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RESEARCH ARTICLE Open Access

Cellular network modeling and single cell
gene expression analysis reveals novel
hepatic stellate cell phenotypes controlling
liver regeneration dynamics
Daniel Cook1,2, Sirisha Achanta2, Jan B. Hoek2, Babatunde A. Ogunnaike1 and Rajanikanth Vadigepalli1,2*

Abstract

Background: Recent results from single cell gene and protein regulation studies are starting to uncover the previously
underappreciated fact that individual cells within a population exhibit high variability in the expression of mRNA and
proteins (i.e., molecular variability). By combining cellular network modeling, and high-throughput gene expression
measurements in single cells, we seek to reconcile the high molecular variability in single cells with the relatively low
variability in tissue-scale gene and protein expression and the highly coordinated functional responses of tissues to
physiological challenges. In this study, we focus on relating the dynamic changes in distributions of hepatic stellate cell
(HSC) functional phenotypes to the tightly regulated physiological response of liver regeneration.

Results: We develop a mathematical model describing contributions of HSC functional phenotype populations to liver
regeneration and test model predictions through isolation and transcriptional characterization of single HSCs. We identify
and characterize four HSC transcriptional states contributing to liver regeneration, two of which are described for the first
time in this work. We show that HSC state populations change in vivo in response to acute challenges (in this case, 70%
partial hepatectomy) and chronic challenges (chronic ethanol consumption). Our results indicate that HSCs influence the
dynamics of liver regeneration through steady-state tissue preconditioning prior to an acute insult and through dynamic
control of cell state balances. Furthermore, our modeling approach provides a framework to understand how balances
among cell states influence tissue dynamics.

Conclusions: Taken together, our combined modeling and experimental studies reveal novel HSC transcriptional states
and indicate that baseline differences in HSC phenotypes as well as a dynamic balance of transitions between these
phenotypes control liver regeneration responses.

Keywords: Single cells, Hepatic stellate cell, Liver regeneration, Mathematical modeling, High-throughput data analysis

Background
Recent technological advances have enabled the study of
transcriptional and proteomic profiles of single cells
within a tissue at an unprecedented scale. Many cell types
from diverse organs, developmental stages, and disease
contexts have been profiled, revealing a high degree of
variability in the expression of mRNA and proteins among
single cells within a population (for examples, see [1–6]).

Analysis of the variability in mRNA and protein expres-
sion at the single-cell scale (hereafter referred to as mo-
lecular variability) has revealed that the coordinated
expression of genes within single cells allows cells to be
organized into multiple sub-phenotypes, with different
sub-phenotypes likely arising in response to different cel-
lular inputs [7, 8], spatial location in the tissue [9, 10], de-
velopmental stage [11], and other intrinsic and extrinsic
factors. The emerging view is that during development,
and during homeostatic function of terminally differenti-
ated tissues, cellular heterogeneity and the distribution of
functional phenotypes are shaped by unique cellular
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inputs within an interacting network of cells constituting
a tissue [12]. This cellular network reciprocally interacts
with physiological features important to tissue function
(e.g., blood flow, extracellular matrix stiffness, and oxygen
content), as well as the molecular cues within the tissue
microenvironment (such as cytokine, paracrine, calcium,
or electrical signals), to shape tissue and cellular behavior.
In other words, the behavior of each cell arises from its
unique spatial and cell signaling “neighborhood”, and the
interactions of heterogeneous cellular subtypes within
these neighborhoods lead to an integrated tissue function.
It has been proposed that the balance among heteroge-
neous cellular subtypes, i.e., the relative proportions of
cells in each functional/phenotypic state, enables effective
tissue-scale responses to perturbations in a manner that is
not possible in tissues lacking heterogeneous cellular
subtypes [13].
Despite significant research efforts, how the extensive

