominate gut community
construction.

IMPORTANCE The intestinal microbiome of animals is essential for health, contrib-
uting to digestion of foods, proper immune development, inhibition of pathogen
colonization, and catabolism of xenobiotic compounds. How these communities as-
semble and persist is just beginning to be investigated. Here we interrogated a set
of gut samples from a wide range of animals to investigate the roles of selection
and random processes in microbial community construction. We show that the num-
bers of bacterial species increased with the weight of host organisms, paralleling
findings from studies of island biogeography. Communities in larger organisms tended
to be more anaerobic, suggesting one mechanism for niche diversification. Nonse-
lective processes enable specific predictions for community structure, but our sam-
ples did not match the predictions of the neutral model. Thus, these findings high-
light the importance of niche selection in community construction and suggest
mechanisms of niche diversification.

KEYWORDS bacteria, bilateria, microbiome, microbiota, neutral model, species-area

Classical ecology provides extensive theories for investigating community dynamics
that are beginning to be applied to sequence-based studies of microbes. For

example, species-area relationships (1) have been called “one of community ecology’s
few genuine laws” (2, 3). According to this idea, for islands located at the same distance
from a mainland source, the larger islands accumulate the greater number of species,
because (i) the larger population sizes that are possible only on larger islands reduce
the chances of stochastic fluctuations leading to extinction and (ii) larger islands have
a greater number of niches, supporting more different types of residents. Species-area
relationships have been investigated previously for the gut microbiota but with incon-
sistent results. One study using published values from 16S rRNA gene sequencing
studies of rRNA gene segments led to the conclusion that the mammalian gut micro-
biota did not show greater richness in intestines of larger organisms (4). Another study,
which used a DNA fingerprinting method to characterize bacterial gut communities,
concluded that richness indeed increased for animals of larger sizes (5).

Another ecological framework, Hubbell’s neutral model, makes specific predictions
for neutral colonization processes that can then be compared to data to interrogate
assembly mechanisms. Hubbell’s neutral theory models construction of a population
via migration from a source population using information on birth and death rates,
migration rates, and abundances while assuming all organisms are equally fit colonists
(6). Neutral theory provides quantitative predictions for the relative abundances of
community members, which can then be compared to empirical data to assess whether
neutral theory provides a compelling explanation of observations (7). In the absence of
a compelling fit, other processes, typically involving niche selection, can be hypothe-
sized to be more likely. In a recent study, human microbiome specimens were tested
and usually found to diverge from the predictions of neutral theory (8), but this has not
been investigated for a larger number of animals.

We thus sought to investigate microbial community structure as a window into
assembly processes and so studied a wide set of members of the Bilateria—the
bilaterally symmetrical clade of animals that includes protostomes and deuterostomes.

Sherrill-Mix et al. ®

March/April 2018 Volume 9 Issue 2 e00319-18 mbio.asm.org 2

http://mbio.asm.org


We focused on intestinal bacterial communities to access a consistent sample type and
to interrogate an organ system relevant to human and veterinary medicine. In all, we
sampled gut contents from 10 classes of animals, representing 64 species. We purified
DNA from feces or dissected gut tissue from species that ranged in size from bedbug
(0.009 g) to right whale (72,000,000 g), spanning almost 109 g in body size. In this
analysis, we assumed that overall organismic size is a viable surrogate for gut size,
though it is clearly an approximation (9). To analyze bacterial communities, we ampli-
fied and sequenced 16S rRNA gene segments, allowing quantification of the richness
and diversity of bacterial communities. Samples were rigorously vetted to control for
artifacts due to low biomass in starting samples (10, 11). We also compared data from
several published studies (12–19), yielding 1,098 total samples.

We found that gut microbial community structure was associated with host phy-
logeny. Species-area analysis showed a positive correlation between organismic size
and gut microbial species richness. Further analysis showed that community structure
did not fit predictions of neutral assembly models, with the total data implying a
prominent role for niche selection in assembly of gut microbial communities.

RESULTS
Experimental strategy. To compare gut microbial populations among bilaterians of

different sizes, we collected 444 specimens of feces or dissected intestines (see Ta-
ble S1 in the supplemental material). Because some samples contained host tissue, we
used 16S rRNA gene primers for amplification and sequencing, so that our sequencing
effort queried bacterial colonists and not sequences from the host. Amplification was
carried out with primers targeting the V1V2 region of the 16S rRNA gene, which has
been used previously for phylogenetic comparisons of gut microbiota (17, 20).

