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ARTICLE

Distinct cortical systems reinstate the content and
context of episodic memories
James E. Kragel 1✉, Youssef Ezzyat1, Bradley C. Lega 2, Michael R. Sperling 3, Gregory A. Worrell 4,

Robert E. Gross5, Barbara C. Jobst6, Sameer A. Sheth7, Kareem A. Zaghloul 8, Joel M. Stein9 &

Michael J. Kahana1✉

Episodic recall depends upon the reinstatement of cortical activity present during the for-

mation of a memory. Evidence from functional neuroimaging and invasive recordings in

humans suggest that reinstatement organizes our memories by time or content, yet the

neural systems involved in reinstating these unique types of information remain unclear.

Here, combining computational modeling and intracranial recordings from 69 epilepsy

patients, we show that two cortical systems uniquely reinstate the semantic content and

temporal context of previously studied items during free recall. Examining either the posterior

medial or anterior temporal networks, we find that forward encoding models trained on the

brain’s response to the temporal and semantic attributes of items can predict the serial

position and semantic category of unseen items. During memory recall, these models

uniquely link reinstatement of temporal context and semantic content to these posterior and

anterior networks, respectively. These findings demonstrate how specialized cortical systems

enable the human brain to target specific memories.

https://doi.org/10.1038/s41467-021-24393-1 OPEN

1 Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA. 2Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA.
3Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA. 4Department of Neurology, Mayo Clinic, Rochester, MN, USA. 5Department of
Neurosurgery, Emory School of Medicine, Atlanta, GA, USA. 6Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA. 7Department
of Neurosurgery, Columbia University Medical Center, New York, NY, USA. 8 Surgical Neurology Branch, National Institutes of Health, Bethesda, MD, USA.
9Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA. ✉email: james.kragel@northwestern.edu; kahana@psych.upenn.edu

NATURE COMMUNICATIONS |         (2021) 12:4444 | https://doi.org/10.1038/s41467-021-24393-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24393-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24393-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24393-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24393-1&domain=pdf
http://orcid.org/0000-0002-3240-6203
http://orcid.org/0000-0002-3240-6203
http://orcid.org/0000-0002-3240-6203
http://orcid.org/0000-0002-3240-6203
http://orcid.org/0000-0002-3240-6203
http://orcid.org/0000-0003-3634-406X
http://orcid.org/0000-0003-3634-406X
http://orcid.org/0000-0003-3634-406X
http://orcid.org/0000-0003-3634-406X
http://orcid.org/0000-0003-3634-406X
http://orcid.org/0000-0003-0708-6006
http://orcid.org/0000-0003-0708-6006
http://orcid.org/0000-0003-0708-6006
http://orcid.org/0000-0003-0708-6006
http://orcid.org/0000-0003-0708-6006
http://orcid.org/0000-0003-2916-0553
http://orcid.org/0000-0003-2916-0553
http://orcid.org/0000-0003-2916-0553
http://orcid.org/0000-0003-2916-0553
http://orcid.org/0000-0003-2916-0553
http://orcid.org/0000-0001-8575-3578
http://orcid.org/0000-0001-8575-3578
http://orcid.org/0000-0001-8575-3578
http://orcid.org/0000-0001-8575-3578
http://orcid.org/0000-0001-8575-3578
mailto:james.kragel@northwestern.edu
mailto:kahana@psych.upenn.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Episodic recall allows us to remember the past, bringing back
memories from a specific place or time. This type of
memory retrieval involves the reinstatement of encoding-

related neuronal activity that codes for memory attributes1 (e.g., a
specific person2 or place3). Neural reinstatement has been pro-
posed as a mechanism for targeting individual memories during
memory search4,5, and subsequent studies have demonstrated
content2,6,7 and context3,8 reinstatement preceding memory
recall. Thus, these two types of reinstatement may serve to target
memories that contain certain content or are placed in specific
contexts. However, because studies typically focus on either
content or context reinstatement in isolation, we know relatively
little about how these types of information reinstate across the
brain.

Consistent with the longstanding distinction between episodic
and semantic memory9 neuroimaging and electrophysiological
studies suggest that separable cortical systems support memory for
the semantic meaning and the spatiotemporal context of experi-
enced events10–14. Specifically, researchers have identified a pos-
terior medial (PM) network of regions, including
parahippocampal, retrosplenial, and posterior parietal cortices,
that activate during the processing of contextual information15,16.
By contrast, other work has identified an anterior temporal (AT)
network of regions that appears critical for semantic and con-
ceptual memory17,18. This network includes the ventral temporal
pole and perirhinal cortices19. Because these two networks interact
with the hippocampus during memory formation and
retrieval14,20, we predicted reinstatement within these two systems
would reflect either the content or context of retrieved memories.