variability intrinsic to molecular states of single cells trans-
lates to a tightly constrained tissue response to perturba-
tions remains an open question. For instance, a prevailing
view in neuroscience is that individual cellular variability
is averaged out in cell populations, producing an electrical
activity net rate code that governs circuit function [14].
Such a view of integrated cellular behavior is supported by
studies of other cell types, which show, for instance, that
while NF-κB levels oscillate over a wide range in single
cells in response to stimulation, at the population level the
response is more homogenous [15]. In contrast to this
perspective, emerging results point to the need to consider
explicitly the cellular subtypes to account for the overall
tissue function [13, 16]. For instance, a recent study has
shown that the variability observed in measurements of
gene expression in single neurons is not entirely random,
but arises from a distribution of cellular functional states
ordered along a gene expression gradient between canon-
ical molecular profiles corresponding to archetypal cell
subtypes [7]. We address here the challenge of under-
standing the tissue scale physiological impact of such a
single cell heterogeneity arising from multiple underlying
cellular functional states. To this end, we collected and
analyzed single cell gene expression data sets for distribu-
tions of functionally relevant phenotypes, and evaluated
the impact of shifts in these distributions on tissue func-
tion, using a computational model of the cellular networks
underlying overall tissue response. We use the process of
liver regeneration to illustrate our approach.
The liver has a unique capacity to regenerate following

up to 70–80% resection of total liver mass. This regenera-
tive ability is crucial to functional recovery following sur-
gical resection in treating liver disease (hepatocellular
carcinoma, metastatic cancer, etc. [17, 18]), and after a live
donor transplant [19]. While recovery from resection is
due primarily to hepatocytes reentering the cell cycle to

restore functional capacity of the liver, a coordinated re-
sponse of a network of liver parenchymal and non-paren-
chymal cells is required to initiate, maintain and terminate
the regeneration process effectively [20–22]. Such an
organ-scale, well-controlled response to injury provides an
excellent system for studying the problem of how the het-
erogeneous response of individual cells is integrated to
yield a coordinated tissue-scale response after a physio-
logical perturbation.
As a part of the liver cell network, non-parenchymal

cells are crucial to controlling the dynamics of liver re-
generation [23, 24]. Depleting Kupffer cells from the
liver alters regeneration dynamics, with different studies
reporting opposite effects of delaying regeneration [25]
versus enhancing regeneration [26]. These opposite ef-
fects may reflect differences in the balance of functional
states of Kupffer cells. Delayed regeneration occurred
following depletion of both M1- and M2-polarized Kupf-
fer cells, while targeted depletion of the M2-polarized
Kupffer cells alone led to enhanced regeneration. Similar
to Kupffer cells, endothelial cells have been shown to in-
fluence regeneration dynamics, although they do so
through the production of hepatocyte growth factor
(HGF) [27], Wnt2 [28], angiopoietin 2 [29], and likely
other factors as well.
Our own work using mathematical modeling to under-

stand progression of liver regeneration has identified hep-
atic stellate cells (HSCs) as important controllers of
regeneration dynamics [23, 30]. In parallel, our experi-
mental studies suggest that the dysregulation of HSC
functional phenotypes is a mediator of the chronic
ethanol-induced suppression of regenerative response to
injury [31, 32]. While there is some recognition of HSCs
as multifunctional cells contributing to liver homeostasis,
repair, and disease etiology, the molecular and cellular dy-
namics of HSCs have been studied primarily in the con-
text of liver fibrosis, emphasizing a canonical view of
HSCs as either quiescent (storing retinol) or activated
(producing extracellular matrix constituents) [33]. Recent
work challenges this two-state view by defining a new
HSC state, termed the “inactive state”, which is molecu-
larly distinct from the quiescent state and whose response
to activation signals is different from that of quiescent
HSCs [34]. In the context of regeneration, several ques-
tions about HSC behavior remain: What are the identities
of HSC functional states during liver regeneration? How
do these HSC functional states and state transitions con-
tribute to the dynamics of liver functional mass recovery?
How is the balance of functional HSC states connected to
defective overall tissue regenerative responses observed in
disease or dysfunctional cases? One challenge in tackling
these questions is in interpreting the “snapshot” single cell
transcriptional data for insight into the dynamics of tissue
function.
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To address these and related questions, we employed
an approach that integrates computational modeling and
in vivo experiments. The results described below are
organized as follows:

� First, we describe a newly developed multi-scale cellular
and molecular network-based computational model of
liver regeneration that incorporates multiple functional
states of cells and dynamic interactions between
hepatocytes and liver non-parenchymal cells.