Low amounts of starting template are problematic because reagent contamination
can become a significant proportion of the total (10, 11). We thus carried out 16S
quantitative PCR (qPCR) analysis of all samples studied and analyzed only samples
where at least 1,000 16S rRNA gene copies could be introduced into PCRs for library
preparation. Samples with fewer than 1,000 reads after quality filtering were also
excluded. All DNA isolation and sequencing steps were carried out side by side with
negative controls, allowing us to query contamination from reagents, dust, and other
sources (see Fig. S1 in the supplemental material). Samples with extensive representa-
tion of lineages found in negative controls typically contained low starting copy
numbers of bacterial DNA and were among those excluded by our qPCR criteria. This
yielded 265 samples from 10 classes, representing 64 species of Bilateria (Table S1)
(Fig. S1A).

We expected that bacteria in little-studied bilaterian species would be dispropor-
tionately difficult to assign to genera and species, so bacterial lineages were charac-
terized as operational taxonomic units (OTUs) based on sequence and not as phylo-
genetic assignments based on database references. Sequence reads were condensed
into clusters of 97% identity using UCLUST (Table S2). Phylogenetic placement was
assessed where possible by comparison to the Greengenes database (Fig. 1A). On
average, each specimen was characterized by 104,998 sequence reads (Fig. S1B and C),
yielding on average 3,551 OTUs. Numbers ranged from 21 OTUs in a sample (boxelder
bug) to 26,991 OTUs (Jersey cow).

We also collected additional data from previously published studies on the micro-
biome of insects (12), birds (13), primates (14), myrmecophagous mammals (15), fish
(16), and other mammals (17–19). Combining newly generated data with published
data yielded 1,098 specimens for analysis.

Bacterial communities in the Bilateria. Figure 1 summarizes the samples newly
studied here and their bacterial communities (similar summaries for the published data
sets are presented in Fig. S2A to J). Overall, 64 species were queried, which included
broad sampling of both the protostomes and deuterostomes. The predominant bac-
terial phyla are summarized in the heat maps in Fig. 1A, organized by the host
phylogeny (a detailed summary of sample phylogeny is presented in Fig. S1A). Among

Allometry and Ecology of the Bilaterian Gut Microbiome ®

March/April 2018 Volume 9 Issue 2 e00319-18 mbio.asm.org 3

http://mbio.asm.org


FIG 1 Gut microbiota of the Bilateria. The figure summarizes several forms of analysis of the 16S rRNA gene tag sequence data. Host species are indicated by
their common names—formal genus and species designations are in Table S1. (A) The proportional abundance of the most abundant bacterial phyla averaged
by species. (B) Bar graphs summarizing the percentages of reads assigned to the proportionally most abundant OTU in each species. The values were averaged
for each species (bar), and values for individual samples are indicated by plus (�) symbols (the graph format repeats in panels C to G). (C) Bar graph summarizing
Shannon diversity for the microbial communities of the various species. (D) Bar graph summarizing phylogenetic diversity for the microbial communities of the
various species. (E) Bar graph summarizing the proportion of annotated obligate anaerobic bacteria for the various species. (F) Bar graph summarizing the

(Continued on next page)
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the vertebrates, Mammalia were dominated by Firmicutes and Bacteroides, as has been
reported in many studies. Proteobacteria and Actinobacteria were present to lesser
extents. Birds showed high levels of colonization with Firmicutes and Tenericutes. Fish
and sharks, in contrast, consistently showed high levels of colonization with levels of
Proteobacteria. Among invertebrates, colonization by Proteobacteria typically predom-
inated.

In our data, nine phyla accounted for 87.7% of the data—in order of abundance,
these were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Tenericutes, Spiro-
chaetes, Fusobacteria, Cyanobacteria, and TM7 (Fig. S1C). Twelve percent of sequences
remained unassigned by comparison to the Greengenes database, emphasizing the
frequency of unstudied microbial lineages in the bilaterian microbiome. These reads
were most commonly found in little-studied host species, such as crab (an average of
42% of reads were not assigned), giant millipede (55%), and skate (80%). In contrast, for
the well-studied case of the human microbiome (21, 22), an average of only 0.7% of
reads were not classified.

Shared and unique features of bilaterian gut communities. We began to assess
community structure by asking what proportion of the full sample was comprised of
the most predominant OTU (Fig. 1B). As is discussed below, assessing the rank/abun-
dance structure of communities provides potential insight into the process by which
they were generated. A broad range of values were seen, with highly diverse commu-
nities in primates and ungulates having maximum OTU abundance ranging from only
1.6% (goat) to 18.1% (human), while many sharks and rays (3 of 5 species) and insects
(10 of 17 species) showed 50% or more of the communities comprised of the most
predominant OTU. The Shannon diversity index showed reciprocal behavior, as ex-
pected (Fig. 1C). Samples were further compared using phylogenetic diversity (Fig. 1D),
which measures biodiversity as branch length on a phylogenetic tree. Here a strong
separation was evident between protostomes, which showed low phylogenetic diver-
sity, and deuterostomes, for which phylogenetic diversity was substantially higher
(Wilcoxon rank sum P � 10�6). Related patterns could be seen in the published data
sets analyzed in Fig. S2A to J, with deuterostomes typically showing higher levels of
phylogenetic diversity.