Neuroimaging studies that measure population-level neuronal
activity have demonstrated reinstatement across cortical systems
during memory retrieval. For example, content-related patterns of
spectral power from intracranial electroencephalography (iEEG)
across prefrontal and temporal cortices reinstate prior to memory
recall6,21. Slowly changing patterns of iEEG power in the tem-
poral lobe, consistent with a representation of temporal context5,
reinstate during retrieval and account for temporal organization
of recall sequences8. Functional MRI studies, which provide
greater sampling of cortical systems than invasive recording
techniques, have demonstrated contextual reinstatement within
the hippocampus22 and functionally connected PM regions23.
Multiple regions within the PM network, including the angular
gyrus and medial prefrontal cortex, reinstate event-specific pat-
terns of activity24, suggesting this network may be involved in
representing the content of memories within a specific episodic
context. It is possible that these findings stem from representa-
tions of content and context integrated within a single cortical
system, coding the full range of attributes in memory. In contrast,
the PM and AT networks may independently drive hippocampal-
dependent retrieval, serving as distinct cortical pathways to recall.

To examine the contributions of cortico-hippocampal net-
works to recall behavior, we utilized a computational modeling
technique originally developed to predict patterns of brain
activity based on the semantic content of individual stimuli25–27.
This method takes advantage of the sensitivity of neural signals to
semantic attributes of presented items. By learning how activity in
the brain is shaped by semantic attributes, these models can
reliably decode the semantic content of stimuli from an observed
pattern of brain activity. We extended this technique to develop
context-based models that were trained to predict patterns of
brain activity based on the temporal context (i.e., at which point
in time in the experiment) in which stimuli were presented. By
applying these models to iEEG signals recorded while subjects
performed a free-recall task, we tested whether content- and
context-based memory representations are reinstated within
distinct cortical systems: the AT and PM networks.

Results
We recorded iEEG from neurosurgical patients (n= 69) while
they performed a free-recall task with items drawn from 25 dis-
tinct categories presented in same-category pairs (Fig. 1a). Patients
recalled an average of 31% (0.02 SEM) of list items. Both the serial
position and category of items influenced their probability of
recall. We observed a primacy effect, as evidenced by a recall
advantage for items presented in the first (mean 49%, 0.03 SEM;
t68= 9.2, p < 0.0001) and second (mean 38%, 0.03 SEM; t68= 4.9,
p < 0.0001) serial positions (Fig. 1b). To evaluate category-level
differences in recall performance, we compared the proportion of
items recalled from each category to the average across all items
(Fig. 1c). We found patients had better memory for zoo animals
(mean 42%, 0.03 SEM; t68= 4.1, p= 0.0001) and weather (mean
39%, 0.02 SEM; t68= 3.3, p= 0.001), and worse memory for
electronics (mean 22%, 0.02 SEM; t68=−4.4, p < 0.0001).

In addition to overall recall performance, the serial position
and category of items influenced the order in which items were
recalled. Recall clustering (e.g., consecutively recalling same-
category items) indicates that the retrieval cue used during
memory search targets certain properties of the studied items.
Because no retrieval cues are provided to the subject during free
recall, the cue must be internally generated by the reinstatement
of information present during the study period. To examine
category clustering, we used a word embedding model28 to
derive a vector representation of each studied item. To illustrate
the similarity structure derived from the word2vec model, we
projected the 300-dimensional word representations onto a
three-dimensional space derived using principal component
analysis (Fig. 1a, right). We measured clustering with temporal
and categorical factor scores, which indicate whether clustering
is above or below chance levels29(see Fig. 1d for example mea-
sures). Recall sequences exhibited both categorical (t68= 30.7,
p < 0.0001) and temporal (t68= 10.8, p < 0.0001) clustering
(Fig. 1e). These clustering effects remained after accounting for
potential confounds due to the list structure (see Methods).
Adjusted measures of categorical (t68= 25.6, p < 0.0001)
and temporal (t68= 11.4, p < 0.0001) clustering also indicated
significant levels of recall organization (Supplementary Fig. 2).
Both recall performance and clustering demonstrated rein-
statement of both semantic content and temporal context
occurred during memory search.

PM and AT networks contain representations of context and
content during encoding. To assess representations of temporal
context and semantic content within PM and AT networks, we
first defined these networks based on an independent resting-state
fMRI analysis (Fig. 2a; see Methods for details)30. This analysis
follows the standard method of correlating the BOLD time series
between a region of interest and other regions distributed
throughout the rest of the brain31. Regions with connectivity to
temporal polar cortex defined the AT network. These regions
included inferior lateral prefrontal cortex, anterior temporal
cortex, and inferior angular gyrus (Fig. 2a, green). Regions with
connectivity to the posterior angular gyrus defined the PM net-
work (Fig. 2a, purple). Cortical regions within this network
included the posterior cingulate cortex, precuneus, para-
hippocampal cortex, and posterior parietal cortex (see Supple-
mentary Fig. 1 for details regarding electrode coverage).