� Next, we describe a set of model simulations that
have led us to a prediction that balances of cellular
functional states aid in the control of liver
regeneration dynamics.

� Subsequent sections describe the results from
experimental testing of these predictions using
transcriptional profiling of single cells to uncover
the identities and distributions of HSC functional
states in response to liver resection, under alcoholic
fatty liver disease and matched control conditions.

� Finally, we describe the use of our computational
model-based simulations as a framework to interpret
the single cell experimental results and evaluate the
impact of shifts in HSC functional state imbalances
on the dynamics of liver regeneration.

The present study significantly expands the previous
computational models to include dynamics of state transi-
tions in Kupffer cells and HSCs. In addition, the present
manuscript describes novel results from high-throughput
experiments on single cell gene expression in HSCs dur-
ing liver regeneration, which identified HSC functional
states that have not been previously described. The single
cell scale transcriptional assays employed in this study en-
able identifying and characterizing HSC functional states
based on tens to hundreds of simultaneous measurements
in individual cells and pools of cells. Hence, the present
manuscript comprises distinct and novel computational
and experimental results that significantly extends the
previous hepatocyte-focused computational model of liver
regeneration towards a multicellular tissue context. Taken
together, our approach provides a framework for integrat-
ing single cell data sets and information on cellular-scale
functional state transitions with tissue-scale dynamics.
This framework can be applied to multiple organs, physio-
logical challenges, and diseases towards a more compre-
hensive understanding of the contributions of cell state
balances to dynamic tissue function.

Results
A new multiscale cellular and molecular network model
of liver regeneration
We developed a computational model of liver regeneration
that includes both hepatocyte hypertrophy and hyperplasia

(Fig. 1a and b). Briefly, each cell type (hepatocytes, Kupffer
cells, and HSCs) is considered as distributed across discrete
functional states, with cells in each state secreting distinct
factors that lead to distinct cell functional state transitions.
The cells also respond to physiological perturbations by
transitioning among states, increasing mass, or undergoing
cell death. The most notable feature of the model, which
distinguishes the network scheme from previous models of
liver regeneration, is the consideration that HSCs are dis-
tributed across three discrete states, termed ‘quiescent’,
‘pro-regenerative’, and ‘anti-regenerative’ for their putative
impact on the tissue regeneration process. See the Materials
and Methods section for a detailed rationale for model de-
velopment and description of equations. Model parameter
definitions and their nominal values are provided in Add-
itional file 1: Table S1. Model parameters for hepatocytes
are adapted from [23, 35]; model parameters for other cell
types are chosen to have similar magnitudes as hepatocyte
parameters and are optimized to fit experimental data
(Fig. 1c). A concern is that large number of parameters
and the relatively fewer number of experimental obser-
vations, however, makes model parameters largely un-
constrained by experimental values. We utilize global
sensitivity analysis to at least partly address this issue.

Dynamic balance of hepatic stellate cell states during
regeneration
Our computational model prediction of the dynamics of
liver mass recovery following resection in rats match cor-
responding experimental observations (Fig. 1c). Primed
hepatocyte levels peak early post-partial hepatectomy
(PHx), within the first 12 h, and remain at lower levels as
the regeneration progresses. This early priming peak is
consistent with experimental data showing an approxi-
mately 16-h delay between resection and the onset of
DNA replication in rats [37]. In model simulations, levels
of replicating hepatocytes peak at ~ 26 h post-PHx. This
result is consistent with the results of experimental studies
showing that BrdU incorporation peaks at 24 h post-PHx
[37]. Our simulation results are also consistent with ex-
perimental observations of the tissue microenvironment
following PHx. Our simulations show TNF-α and IL-6 in-
crease early post-PHx, peaking at ~ 6 h post-PHx (Fig.
1d), closely matching experimental data showing TNF-α
and IL-6 levels peak in the serum at 12 h post-PHx in rats
[38]. In addition, our simulation results show that IL-10
increasing early post-PHx but with peak levels delayed
until ~ 9 h post-PHx, matching experimental observations
that IL-10 increases during the priming phase after
TNF-α and IL-6 increase, and that IL-10 has a lower peak
level than IL-6 (Fig. 1d) [38]. Our simulation results match
experimentally reported dynamic changes in growth factor
levels (GF) (similar to rat hepatocyte growth factor or
HGF dynamics) and TGF-β (similar to mouse TGF-β
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Fig. 1 (See legend on next page.)