Given these survey data, we could also compare levels of oxygen utilization by gut
bacterial communities. Literature data were used to annotate the oxygen utilization
and sensitivity of each bacterial species; values were first pooled for bacteria in a
community and then for individuals within a host species, to generate an overall value
for each host species (Fig. 1E; see also Fig. S3A and B). A trend was observed in which
the mammals tended to have a larger fraction of obligate anaerobes in their guts
whereas the smaller insects typically showed a smaller fraction of anaerobes. We return
to this point below.

Cells of many invertebrates are known to be potentially colonized by Wolbachia, a
Gram-negative Alphaproteobacteria species of the Rickettsiaceae family. A previous
sequence survey identified Wolbachia in multiple insect species (12) (Fig. S2C). Our
sample set offered the opportunity to assess colonization broadly among the Bilateria
(Fig. 1F). We found colonization in Drosophila, as has been well described, and also
colonization in bed bugs and crickets. We did not detect Wolbachia outside the class
Insecta.

Of particular interest is the issue of how frequently unstudied lineages were
encountered. For example, recent studies of lineages from mouths of dolphins revealed
unusual deep-branching lineages in host-associated communities (23). To begin to
probe this issue, we asked what proportion of the lineages detected could not be
assigned even to the phylum level (Fig. 1G). We identified specific host organisms that

FIG Legend (Continued)
percentages of reads annotated as Wolbachia for the various species. (G) Bar graphs summarizing the percentages of OTUs that were unable to be assigned
to references in the Greengenes database. (H and I) Alignments of a 10,000-read random subset of assigned (H) and unassigned (I) sequence reads showing
positions with greater than 10% non-gap sequences, emphasizing that the unassigned reads resemble the assigned reads in sequence.
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had notably high fractions of unassigned bacterial lineages (as judged by comparison
to the Greengenes database), including tiger shark, skate, giant millipede, two-spotted
bumble bee, and rhinoceros beetle. Analysis of these sequences indicated that despite
their divergence, they were recognizable as 16S rRNA gene sequences (Fig. 1H and I).
Further analysis using BLAST allowed some of these sequences to be tentatively
assigned, revealing, for example, possible members of the uncommon phyla GN02 and
SR1 and candidate phylum SBR1093 (Fig. S4). Analysis of published data sets showed
that unassigned lineages were enriched in invertebrates and fish as well and that more
fully characterized bacterial lineages were more common in mammals (Fig. S2A to J).
These findings provide promising starting points for future studies targeting discovery
of novel gut bacteria.

Community structure, phylogeny, and lifestyle. We next compared bilaterian gut
community structures on a phylogenetic scaffold using UniFrac. In this method, two
samples are compared by arranging their OTU sequences on a common tree and
quantifying how much of the branch length is unique to each sample. Figure 2
summarizes data for unweighted UniFrac, which generates distances based on pres-
ence/absence information. All pairwise distances between samples were calculated,
and the resulting matrix was reduced to a two-dimensional summary using t-distri-
buted stochastic neighbor embedding (t-SNE). Sample clustering associated with host
phylogeny was apparent. Such clustering was also seen when species centroids were
used rather than individual samples (Fig. S5A to D). Mammals formed a broad cluster,
with notable subclusters for specific clades, e.g., Cetacea, Artiodactyla, Langomorpha,
and Rodentia. Primates, extensively represented in this data set, formed a broad cluster,
with specific subclusters classified by species. Members of Insecta formed a particularly
tight group, with subclusters for Orthoptera, Diptera, Hymenoptera, and Coleoptera.

We used several approaches to measure this clustering with host taxonomy. Per-
mutational multivariate analysis of variance (PERMANOVA) testing showed that gut
microbial communities clustered with host taxonomy for all host taxonomic levels
queried (PERMANOVA P � 10�6 for phylum, class, order, family, genus, and species). In
another analytic approach, evolutionary times of divergence among all host species
were obtained from TimeTree (24), and the resulting host evolutionary distance matrix
was compared to the unweighted UniFrac matrix using the Mantel test. The level of
overlay of the two matrices was found to be significantly higher than would be
expected by chance (Mantel P � 10�6), indicating a strong association.