Synchronous low-frequency activity across the brain signals
memory processing32, with theta oscillations responsible for
interactions between hippocampus and cortex during memory
search33. Prominent theories propose synchronous interactions
coordinate network communication34, which would support
hippocampal-dependent reinstatement of memory content. Thus,
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we predicted synchronous activity in both PM and AT networks
during the free-recall task. We next tested the hypothesis that PM
and AT networks defined by resting-state fMRI would predict
correlations in low-frequency power during task performance.
Previous work has established correspondence between networks
defined by resting-state fMRI and iEEG35,36. However, it is
possible that different network structures emerged in iEEG
signals during the recall task. For example, these two cortical
systems could reconfigure into a single network. We predicted
distinct networks to emerge as subjects perform the task,
supporting the hypothesis that separable cortical systems are
involved in the representation of content and context.

To examine the separability of PM and AT networks, we asked
whether theta exhibited greater connectivity within than between
the two networks. We measured connectivity by correlating
spectral power across trials of the free-recall task. Such trial-by-
trial variability in power reflects endogenous fluctuations across

neural networks35,37,38. Because these estimates of connectivity
can be spuriously elevated due to proximity of recording sites36

(see Supplementary Fig. 3 for evidence of drop off in connectivity
with inter-electrode distance), we used a bootstrap matching
procedure to control for differences in distance between contacts
located within the same network or across both networks (see
Methods). Using this approach, low-frequency power was
significantly more correlated within the AT network than between
the PM and AT network. This effect held at the lower (3 Hz,
t64= 4.97, p < 0.0001), intermediate (5 Hz, t64= 3.67, p < 0.0001),
and upper range of theta (10 Hz, t64= 3.12, p < 0.0001). Within
the PM network, we found evidence for synchronous activity near
the upper end of theta (10 Hz, t(64)= 2.13, p= 0.04). We also
explored whether network-specific coupling occurred at higher
frequencies, spanning beta and gamma ranges (frequencies
surviving FDR corrected thresholds are highlighted in Fig. 2a,
bottom). We did not identify any higher frequency effects within
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the AT network. Coupling in the low beta range was enhanced
within the PM network (17 Hz, t64= 2.70, p= 0.009). These
results show that changes in spectral power were coherent within
each of these two networks, consistent with their identification as
dissociable networks from resting-state fMRI.

Having validated the PM and AT networks in our iEEG
recordings, we next sought to evaluate their respective roles in the
reinstatement of memories’ semantic content and temporal
context. To do this, we trained multivariate models to predict
brain activity based on the semantic content and temporal
context of items presented at encoding. We modeled changes in
spectral power from 3 to 180 Hz at each recording site from either
the content- or context-based attributes of each item (Fig. 2b).
Using these models, we predicted the pattern of spectral power
for each serial position or category. We compared these
predictions to held-out items in a cross-validation procedure
that tested whether it was possible to decode either the serial
position or category from brain activity observed within a given
network. In addition, applying these models to patterns of
spectral power during memory search allowed us to compare
reinstatement across the two networks.

We assessed each model’s decoding performance during the
encoding phase of the experiment, as subjects studied list items.
We used a bootstrap procedure (n= 1000) to estimate decoding
performance from five randomly sampled recording sites within
each network (this approach allowed us to control for greater
electrode coverage in the AT network, see Supplementary Fig. 1b
and Methods for further details). Applying this technique, we
reliably decoded the category of items in both the PM (median
AUC= 0.54, Z= 6.9, p < 0.0001) and AT (median AUC= 0.54,
Z= 7.1, p < 0.0001) networks (Fig. 2c), and category decoding did
not differ between the two networks (median ΔAUC = 0.002,
Z= 0.8, p= 0.45). We also reliably decoded the serial position of
items in both the PM (median AUC= 0.71, Z= 7.2, p < 0.0001)
and AT (median AUC= 0.70, Z= 7.2, p < 0.0001) networks

(Fig. 2d). Here, our serial position model achieved more accurate
decoding in the PM than in the AT network (median ΔAUC=
0.002, Z= 2.1, p= 0.04). These bootstrap results provide a lower
bound for the true decoding performance for a given network (see
Supplementary Fig. 4) and confirm the representation of semantic
and temporal information across the PM and AT networks
during encoding.