Cook et al. BMC Systems Biology  (2018) 12:86 Page 4 of 29



dynamics) levels, with both factors increasing early
post-PHx and decaying thereafter (Fig. 1e) [39, 40]. The
GF profile peaks prior to that of TGF-β and remains ele-
vated for a longer duration, facilitating hepatocyte entry
into the cell cycle. ECM degrades rapidly post-PHx, but
returns to baseline levels by the termination of regener-
ation, in agreement with results from experimental studies
of matrix dynamics during liver regeneration (Fig. 1e)
[41]. While the model includes a single GF, the biological
correlate of the model GF variable could include several
growth factors, with potential slight differences in their
dynamics. Note that our simulations indicate the existence
of an early transition of quiescent HSCs into both
pro-regenerative and anti-regenerative states (Fig. 1f).
However, the proportion of pro-regenerative HSCs peaks
before that of anti-regenerative HSCs, and the balance of
cell states favors the pro-regenerative state during the
early stages of regeneration (0–100 h post-PHx). After
levels peak, the fraction of pro-regenerative HSCs de-
creases at a faster rate than that of the anti-regenerative
HSCs. After ~ 100 h post-PHx, the ratio of pro-regenera-
tive and anti-regenerative HSCs tends to equalize, which
may contribute to the slowing and eventual termination of
regeneration (Fig. 1c).

Hepatocyte apoptosis rate bifurcates liver recovery and
failure
We performed a global sensitivity analysis to identify
which parameters are important regulators of liver regen-
eration dynamics. We selected values for each parameter
from a uniform distribution with a 10-fold range around
its nominal value (0.1× to 10×). In our initial simulations,
we noticed that certain model simulations with parameter
values far from nominal were taking a large amount of
time, possibly due to model stiffness and numerical inte-
gration issues. We therefore performed two global sensi-
tivity analyses. For the first global sensitivity analysis, we
simulated the model following 70% PHx 150 times, using
a new set of parameter values each time. We observe that
liver mass profiles can be divided broadly into regenerat-
ing and non-regenerating responses, and that there are
more cases of the latter than of the former. Regenerating

responses result in a liver mass greater than the initial
amount present post-PHx, and non-regenerating re-
sponses result in a liver mass that does not increase fol-
lowing resection (unresponsive) or that causes a complete
loss of functional liver mass (liver failure). We find that a
threshold value of the hepatocyte apoptosis rate (in this
case, 2 times the nominal value) bifurcates the response
between liver recovery and liver failure (Fig. 2a, Additional
file 1: Figure S1). We tested all other model parameters
for bifurcation potential and find that several other pa-
rameters that are able to bifurcate the response between
recovery and failure. These include parameters related to
hepatocyte apoptosis – the hepatocyte apoptosis shape
and scale parameters (θap and βap) (Additional file 1: Fig-
ure S1) – as well as the parameters JAK degradation rate
(κJAK), SOCS3 activation rate (VSOCS), Km for SOCS3, IE
gene degradation rate (κIE), and cell growth rate (kgrowth)
and the Kupffer cell parameters TNFa degradation (κTNF)
and IL-6 degradation (κIL6). The relative changes that
must be made to these parameter values, however, are
greater than need to be made to hepatocyte apoptosis rate
to bifurcate recovery and failure response.