Samples also partitioned by diet, although diet was commonly correlated with host
phylogeny and difficult to disentangle in our data. Samples clustered by diet type
(carnivore, omnivore, or herbivore) at a high level of significance (PERMANOVA P �

10�6). Even after accounting for phylum identity, the clustering was still highly signif-
icant (PERMANOVA P � 10�6). Samples from Chondrichthyes, carnivorous sharks and
rays, clustered (PERMANOVA P � 10�6), as did samples from Carnivora (PERMANOVA
P � 0.0001; P � 0.02 for clustering within mammals). Among the previously published
whale samples (18), those from the filter-feeding whales were all dominated by
Firmicutes (Fig. 1; see also Fig. S2I and J) and clustered seperately (PERMANOVA P �

0.0002) from the carnivorous toothed whales which were dominated by other phyla
(Fig. S2I and J). Thus, our data are consistent with a role for diet in gut microbiota
diversification, as has been suggested previously for humans (22, 25) and, broadly, for
mammals (17, 26), but diet was convoluted with taxonomy in our data. Host organism
weight was also significantly associated with community structure, even after account-
ing for host order (PERMANOVA P � 10�6).

Species-area relationships in the bilaterian microbiome. We next investigated
gut microbial colonization from the perspective of species-area analysis. In the ecolog-
ical literature, a strong pattern has been observed whereby larger islands are more
species rich (assuming that each of the islands compared is the same distance from a
continental source of migrants) (1–3). Here we carried out a species-area analysis of
over 1,098 gut microbiome samples, including our rigorously vetted sample series.
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Organism weight was used to approximate gut size, allowing us to compare organisms
ranging from bedbug (0.009 g) to right whale (72,000,000 g).

Modeling log bacterial richness (expected number of rarefied OTUs) as a linear
function of log weight yielded a significant positive slope of 0.054 (95% credible
interval of the posterior mean, 0.036 to 0.073), indicating greater richness in the larger
guts (Fig. 3). This supports models in which (i) larger guts contain more niches and/or
(ii) the larger microbial population sizes possible in larger guts oppose extinction due
to stochastic fluctuations in numbers.

Assessment of oxygen utilization by bacterial communities showed a correlation
with host body weight. Each bacterial lineage was analyzed where possible for its status
as an anaerobe or aerobe, and the results were pooled for the bacterial lineages within
a host individual and then for host individuals within a species (Fig. S3A). The ratio of
aerobes to obligate anaerobes was significantly correlated with host weight (Fig. S3B;
Pearson correlation � �0.73, P � 10�6), suggesting that the larger guts may be more
anaerobic in the luminal space and that this may result in new niche creation.

FIG 2 t-SNE plot of UniFrac distances. A two-dimensional representation of unweighted UniFrac distances
was generated using t-distributed stochastic neighbor embedding (t-SNE). Samples are colored to indicate
phylogenetic class, and orders are further broken out by point shape. Weighted and unweighted UniFrac
t-SNE plots of species centroids (including species names) are shown in Fig. S5.
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Community structure and models for community assembly. Ecological theory
describing colonization of islands in the absence of deterministic factors—the neutral
model—predicts the shape of rank abundance curves, allowing our data to be inter-
rogated to assess agreement with this prediction. According to this model, colonization
is a function of immigration of individuals from a source population, together with their
birth and death rates, and all potential colonists are equal. Lack of agreement between
predicted and observed rank-abundance curves allows rejection of the neutral model,
pointing instead to alternative theories such as selection of specific colonists by
environmental niches.

Figure 4 shows an assessment of fits to 10 model types, including the neutral model.
Comparisons based on Akaike information content showed that the neutral model fits
poorly relative to other simple models of species abundance (Fig. 4A). An elaboration
of the neutral model where microbiota are acquired vertically from parents as well as
from the environment yields rank-abundance curves that fit a log-normal distribution
(27), which also does not match our results. Rather, the fit determined on the basis of
a power law or modified power-bend curve provided a closer match of the data. Almost
all gut samples had a long tail of rare species with many OTUs and few read counts
(Fig. 4B to E), which has previously been reported for marine microbial communities
(28) and is characteristic of bilaterian gut communities as well. Such long tails of rare
species are inconsistent with the predictions of neutral theory.

Influence of data processing on the conclusions drawn. Several approaches were
taken to assess the influence of sequencing error on our conclusions. Chimera filtering
was not applied to the data initially due to the difficulty of identifying chimeras
involving pairs of previously unstudied 16S rRNA gene sequences. To test for possible
confounding by chimeras, we applied chimera filtering using ChimeraSlayer and USE-
ARCH to our gut microbiome samples (29, 30). ChimeraSlayer found 0.16% potential

FIG 3 Species-area analysis. The relationship between the weight of the host organism and the number
of gut bacterial OTUs found in fecal samples was estimated using a Bayesian regression model. All
samples, both those newly determined here and those from previously published data sets, are included.
The gray-shaded region shows the 95% credible interval for the slope. The OTU counts were normalized
across sample sets as described in Materials and Methods. Origins of sample sets are as follows: diverse
Bilateria, this work; primates, reference 14; birds, reference 13; whale 1 and 2, reference 18; insects 1 and
2, reference 12; anteaters, reference 15; fish, reference 16; mammals 1, reference 17; mammals 2,
reference 19. Samples were rarefied to 100 reads each.
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FIG 4 The bilaterian gut microbiota does not fit predictions of neutral assembly models. (A) The abundance of OTUs from each sample was assessed
for their fits to community models (columns) using Akaike information content (AIC) and the AIC averaged within each species (rows). Within each row,

(Continued on next page)
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chimeras and USEARCH found 3.4% potential chimeras, suggesting that chimera for-
mation did not strongly influence our conclusions.