Reinstatement of content and context in PM and AT networks.
Having established the ability to decode temporal context (serial
position) and semantic content (category) from encoding-period
neural activity in the PM and AT networks, we next asked
whether these two types of information reinstated during free
recall. To measure reinstatement, we tested our category and
serial position models on patterns of neural activity in the
moments preceding recall (from 900 to 100 msec prior to voca-
lization, in 20 msec intervals; Fig. 3a). We observed reinstatement
of temporal information in the PM network and semantic
information in both the PM and AT networks. Temporal context
reinstated in the PM network from 600 to 400 msec before overt
recall (Fig. 3b, top panel). Content reinstatement was sustained
throughout the pre-recall period (Fig. 3b, bottom panel) in both
PM and AT networks. Moreover, these two forms of reinstate-
ment differed between the two networks, with greater content
reinstatement in the AT network (Fig. 3b; p < 0.05, FWER cor-
rected). These findings demonstrate the specificity of contextual
reinstatement within the PM network. In contrast to previous
studies that relied upon similarity in neural activity over time to
identify contextual information8,22,23,39,40, we demonstrate the
ability to recover the serial position of recalled items from rein-
statement in the PM network. We also show greater, sustained
content reinstatement within the AT network. These unique
patterns of reinstatement reveal a dissociation between content
and context reinstatement across the PM and AT networks.
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Our finding that reinstatement of temporal context is specific
to the PM network relies upon chance-level decoding within the
AT network. It is possible that by limiting the number of
electrodes included in this analysis (which was necessary for
comparisons between networks), we impaired our ability to detect
reinstatement, particularly if the information was represented in a
distributed manner. To evaluate this possibility, we examined
decoding performance after incorporating additional electrodes
into our analysis (Supplementary Fig. 4). Adding electrodes
produced more robust category reinstatement effects in both the
PM (χ21 ¼ 5:7, p= 0.02) and AT (χ21 ¼ 31:4, p < 0.0001) net-
works. This analysis also revealed stronger context reinstatement
in the PM (χ21 ¼ 6:7, p= 0.009) but not the AT (χ21 ¼ 0:8, p=
0.36) network when incorporating additional features. These
findings provide additional support for the specificity of context
reinstatement to the PM network and suggest that decoding
accuracy was limited by anatomical coverage and the spatial
resolution of recordings.

To rule out the possibility that epileptiform activity influenced
our ability to detect reinstatement, we examined whether
electrodes that were either within the seizure onset zone,
exhibited inter-ictal spiking, or located near pathological tissue
impacted decoding performance. We repeated our decoding
analyses after excluding these electrodes and found a remarkably
similar pattern of results (Supplementary Fig. 5). We found no
evidence that signals from these electrodes impacted our ability to
decode information at encoding (all χ21 < 0:25, p0s > 0:61) or recall
(all χ21 < 0:43, p0s > 0:53). As such, reinstatement reflected changes

in spectral content associated with physiologically and cognitively
normal processes.

Cortical reinstatement has been shown to predict how memory
search unfolds4,21, with cortical representations providing a top-
down cue for the memory system to retrieve specific information.
As such, it is possible that the PM and AT networks are
responsible for targeting stored memories with specific content-
or context-based attributes. To test this hypothesis, we examined
whether differences in reinstatement across the two networks
predicted the tendency of subjects to organize their recall
sequences along temporal or categorical dimensions. Consistent
with prior work linking cortical reinstatement to memory
organization6,8, variability in the organization of a subject’s
memory was predicted by cortical reinstatement during memory
search (Fig. 3c). Greater reinstatement of context-based repre-
sentations within the PM network tracked the tendency to
consecutively recall items from nearby serial positions (r67= 0.26,
p= 0.028). Increased reinstatement within the AT network was
associated with greater organization based on the categorical
structure of the list (r67=−0.35, p= 0.003). Representations
encoded in these two cortical systems can differentially guide
memory search, biasing how and what we remember.

Discussion
We report evidence that the reinstatement of content- and
context-based information occurs within distinct cortical net-
works. Furthermore, the quality of reinstatement within a given
network was predictive of a subject’s tendency to organize their
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memories along either temporal or categorical dimensions. These
results help resolve conflicting viewpoints on how distinct neural
representations contribute to memory search. Episodic retrieval
occurs when a memory cue converges on the hippocampal for-
mation, prompting associative recall41. Multiple cortical struc-
tures have been proposed to represent temporal context, which
cues episodic recall42, including lateral prefrontal cortex5 and
parahippocampal inputs to the hippocampus43. Despite evidence
implicating these structures in representing temporal
information8,22,44–47, it has been unclear whether these brain
regions are the primary drivers of episodic recall. Our findings of
greater reinstatement of context within the PM network and
content within the AT network resolve this ambiguity by char-
acterizing the contributions of these cortico-hippocampal net-
works to memory search.