Coordinated response of multiple cell types is required
for effective regeneration
Next, we performed a second global sensitivity analysis on
the influence of parameter values on liver mass recovery
using the partial rank correlation coefficient (PRCC)
method [42]. We simulated regeneration using 1500 par-
ameter sets varying all parameters except the hepatocyte
apoptosis rate, since we have found that varying apoptosis
rate has a disproportionate effect on our analysis (and
simulation run times). The global sensitivity analysis re-
sults enable us to identify key parametric contributors to
regeneration or liver failure (Fig. 2b). We identified the
top 20 parameters contributing to liver regeneration or
failure by calculating a sum of squares distance metric for
each parameter to understand which parameters affect re-
generation dynamics most strongly (Fig. 2c). Parameters
that contribute positively to regeneration, tend (mostly,
but not always) to contribute negatively to liver failure. Al-
though not in the top 20 highest sensitivity parameters,

(See figure on previous page.)
Fig. 1 Cell network model of non-parenchymal cell activation contributing to liver regeneration. a Complete network diagram showing cell states,
transitions among states, and molecules promoting or inhibiting cell transitions. Kupffer cell states are distributed between Quiescent (Q) and Active
(a) states. Stellate cell states are distributed between Quiescent (Q), Pro-regenerative (Pro-R), and Anti-regenerative (Anti-R) states. Hepatocyte states are
distributed between Quiescent (Q), Primed (P), and Replicating (R) states. b Cell signaling models showing a schematic representation of molecular
interactions occurring within each cell type considered. Solid lines represent directed signaling; dashed lines represent indirect effects. c Simulated liver
mass recovery profiles compared to the experimental data from [36]. d Simulated cytokine dynamics following resection. e Simulated dynamics of
growth factors and collagens following resection. f Simulated profiles of HSC state dynamics following resection. Definition of additional terms: TNFα
= tumor necrosis factor α, IL-10 = interleukin 10, IL-6 = interleukin 6, TGFβ = transforming growth factor β, MMP =matrix metalloproteases, GF = growth
factors, PDGF = platelet derived growth factor, TNFR = TNF receptor, HGF = hepatocyte growth factor, FGF = fibroblast growth factor, IL-6R = IL-6
receptor, JAK = Janus kinase, STAT3 = signal transducer and activator of transcription 3, SOCS3 = suppressor of cytokine signaling 3, IE = immediate
early genes, HIF-1α = hypoxia inducible factor 1α, VEGF = vascular endothelial growth factor, and SEC = sinusoidal endothelial cells
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Fig. 2 Parameters from all cell types contribute to regeneration dynamics and time to failure. a Changing hepatocyte apoptosis rate results in a bifurcation
between liver recovery following resection and liver failure. b Removing hepatocyte apoptosis rate from the global sensitivity analysis shows that regeneration
and time to liver failure are sensitive to changes in many parameters. c The 20 parameters with the highest combined sensitivity coefficients for regeneration
amount and time to liver failure. Of the top 20 most sensitive parameters, 8 are HSC-related parameters, 7 are hepatocyte-related parameters, and 5 are KC-
related parameters. d Time to failure sensitivity coefficients for parameter values associated with each cell type. 67% of hepatocyte parameters show positive
failure sensitivity (compared to 48% for KCs and 50% for HSCs). e Regeneration sensitivity coefficients for parameter values associated with each cell type. 60%
of HSC parameters show negative regeneration sensitivity (compared to 45% for hepatocytes and 43% for KCs)
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monomeric STAT-3 concentration shows a positive con-
tribution to both regeneration and liver failure. This find-
ing is consistent with previous experimental studies
showing that acute inhibition of STAT-3 and long-term
inflammation involving STAT-3 activation both suppress
regeneration [43, 44].
We examined cell-type specific parameters to identify

which cell types contribute the most to liver failure and
regeneration. We find that the liver failure response tends
to have the highest sensitivity coefficients associated with
hepatocyte and HSC parameters, with 8 of the top 20 pa-
rameters associated with hepatocytes, and 8 of 20 associ-
ated with HSCs. One way to interpret parameter changes
biologically is to view parameter changes as changes to
cell behavior that occur as preconditioning prior to resec-
tion. Therefore, the finding that hepatocyte and HSC pa-
rameters affect regeneration dynamics strongly suggests
that hepatocyte and HSC preconditioning prior to resec-
tion plays a significant role in determining whether a liver
will regenerate or fail (Fig. 2d). Among the most sensitive
parameters affecting time to liver failure are steady-state
production of Tgfb by HSCs (KSS