To test for possible effects of sequencing error, we denoised our data set using the
filtering program DADA2 (31). DADA2 assumes that all sequence variants represented
by single reads are products of error and removes them and clusters sequences into
biological sequence variants based on the estimated probability of a read being a
sequencing error. DADA2 yielded 84,259 sequence variants compared to the 521,510
OTUs yielded by the processing strategy described above. The shapes of species rank
abundance curves were altered by DADA2 filtering such that the Poisson lognormal
model was now favored over the power law models (Fig. S6A); however, data both
before and after filtering did not match predictions of the neutral model. The species-
area relationship was still observed after DADA2 filtering (Fig. S6B). Thus, our main
conclusions were robust with respect to the data filtering strategy chosen.

DISCUSSION

Here we sought to test the hypothesis that the bilaterian gut microbiota is assem-
bled by selective forces, resulting in communities diverging from the predictions of
neutral colonization. For this, we assembled a broad sample set, ranging from small
insects to baleen whales. Although myriad factors affect microbial community structure
in each organism, our survey establishes several generalizations. The structure of gut
microbial communities commonly partitioned with host taxonomy, indicating that gut
microbiome structure can be preserved over long evolutionary time scales. Species-
area analysis showed an increase in species richness with gut size, supporting the ideas
that bacterial populations in larger guts are less likely to become extinct due to chance
fluctuations and that larger guts may have more types of environmental niches.
Consistent with these findings, predictions from quantitative models based on ecolog-
ical neutral colonization did not match most samples, supporting an alternative model
in which selection drives gut microbial community assembly. We also report numerous
detections of highly divergent bacterial taxa, which can help target future studies to
characterize global bacterial diversity.

Our finding of a positive association between bacterial species richness and host size
suggests that mechanisms driving classic species-area relationships in island biogeog-
raphy (1–3, 32) are also at play in gut microbial communities. Previous efforts to detect
species-area relationships in the gut microbiota were mixed (4, 5)—the authors of the
study that did not report a significant slope used data processed in multiple different
ways from previous studies and themselves pointed out that this could have affected
the outcome (4). For insects, estimates of microbial community size per individual can
range from 109 bacterial cells to undetectable numbers (33); thus, fluctuations leading
to extinction may be possible for the sparser communities. For larger organisms such
as vertebrates, numerous studies have emphasized the heterogeneous anatomy of the
gut at many spatial scales such that greater heterogeneity in microbial niches would be
expected (9). Consistent with this, we found that the proportion of anaerobes was
significantly higher in guts of larger animals. Previous data indicated that the lumen of
the gut of mice is relatively anaerobic, whereas gut tissue is more oxygenated, and that
this results in enrichment of numbers of anaerobic bacteria in the lumen and of aerobic
bacteria near the gut wall (34). For bilaterians of smaller sizes, oxygen may permeate
more readily throughout the gut, resulting in predominance of aerobes and reduced
overall bacterial species richness. For larger bilaterians, the combination of aerobic and
anaerobic environments may result in formation of bacterial communities that are
richer in species.

Our values for the slope of the species-area relationship correspond to slopes that

FIG Legend (Continued)
the best-fitting models (i.e., those with the lowest AIC levels) appear red, with the color code showing the difference for each model from the minimum
AIC. (B to E) Empirical rank-abundance curves and comparisons to model best fits are shown for single samples from human (B), right whale (C), tiger
shark (D), and cricket (E).
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are shallower than those typical of classical studies of island populations, which
typically range from 0.12 to 0.35 (32). This shallower slope may indicate that animal
guts are not as insular as islands with more-frequent (potentially low-abundance)
immigrations from the environment/conspecifics or with a slower accumulation of
habitat heterogeneity in large guts than on large islands. A potential technical issue
which might have contributed to our findings is that smaller animals were often
studied as dissected guts, potentially resulting in representation of a greater
number of different niches than were present in fecal samples from larger animals.

Several aspects of our data argue against neutral (nonselective) processes in colo-
nization of the bilaterian gut. The profiles of species-abundance curves display long
tails (Fig. 4)—representative of the presence of many species at low abundance—which
are not predicted by neutral theory. For marine organisms, abundant seawater lineages
were scarce in gut samples, highlighting likely selection by the gut environment (see
Table S2 in the supplemental material). For certain insects, some of the gut microbiotas
have been reported to resemble local environmental taxa and to differ among indi-
viduals of the same species (33), suggesting possible neutral colonization from the
environment. However, for the great majority of insects studied here, gut community
rank-abundance curves did not show the profile expected for neutral colonization. For
mammals, attempts to introduce new bacterial strains into the gut generally work
poorly in a colonized host (35-38), consistent with gut bacterial communities adapting
to their environments and so resisting invasion by new strains.