Our findings complement previous studies of the neural bases
of memory search6,8,21 that have linked neural reinstatement to
the organization of human memory. Along with fMRI investi-
gations of temporal coding in the MTL and cortico-hippocampal
networks22,23, these previous studies identified candidate regions
for the representation of temporal context based on slow changes
in the similarity of neural patterns over time. Here, our modeling
approach enabled us to recover the temporal position of items
within each list, irrespective of the list in which the item was
encoded. By doing so, we rule out the possibility that context-like
signals emerge from the covert retrieval or maintenance of list
items throughout study lists, an inherent limitation of prior work.
Given the PM network specifically reinstates contextual codes
that predict the temporal organization of recall sequences, neu-
ronal interactions within this network support the ability to target
memories from specific episodic contexts.

The observed temporal coding in the PM network parallels the
firing of hippocampal neurons in rodents47 and so-called “time
cells” in humans48,49. These neurons show selective increases in
firing at specific temporal positions, providing a basis for
sequence learning and recall. Emergence of this hippocampal
code likely depends on two types of time-modulated inputs from
the entorhinal cortex50. Neuronal firing within the lateral
entorhinal cortex responds to salient stimuli in the environment
and decays at rates sufficient to represent ordinal sequences51.
The hippocampus also receives inputs from grid cells in the
medial entorhinal cortex, which displays coupling to the PM
network via parahippocampal cortex52,53. These neurons code for
an internal representation of continuous time, as they fire at
specific temporal intervals during treadmill running54 and peri-
ods of immobility55 when changes in the environment cannot
provide temporal information. Although we did not directly
relate time cell activity to cortical reinstatement, our findings
suggest temporal coding in the medial entorhinal cortex may be
crucial to reinstatement in the PM network.

Because the present findings are inherently correlational in
nature, future studies could provide causal evidence between
network reinstatement and recall organization via noninvasive or
direct electrical stimulation. Adaptation of recently developed
closed-loop stimulation techniques56,57 may provide a framework
to modulate hippocampal activity and bias recall of information
from a specific context.

Unlike reinstatement of contextual information that was spe-
cific to the PM network, we were able to decode the category of
recalled items from patterns of activity in both networks. Con-
verging evidence from fMRI studies suggests that regions within
this network58, including the angular gyrus24, represent recol-
lected content in an episode-specific manner. Our findings sug-
gest that temporal coding may be a unique feature of this
network, in contrast to representations coded in the AT network.
Understanding the nature of these temporal representations,

including where they originate and how they are integrated with
other forms of episodic information remains to be determined.

Our ability to decode the content and context of items in
memory reflects multiple neuronal processes. Specifically, the
measures of spectral power we examined reflect a combination of
broadband and oscillatory processes, including slower (2–4 Hz)
and faster (5–10 Hz) theta rhythms that predominate hippo-
campal networks59. Broadband shifts in power indicate when
memory processing occurs, including concurrent decreases in low
frequency and increases in high-frequency content60–62. These
broadband shifts are associated with changes in neuronal excit-
ability and correlate with firing rates of locally recorded
neurons63,64. Thus, increases in neuronal firing within attribute-
specific cortical regions would support accurate decoding. At the
same time, reduction of oscillations and increased asynchronous
activity supports information coding within cortex65,66. Changes
in the amplitude of narrowband oscillations would therefore
contribute to decoding performance, at timescales constrained by
the speed of the oscillation. Understanding the relative con-
tributions of oscillatory and broadband signals to memory rein-
statement remains an important question for future research.

Neural models of memory search have suggested that an
internal representation of context serves as the primary cue for
hippocampal-dependent recall5. Our findings argue for an alter-
native account regarding the neural basis of memory search. One
possibility is that semantic representations within the AT system
can cue memories in a context-independent manner, prompting
recall of memories with similar semantic attributes. If content-
based representations can guide memory search in this fashion,
one would expect individuals to organize their memories based
on semantic content, rather than the temporal order in which it
was learned. Indeed, subjects who showed greater reinstatement
in the AT network exhibited greater semantic and less temporal
organization. This hypothesis is further supported by evidence
that content-based activity in the inferior temporal cortex can be
used as a top-down signal to bias retrieval to targeted memories7.
Along these lines, the contextual information represented across
the PM network focuses retrieval to a specific temporal context.
The effects observed here may reflect a general property of
memory search, wherein cortical reinstatement serves as a
mechanism to target memories based on network-specific
representations.