Tgfb), concentration of
monomeric STAT3 ([STAT3]), IE gene activation rate
(VIE), and quiescent-to-primed transition rate (kQ→ P). In
addition, we find that no cell type had parameters with
disproportionally large sensitivities (i.e., no cell type was
associated with parameters showing disproportionately
large effects on regeneration dynamics), indicating that re-
generation requires a coordinated regulation of all cell
types in the liver (Fig. 2e). Among the most sensitive pa-
rameters affecting liver regeneration are the hepatocyte
parameters Km

JAK, Km
SOCS3, and βap; the Kupffer cell pa-

rameters kKCQ-A and hypoxia load (HLKC); the HSC pa-
rameters θHSC

req, kECM; κECM, and κdeg; and the
physiological parameters representing metabolic demand
(M) for all three cell types.

Timing and balance of hepatic stellate cell functional
states are critical controllers of liver regeneration
dynamics
For the successful regeneration scenario, we investigated
how the balance of HSC states changes in response to re-
section. We find that levels of pro-regenerative and
anti-regenerative HSCs peak prior to or at 24 h post-PHx,
and decrease thereafter (Fig. 3a). The phase-plane represen-
tation used in Fig. 3a allows for visualizing the coordinated
behavior of the two cell states. The levels of cells in both
states increase early post-PHx, with pro-regenerative levels
peaking earlier than the peak of anti-regenerative levels.
This coincides with an earlier and higher magnitude peak
transition rate in pro-regenerative cells (Fig. 3b). The dy-
namic interplay between the HSC cell states contributes to
a successful regeneration response that matches the

experimentally observed mass recovery dynamics following
PHx in rats (Fig. 3c).

Dynamic tissue microenvironment cycles underlie
regeneration dynamics
In the present computational model, the distribution of
cell functional states affects the molecular state of the
tissue microenvironment, which in turn regulates the
transition between cell states. Figures 3d-i show the co-
ordinated regulation pairs of associated factors repre-
senting the tissue microenvironment following resection.
Each pair of factors shows a cyclic response to resection,
with levels of these factors eventually returning to
normal.

Hepatic stellate cell isolation and identification reveals
high transcriptional variability within a cell type
Our simulations point to hepatic stellate cell state bal-
ances as important modulators of liver regeneration dy-
namics; however, the existence of multiple stellate cell
states has never before been shown during liver regener-
ation. We therefore set out to identify signatures of HSC
states through their transcriptional regulation by collect-
ing and analyzing a high-dimensional dataset of gene ex-
pression from single HSCs. We obtained liver tissue
before and after 70% PHx from chronic ethanol-fed and
isocaloric carbohydrate-fed control rats. These experi-
mental conditions allow us to examine the distribution
of HSC states before and after PHx in the cases of nor-
mal regeneration (control group) and deficient regenera-
tive response (ethanol group). We used laser capture
microdissection (LCM) coupled with high-throughput
qPCR (Biomark™) to isolate and transcriptionally
characterize single HSCs (Fig. 4a). We chose the time
point 24 h post-PHx, corresponding to the peak of hep-
atocyte replication in rats post-PHx [37]. To confirm
cell-type specificity, we also isolated and transcription-
ally characterized single hepatocytes from the same tis-
sue. Using this high-throughput approach, we measured
the expression levels of ~ 100 genes in each of ~ 140 sin-
gle HSCs with high reproducibility (Additional file 1:
Figure S2). LCM made possible the capture of single
HSCs and hepatocytes with low levels of contamination
(Fig. 4b) and a high degree of cell type specificity (Fig.
4c). Principal component analysis (PCA) was used to
identify variability between cell types and to quantify
major sources of variability within the gene expression
data (Additional file 1: Figure S3). We find that, al-
though there is clear separation between HSCs and he-
patocytes, the variability within a cell type is of the same
order of magnitude as the variability between cell types
(Fig. 4c). This surprising finding suggests that gene ex-
pression varies within a cell type in a large range similar
to the differences in expression levels between distinct
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cell types (hepatocytes and HSCs, in this case). Several
of the major contributors to variability in gene expres-
sion within a cell type and between cell types are ethanol
metabolism genes (Cyp1a1, Aldh1a1, Adh1a, Cyp2e1),
genes associated with HSC activation (Actb, Smad1,
Ppara), and growth factors (Ang, Pdgfa, TGFb1) (Fig. 4d).
Moreover, the distribution of gene expression within a cell
type is different between HSCs and hepatocytes. Some
genes are expressed at different levels with similar distri-
bution ranges (Fig. 4e), while other genes are expressed at
similar values and ranges (Fig. 4f), or at different levels
with different distribution ranges (Fig. 4g).