Numerous further theories have attempted to explain the shapes of species-
abundance curves (39). Unfortunately, while interesting, these models rarely make
unique predictions and so do not specify unique assembly mechanisms that can be
applied here. Several lines of evidence have suggested that communities more open to
immigration have a higher proportion of rare species (39), which provides a candidate
mechanism contributing to the long tails typically observed for gut microbial species-
abundance curves.

Despite the geographic dispersal of bilaterian individuals, we found that members
of the same species usually resembled each other with respect to the characteristics
under consideration more than they resembled members of other species. This sup-
ports the inference that dispersal of microbes between individuals is usually not
limiting. Several mechanisms are known to assist transfer of microbiota between
generations within a species. Vertical inheritance is well known for Wolbachia in
invertebrates (40). Some insect mothers smear fecal material on newly deposited eggs
(40). Cohabitation is associated with sharing bacterial lineages among social insects
(33), laboratory mice (11), and humans and their dogs (41). Transmission via breast-
feeding has been proposed to mediate human mother-to-infant transmission (42).
Thus, the recurrent patterns of microbial community membership within host species
suggest that dispersal of microbes is usually not a barrier to gut community construc-
tion.

This study had several limitations. The use of 16S rRNA gene tags provides a
tractable window on community structure for a sample set that includes tissue spec-
imens, but additional studies using shotgun metagenomic sequencing could yield
richer (though quite complex) data. Although a large number of specimens and species
were studied, our sampling scheme was opportunistic and the coverage of Bilateria
uneven. Going forward, it would be valuable to target specific animal groups with
focused questions, for example, to investigate the influences of diet and lifestyle
(laboratory housed, domestic, or wild) and associations with humans.

In summary, these data suggest that neutral assembly models cannot explain the
structure of the bilaterian gut microbiome and that niche selection is a likely driver.
Larger animals harbor richer bacterial communities, potentially a consequence of the
presence of more-diverse niches in gut, including an increase in anaerobic habitat, and
greater resistance to stochastic extinction due to larger sizes of microbial populations.
This work provides baseline data for understanding the structure and dynamics of the
global bilaterian microbiome and provides a point of departure for additional studies.

Allometry and Ecology of the Bilaterian Gut Microbiome ®

March/April 2018 Volume 9 Issue 2 e00319-18 mbio.asm.org 11

http://mbio.asm.org


Going forward, the data and analytic methods presented here may be useful in
assessing colonization mechanisms in human disease states (43, 44) and in evaluating
the invasion of human-associated bacteria into global ecosystems.

MATERIALS AND METHODS
Sources of samples. Sources of samples are listed in Table S1 in the supplemental material, and

additional sample information is available in the supplemental material.
DNA preparation. DNA from all samples was isolated in a sterile class II laminar flow hood. Due to

differences in starting material, DNA was purified using three methods. First, DNA was isolated from fecal
samples using a Mo Bio PowerSoil HTP 96 DNA isolation kit (Mo Bio Laboratories, Inc., Carlsbad, CA).
Sample inputs weighed between 0.0085 g (gerbil pellet) and 1.6408 g (gut contents of the large intestine
of a sandbar shark). Samples were incubated for 10 min at 70°C and homogenized for 20 min with a
Qiagen TissueLyser II instrument, and DNA was purified per the manufacturer’s protocol. Second, to
reduce background, DNA from low-biomass samples (primarily the dissected gut tissue from smaller
organisms) was purified using a Qiagen DNeasy UltraClean microbial kit (Qiagen, Hilden, Germany), in
single tubes, per the protocol of the manufacturer, including the recommended bead-beating step.
Finally, DNA from whale feces was isolated with a PSP Stool DNA Plus kit (Stratec Biomedical, Berlin-Buch,
Germany). Samples were homogenized in PSP stool DNA stabilization buffer using the TissueLyser II
instrument and incubated at 95°C, and DNA was purified per the manufacturer’s protocol. All DNA was
stored at �20°C.

Quantification of 16S rRNA gene copies using qPCR. 16S rRNA gene copies were quantified by the
amplification of the V1V2 region of the 16S rRNA gene by quantitative PCR (qPCR). Dilutions (1:4) of each
DNA sample were used in reaction mixtures (total volume, 25 �l) and measured in triplicate. Primer and
probe sequences and amplification conditions are described in Table S3 and reference 45.