Methods
Participants. Sixty-nine patients (40 male, with an average age of 39 years [SD 12
years]) with medication-resistant epilepsy underwent neurosurgical procedures to
implant intracranial electrodes (subdural, depth, or both) to determine epilepto-
genic regions. On average, the duration of epilepsy at the time of surgery was 19
years (SD 13 years). Seizure onset zones were commonly localized to mesial
temporal (n= 25), temporal (n= 22), prefrontal (n= 13), parietal (n= 28), and
occipital (n= 7) cortices. An additional two patients had seizure onset zones within
the hippocampus. Seizure onset zones were lateralized to the left (n= 31), right
(n= 23), or both (n= 11) hemispheres. Data were collected at Dartmouth-
Hitchcock Medical Center (Hanover, NH), Emory University Hospital (Atlanta,
Georgia), Hospital of the University of Pennsylvania (Philadelphia, PA), Mayo
Clinic (Rochester, MN), Thomas Jefferson University Hospital (Philadelphia, PA),
Columbia University Medial Center (New York, NY), and University of Texas
Southwestern Medical Center (Dallas, TX). Prior to data collection, the research
protocol was approved by the Institutional Review Board at each hospital.
Informed written consent was obtained from either the participant or their
guardians.

Free-recall task. Each subject performed a categorized free-recall task in which
they studied a list of words with the intention to commit the items to memory. The
task was performed at the bedside on a laptop, using PyEPL software67. Analog
pulses were sent to available recording channels to enable alignment of experimental
events with the recorded iEEG signal. Word presentation lasted for a duration of
1600ms, followed by a blank inter-stimulus interval (ISI) of 750–1000 ms (see
Fig. 1a). Each list contained items from three distinct categories (four items per
category), with two same-category items presented consecutively. The total word
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pool consisted of 25 distinct categories, with individual items selected as proto-
typical items within each category68. Presentation of word lists was followed by a
20 s post-encoding delay. Subjects performed an arithmetic task during the delay in
order to disrupt memory for end-of-list items. Math problems of the form A+ B+
C= ?? were presented to the participant, with values of A, B, and C set to random
single-digit integers. After the delay, a row of asterisks, accompanied by an 800 Hz
auditory tone, was presented for a duration of 300 ms to signal the start of the recall
period. Subjects were instructed to recall as many words as possible from the most
recent list, in any order during the 30 s recall period. Vocal responses were digitally
recorded and parsed offline using Penn TotalRecall (http://memory.psych.upenn.
edu/TotalRecall). Subjects performed up to 25 lists in a single recall session.

Behavioral analysis. To compute behavioral measures of temporal clustering, we
used the temporal factor29 score. Temporal factor measures the percentile rank of
the absolute lag between successive recalls from the full distribution of available
lags for items that have yet to be recalled. To measure category clustering, we
computed a category factor, which assumes that all items within the same category
have a distance of zero and items of different categories have a distance of one.
These metrics measure the degree to which recall sequences exhibit organization
along temporal or categorical dimensions, with random recall sequences falling at
the median of the distribution (i.e., 0.5).

We presented same category exemplars in sequential pairs, as in the sequence
(A1, A2, B1, B2, C1, C2, B3, B4, …, A4) where Xi is an exemplar of category X. This
list structure creates circumstances where random recall sequences produce factor
scores that deviate from the expected value of 0.5. Consider the case where a
subject recalls four items from a single category in an arbitrary temporal order.
After recalling the first item, the subject could either recall the same-category pair
(e.g., A2 following A1) or jump to one of the other same-category items (A3 or A4).
Because more items are available for recall at long temporal lags, sequences
generated with random temporal order produce a lower than expected temporal
factor score of 0.45. Measures of category clustering can be similarly biased by the
list structure. Consider the case where a subject serially recalls four items starting at
an arbitrary position in the list, without regard to semantic information. Because
same-category pairs are always recalled consecutively, the expected category factor
score for these recall sequences is elevated to 0.64. These examples highlight that
factor scores can deviate from 0.5 due to the list structure rather than true recall
clustering. To rule out this potential confound, we performed a simulation-based
control analysis where we generated null distributions from random recall
sequences matched to both the number of items recalled and either the temporal or
categorical clustering of the observed sequences. We standardized the observed
clustering measures based on these null distributions (n= 1000), which indicate
the amount of clustering expected by chance given the list structure. This analysis is
sensitive to clustering that is not confounded by the list structure, such as temporal
clustering across category boundaries and category clustering across large
temporal lags.