Single-cell based transcriptional analysis reveals novel
HSC populations
We used a guided clustering technique to identify tran-
scriptional states of HSCs across all conditions:
ethanol-fed and control rats prior to and post-PHx. First,
we categorized each cell based on the expression of fi-
brous collagen-related genes (Col3a1, Col14a1, and
Ecm1) and growth factors (Hgf, Igf1, and Vegf) (Fig. 5a).
This allowed us to organize cells into four categories: GF
high, collagen low (pro-regenerative); GF low, collagen
high (anti-regenerative); GF high, collagen high (mixed);
and GF low, collagen low (quiescent). Next, we calculated

Fig. 3 The dynamics of cell state balances and tissue microenvironment factors during successful liver regeneration visualized using a phase
plane analysis. a Levels of pro-regenerative and anti-regenerative HSCs. b Transition rates of HSCs between quiescent and pro-regenerative
(green) and between quiescent and anti-regenerative (red) states. c Simulated liver mass recovery compared to experimental data [36]. d-i
Dynamic tissue microenvironment influences and is shaped by cell state balances. Dots on the phase planes represent time = 0 h, 24 h, 48 h,
72 h, and 168 h following resection
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Fig. 4 (See legend on next page.)
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Pearson correlations of the expression of all genes in each
sample to the centroid of gene expression of each sample
category and reclassified samples with sufficiently high
correlations (p-value ≤ 0.05) into the category to which
they most closely correlated. We then used linear discrim-
inant analysis to visualize the gene expression state of each
single cell and how the cells were organized into distinct
states based on the expression level of all genes measured
(Fig. 5b and c). In addition to the genes used for

classification, we identified several discriminant genes that
may be useful as biomarkers to differentiate among these
states, including Actb, Mmp14, Mmp2, Igf1, Tnfr1 and
Tgfbr2 (Fig. 5d, Additional file 1: Figure S4).
Next, to ensure that the separation we observed

among HSC states was not an artifact of our data ana-
lysis technique, we randomized our data 1000 times,
re-performing our analysis on the randomized data, and
calculating a silhouette score for each randomization.