PCR amplification of the V1V2 region of the bacterial 16S rRNA gene for Illumina sequence
analysis. For each sample, the V1V2 region of the bacterial 16S rRNA gene was amplified with Golay
bar-coded universal primers 27F and 338R (Table S3) (41, 46, 47). PCRs were performed in triplicate with
5 �l DNA, 7.21 �l PCR-grade water, 2.5 �l 10� buffer II, 0.19 �l Taq, 5 �l of the forward primer (2 �M), and
5 �l of the reverse primer (2 �M). PCRs were prepared in a PCR clean room using an EpMotion 5075 liquid
handling workstation (Eppendorf, Hamburg, Germany) and run in quadruplicate on an Applied Biosys-
tems GeneAmp PCR 9700 system (Thermo Fisher Scientific Inc., Waltham, MA) under the following
cycling conditions: initial denaturation at 95°C for 5 min; 30 cycles of denaturation at 95°C for 30 s,
annealing at 56°C for 30 s, and extension at 72°C for 90 s; and a final extension at 72°C for 8 min. Reaction
replicates were pooled into libraries and purified using Agencourt AMPure XP beads (Beckman Coulter,
Inc., Indianapolis, IN) per the manufacturer’s protocol. The purified PCR products were then pooled and
sequenced using an Illumina MiSeq platform. qPCR quantification of 16S rRNA gene copies was used to
ensure that a minimum of 1,000 16S rRNA gene copies were input into each reaction. To pass our quality
filter, samples were also required to contain at least 1,000 Illumina sequence reads.

Analytical methods. Sequence data was processed using QIIME 1.9.1 with default parameters (48).
OTUs were selected by clustering reads at 97% sequence similarity. Taxonomic assignments were
generated by comparison to the Greengenes reference database (49). The consensus taxonomy assign-
ment implemented used the most detailed lineage description shared by two of the top three best-
matching reference sequences in the Greengenes database. We mostly used data without rarefaction in
order to maximize the amount of sequence information available. In cases where the amount of
sequence analyzed could have affected the outcome, as in the species-area analysis, we did use rarefied
data (for each sample, we calculated the number of OTUs expected to be observed for 100 reads).
Additional analytical methods can be found in the Appendices.

Data availability. Sequences from this study are available at the NCBI SRA (https://www.ncbi.nlm
.nih.gov/Traces/study/?acc�SRP115877).

APPENDIX
Additional sample information. Most of the information on samples studied is

provided in Table S1. Some additional data is as follows.
Feces samples from healthy human individuals were obtained from a previous study

approved by the Perelman School of Medicine at the University of Pennsylvania
Institutional Review Board (50). Six rhesus macaques (Macaca mulatta) with no history
of gastrointestinal disease were sampled at the Tulane National Primate Research
Center. Fecal samples were collected from stainless steel collection pans below the
animals’ cages. Fecal samples (n � 111) from western (P. t. verus, n � 1), Nigeria-
Cameroonian (P. t. ellioti, n � 1), central (P. t. troglodytes, n � 5) and eastern
(P. t. schweinfurthii, n � 33) chimpanzees and from western (G. g. gorilla, n � 3) and
eastern (G. b. graueri, n � 2) lowland gorillas, as well as from bonobos (Pan paniscus,
n � 66), were obtained from existing specimen banks (51–56). Except for four speci-
mens (CCptv01, SYptt43, TCptt98, and CFpts01) that were obtained from sanctuary
chimpanzees, all other fecal samples were collected from wild-living ape populations at
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remote forest sites (Table S1) (Fig. S1D). All samples were obtained noninvasively,
preserved (1:1 [vol/vol]) in RNAlater, transported at ambient temperatures, and stored
at �80°C. Fecal DNA was extracted using a QIAamp Stool DNA minikit (Qiagen). All
specimens were subjected to host mitochondrial DNA analysis to confirm their species
and subspecies origin (51–58). In the analysis, each of the four chimpanzee subspecies
was treated as a separate species. Samples were also obtained from two mandrills from
the Tchimpounga sanctuary and two habituated sooty mangabeys from the Tai Forest.
Sampling sites are shown in Fig. S1D. All samples were obtained with approval from the
respective governments as previously described (51–56) and were shipped in compli-
ance with regulations from the Convention on International Trade in Endangered
Species of Wild Fauna and Flora and country-specific import and export permits. Fecal
pellets from healthy laboratory mice were collected at the Perelman School of Medicine
at the University of Pennsylvania (protocol no. 803408). Right whale samples were
collected under Fisheries and Oceans Canada license no. 325842 (59), the fin whale
sample was collected under NOAA permit no. 16325, and the humpback samples were
provided by Jan Straley, collected under NOAA permits 474-1700-02 and 14122. Shark
specimens were collected as part of commercial fishing activities regulated by the
National Marine Fisheries Service Federal Management Plan for Atlantic Tunas, Sword-
fish, and Sharks.