Electrophysiological recordings and data processing. iEEG signal was recorded
using subdural grids and strips (contacts spaced 10 mm apart) or depth electrodes
(contacts spaced 3–10 mm apart) using recording systems at each clinical site. iEEG
systems included DeltaMed & XlTek (Natus), Grass Telefactor, and Nihon-Kohden
EEG systems. Signals were sampled at 500, 512, 1000, 1024, or 2000 Hz, depending
on clinical site. Preprocessing of iEEG signal was performed with custom Python
(v3.3) software. Signals recorded at individual contacts were converted to a bipolar
montage by computing the difference in signal between adjacent electrode pairs on
each strip, grid, and depth electrode. Bipolar signal was notch filtered at 60 Hz with
a fourth-order 2 Hz stop-band Butterworth notch filter in order to remove the
effects of line noise on the iEEG signal.

Anatomical localization. Anatomical localization of electrode placement was
accomplished using independent processing pipelines for depth and surface elec-
trodes. Post-implant CT images were coregistered with presurgical T1 and T2
weighted structural scans using Advanced Normalization Tools69. For patients with
MTL depth electrodes, hippocampal subfields and MTL cortices were automatically
labeled in a pre-implant, T2-weighted MRI using the automatic segmentation of
hippocampal subfields multi-atlas segmentation method70. Subdural electrodes
were localized by reconstructing whole-brain cortical surfaces from pre-implant
T1-weighted MRIs using Freesurfer71, and snapping electrode centroids to the
cortical surface using an energy minimization algorithm72. Reconstructed surfaces
were additionally mapped to a population-average surface73 that we used to assign
network membership based on resting-state connectivity of cortical regions defined
by a multi-modal cortical parcellation30. PySurfer (https://pysurfer.github.io/) was
used to display electrode coverage and statistics on the cortical surface.

Network assignment and analysis. We assigned recording sites to networks of
interest based on resting-state functional connectivity in an independent set of
subjects from the Human Connectome Project30. From the Glasser et al. parcel-
lation, we assigned parcels with high connectivity to the posterior angular gyrus
(area PGp) to the PM network and parcels with high connectivity to the temporal
pole (area TGd) to the AT network. The assignment was based on partial

correlations between each parcel and the seed region, to provide a better estimate of
direct network connections. Bipolar pairs were assigned to the nearest network if
the bipolar centroid was within 8 mm of a parcel within either network, with the
exclusion criteria that they could not be within 4 mm of the other network.

To evaluate the properties of these two cortical networks, we used a bootstrap
sampling procedure to randomly sample from bipolar pairs within each network.
This approach controls for the effect of distance between recording sites on
functional connectivity. As the inter-electrode distance is greater between
compared to within functional networks (leading to a biased estimate of
connectivity within each network), we controlled the distances within each
distribution of connections (i.e., within AT, within PM, or between networks). For
each subject, we randomly sampled connections between the two networks.
Connections within a given network were sampled without replacement to match
the distribution between network connections by minimizing the differences in
connection length. The functional connectivity within and between each network
was computed as the Pearson product–moment correlation across encoding events
in the experiment. This procedure was repeated 1000 times, and the intrinsic
connectivity at a given frequency was estimated from the bootstrap distribution.
Some subjects were excluded from analysis (n= 4) in circumstances where
electrode coverage prevented well-matched samples across conditions.

A similar bootstrap procedure was used to estimate the decoding accuracy of
models trained from each network. Networks with greater electrode coverage are
likely to have higher decoding accuracy due to the number of features alone. As a
result, we randomly sampled five electrodes from each network prior to estimating
the ability to decode content and context information from patterns of brain
activity. This sampling procedure was repeated 1000 times per model evaluation,
and the average performance across bootstrap distributions was used to indicate
model performance for a given subject.

Spectral power. To compute spectral power during word encoding, we applied the
Morlet wavelet transform (wave number 5) to all bipolar electrode EEG signals
from the onset to the offset of stimulus presentation, across eight logarithmically
spaced frequencies from 3 to 180 Hz. Spectral power during recall was estimated
from 900 ms to 100 ms preceding the onset of response vocalization for correct
recalls. Recall events were required to be free of vocalization onsets in the preceding
1500 ms. Power estimates were log-transformed and down sampled to 50 Hz. To
avoid edge artifacts, we included buffers of 1000 ms surrounding events of interest
during the computation of spectral power; mirrored buffering was applied to all
retrieval-period data. Prior to modeling, all power estimates were standardized
using the mean and standard deviation of each session.