In instances where there was no available expelled fecal material, such as for some
insects, samples were obtained by gut dissection of the frozen individuals. Each
individual was weighed, washed with 70% ethanol, and rinsed with phosphate-buffered
saline (PBS). Individuals were then placed on a sterile petri dish, and the gut was
removed with sterile needle nose tweezers.

Additional analytic methods. The aerobic or anaerobic status of bacterial taxa was
copied by hand from reports in Bergey’s Manual of Systematics of Archaea and Bacteria
(60). A detailed description of all annotations used is provided in Table S4. The
anaerobic or aerobic status was scored for each bacterial lineage, starting with the
lowest-ranking taxon and moving on to higher-ranking taxa. Aerobic or anaerobic
status was assigned to taxa above the rank of genus if listed in the description of the
taxon or if �99.9% of reads assigned to lower-ranking taxa observed in this study had
a consistent status (further details are provided in Table S4).

Phylogenetic trees were inferred from the OTU data using FastTree (61). Similarity
between samples was assessed by weighted and unweighted UniFrac distance (62, 63).
Data files from QIIME were analyzed in the R environment for statistical computing.
Phylogenetic distances were retrieved from TimeTree (24), using a closely related proxy
species if necessary. We used the Adonis function from the vegan package to perform
PERMANOVA.

Maximum likelihood estimates for various species abundance distributions were
fitted using the sads R package (64) with functions modified slightly for additional
robustness (e.g., multiple starting values for optimization and calculations on log values
to avoid numeric overflow). Fitted models included the broken stick model (65); log
series (66, 67); neutral metacommunity zero-sum multinomial (6, 66, 68); zeta, power,
and power bend (69); Poisson lognormal (70); lognormal (71); Weibull; and negative
binomial, gamma, and geometric distributions. Models were compared using the
Akaike information criteria to control for overfitting in models with additional param-
eters.

We obtained additional data from previously published studies on the microbiome
of insects (12), birds (13), primates (14), myrmecophagous mammals (15), fish (16),
diverse mammals sequenced using the 454 method (17), whales and other mammals
(18), and diverse mammals sequenced using the Illumina method (19). The whale data
included both 454 sequencing and Illumina sequencing data, which were treated
separately. The insect data contained unpaired reads from the 5= and 3= ends of the
amplicon, which were treated separately. Thus, we had data from 8 additional studies
broken into 10 data sets.
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To estimate the species-area relationship in animal guts, we fit a Bayesian regression
model of the rarefied OTU counts observed in each animal gut in relation to the mean
weight of the hosts using Stan (72). This model included samples from our own data set
and the 10 additional data sets. As extraction and amplification methods, amplicon
targets, and sequencing technologies differed between data sets, we allowed each data
set its own offset. To compare the data from the studies whose results are shown in
Fig. 3, we subtracted the mean of the estimated posterior distribution for these offsets.
The model assumed that the log rarefied OTU count, counti, in sample i were normally
distributed as follows:

counti � N(�i, �dataseti
)

where dataseti is the data set that sample i came from, �x is the estimated variability
in data set x, and �i is given by following equation:

�i � offsetdataseti
� �weightspeciesi

� �speciesi

Where speciesi is the host species for sample i, offsetx is the offset for data set x, weightx

is the log weight for species x, � measures the relationship between weight and OTU
count, and �x is the mean offset for species x from a linear weight-count relationship.
Species � values were given a normal prior with mean equal to 0 and a separate
variance value for each phylogenetic class. Variance parameters were given a gam-
ma(1,1/10) prior.

Reads that were annotated by Greengenes as coming from chloroplast genomes
were removed. Samples that contained fewer than 1,000 sequence reads were re-
moved. We investigated potential chimeric reads generated by amplification and
sequencing using ChimeraSlayer and USEARCH (29, 30). ChimeraSlayer uses BLAST
alignment against representative aligned sequences to identify potential chimera
parents. USEARCH performs de novo chimera detection based on abundances as well as
reference-based chimera detection for raw sequence reads. ChimeraSlayer found 1,265
potential chimeras of 779,732 representative OTU sequences. There was little associa-
tion between these chimeras and singleton OTUs (95% confidence interval of odds ratio
[CI OR], 0.84 to 1.05; Fisher’s exact P � 0.28) or reads unassigned to the Greengenes
database (95% CI OR, 0.85 to 1.13; Fisher’s exact P � 0.8). USEARCH found 776,531
potential chimeras among 22,538,324 total sequence reads. Among USEARCH chimeras,
there was a slight depletion of singleton reads (95% CI, 0.69 to 0.70; Fisher’s exact P �

10�6) and of reads unassigned to Greengenes (95% CI, 0.59 to 0.60; Fisher’s exact P �

10�6) but the association was modest.
Code used in this analysis is archived on Zenodo at https://doi.org/10.5281/zenodo

.1194331.
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