Model fitting and testing. We used custom MATLAB code (version R2017b;
Natick, MA) to construct two models to predict stimulus-related patterns of neural
activity as a function of either (1) the taxonomic category of presented stimuli or
(2) the serial position of each presented item within the experiment. For the
content model, we modeled the neural response as a function of 300 intermediate
category features computed using the word2vec model28 trained from Google News
corpora. Category features were computed by averaging semantic representations
across all words presented from a given category. This results in the construction of
a high-dimensional space that respects the semantic relationships between all of the
categories. For the context model, we modeled the neural response to stimuli as a
function of serial position within the list, across lists, and across sessions. For
subjects in which only a single session was run, the regressor predicting the effect of
session on neural activity was excluded.

We fit both the content and context models separately to each neural feature
(i.e., spectral power at a given frequency and bipolar pair). Ridge regression was
used to identify model parameters that minimized prediction error on the training
data, which was randomly assigned using a 5-fold cross-validation procedure,
holding out individual words. Within each training fold, we performed an
additional 10-fold cross-validation procedure (i.e., nested cross-validation74) to
optimize the regularization coefficient used in each fold. Across the ten folds, we
selected the regularization coefficient (from 50 potential parameters log-spaced
from 10−2 to 1010) that minimized the mean squared error of the model
predictions across the training set. The resulting set of model weights across neural
features was used to decode either the serial position or category membership for
unseen patterns of brain activity. We computed the probability that the observed
brain data belonged to each of the 25 categories (or 12 serial positions) by
computing the Pearson product–moment correlation between the observed data
and the predicted pattern of brain activity for each model. A softmax function was
applied to the resultant evidence for each class, and decoding accuracy was
measured using area under the receiver operating characteristic curve (AUC)
metric across all held-out data.

To quantify reinstatement effects across each network, we applied models
trained to predict patterns of brain activity during word encoding to epochs just
prior to recall (from 900 ms to 100 ms before vocalization onset). For each sample
within this window, we computed the ability of each model to decode either the
category or serial position of recalled words in the validation data. The resulting
AUC time series were smoothed with a 7 ms FWHM Gaussian kernel prior to
statistical analysis for noise reduction.
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Statistics and reproducibility. One-tailed tests were used to assess differences
versus chance performance in evaluating decoding accuracy and recall organiza-
tion. Theoretical chance levels (e.g., an AUC of 0.5 one class vs. all others) were
further tested by constructing null distributions via permutation of class labels (i.e.,
category or serial position).

To evaluate the effects of the number of features and potential epileptiform
activity on decoding performance, we modeled classifier performance using linear
mixed-effects models. Fixed effects included the number of electrodes sampled, and
whether the electrode was localized to the seizure onset zone. Intercepts were
allowed to vary, treating the subject as a random variable. Inference was performed
through model comparison using a likelihood ratio test, dropping the effect of
interest. Model fits and normality of residuals were confirmed through visual
inspection.

We corrected for multiple comparisons (across time and frequencies) using a
nonparametric permutation procedure. In our analysis of intrinsic connectivity, we
performed a nonparametric one-sample t test by constructing a null distribution of
the maximum t statistic across frequencies, assuming no difference in intrinsic
connectivity for connections within and between networks. This assumption was
satisfied by random sign flipping of observed values at the subject level. The
significance of observed differences in connectivity strength within versus between
networks was compared to a distribution constructed from 2000 random
permutations, yielding two-tailed significance with PFWE < 0.05.

Multiple comparison correction for network reinstatement followed a similar
procedure. We identified significant (PFWE < 0.05) clusters in the moments leading
up to recall using threshold-free cluster enhancement (TFCE)75. The TCFE statistic
was computed by taking the original test statistics over the pre-recall period and
adjusting by weighting by the height (h) and cluster extent (e):

∑kh
HeðhkÞEdh; ð1Þ

where hk is one of k cluster forming thresholds (hk= h0, h+ dh, . . . , hmax). Height
(H) and extent (E) exponents were set to 2 and 0.5 respectively, with the step size in
the cluster threshold (dh) set to 0.01. After computing TCFE statistics, we used
nonparametric t tests to identify significant clusters based on null distributions (n
= 10000).

Given the limited availability of iEEG data, no statistical methods were used to
predetermine sample sizes (number of subjects). The number of trials included in
the experiment was determined by practical constraints of patient testing at
epilepsy monitoring units. The subjects in this study were a subset of those
included in a multi-site collaboration to investigate the modulation of human
memory via direct electrical stimulation. Subjects with at least 5 recording sites
located within both the PM and AT networks who performed categorized free
recall were included in the present study. All experiments and analyses were
performed once, without replication in independent cohorts.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
De-identified data are available at http://memory.psych.upenn.edu/
Electrophysiological_Data. Source data are provided with this paper.

Code availability
Analysis code for model fitting and evaluation are available at http://memory.psych.
upenn.edu/files/pubs/KragEtal21.code.tgz.
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