(See figure on previous page.)
Fig. 4 In situ isolation and high-throughput gene expression profiling of single/pooled hepatic stellate cells and hepatocytes. a Representative
images showing LCM isolation of single hepatic stellate cells. DAPI and Phalloidin staining were used to identify nuclei and cell boundaries. Co-
localization of DAPI and Gfap was used to identify HSCs. b Single HSCs and hepatocytes were collected from the same tissue and tested for cell
type marker genes using high throughput qPCR. Cells express high levels of marker genes in a cell-type specific manner. c Using PCA on expression
levels of 34 genes measure in both hepatocytes and HSCs separates cell types. The variability within a cell type appears to be higher than variability
between cell types. d PCA scores shows the genes contributing to the PCA plot. e Different genes show unique patterns when comparing cell types.
TNFR1 shows different mean CT values but similar variability. f PDGFA shows similar mean CT values and similar variability. g ALDH1A1 shows different
mean CT values and different variability
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Fig. 5 Gene expression in single hepatic stellate cells reveals functional transcriptional states. a Manual clustering of functional HSC states reveals
four states: Quiescent (low GF/low collagen), Pro-regenerative (high GF/low collagen), Anti-regenerative (low GF/high collagen), and mixed (high
GF/high collagen). b Linear discriminant analysis shows separation of the four HSC states in two dimensions. c LDA shows further separation of
the four HSC states in three dimensions. d Genes contributing to discrimination among functional states. e Minimum spanning tree representation of
single HSCs shows correlative relationships between individual cells and putative trajectories of transition across HSC states. f Cyclic representation of
HSC functional states shows the potential distribution of individual HSCs as they progress through the cycle
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The silhouette score is a measure of the “between-ness”
of clusters normalized by a commensurate measure of
the “within-ness” of clusters; therefore, a high silhouette
score indicates separation among tightly packed clusters.
The silhouette score of the clusters from the original
single cell gene expression data fell outside the distribu-
tion calculated from randomized data at an empirical
p-value less than 0.001 (Additional file 1: Figure S5). The
silhouette score calculated from our experimental data
and associated with this low p-value indicates that the
cell states do not overlap significantly when projected
onto the linear discriminant axes compared to random-
ized data, suggesting that the identified HSC states are
governed by distinct transcriptional regulation. We fur-
ther validated these results using gene expression pro-
files from thirty-six 10-cell pools of HSCs (Additional
file 1: Figure S6). Our results from 10 cell pools are simi-
lar to our results from single cells but not identical
(most notably in the minimum spanning trees in Fig. 5e
and Additional file 1: Figure S6E). The differences be-
tween our single cell results and the pooled cell results
likely arise because the pooled cell data includes a mix-
ture from multiple cell states. Therefore, in this case, we
use the single cell data to understand potential transi-
tions across states. We sought to understand how an in-
dividual cell may transition across states by using a
minimum spanning tree projection (Fig. 5e). The mini-
mum spanning tree projection connects each cell with
its nearest neighbors according to an algorithm that
minimizes the total connectivity of the network and pre-
vents connection cycles. This type of projection gives an
idea of how individual cells within a population could
transition between states to minimize the transcriptional
changes required to move from one state to another but
is not a formal method to identify dynamic progression
from “snapshot” data [45]. The minimum spanning tree
projection suggests a dynamic shift in HSC transcrip-
tional regulation whereby HSCs transition from a quies-
cent phenotype to either a pro-regenerative phenotype
or an anti-regenerative phenotype and that pro-regenerative
cells can transition to a mixed state then to an
anti-regenerative state. It is also possible that, in contrast to
a linear progression through states, HSC transitions occur
in a cycle analogous to the cell cycle. If such a cycle is the
case, the balance of HSCs may be represented as a distribu-
tion of states within a cycle (Fig. 5f). Further experimental
work, including cell tracing studies, is needed to distinguish
between these putative models of HSC state transitions.
We next sought to identify the modules of gene ex-

pression that govern each cellular state (Fig. 6). We
grouped the genes using hierarchical clustering based on
Spearman rank correlation (Additional file 1: Figure S7).
We then colored the genes according to their annotated
and previously reported functions (Growth factors –

light green, Tgfb signaling – light orange, collagens &
matrix-related genes – light red, and matrix remodeling
– light blue). In addition, we used the online DAVID
software for pathway analysis to identify the functional
annotations enriched within each group compared to all
the genes we measured, as an unbiased approach to in-
vestigate the putative functions of the gene modules
(Fig. 6) [46]. We then grouped cells within each state by
hierarchical clustering using Spearman rank correlation.
We find that distinct HSC states tend to express distinct
functional modules of genes. Quiescent HSCs tend to
express high levels of the basement membrane gene
Col4a2 and the matrix metalloprotease responsible for
regulating Collagen-4 (Mmp2) and its regulator (Timp2),
which has been shown to work with Mmp2 to degrade
collagens. This suggests that quiescent HSCs play a
more dynamic role in maintaining basement membrane
architecture than previously suspected in addition to
their canonical role of storing vitamin A. Pro-regenera-
tive HSCs express genes aiding in regeneration, includ-
ing the growth factors Igf1, Arg1, Vegfa, and Hgf. Cells
within these clusters also expressed other genes, includ-
ing Stat3, Socs3, and Tnfr1, suggesting that interleukin
signaling could be the primary driver of HSC transition
from the quiescent state to the pro-regenerative state.
Anti-regenerative HSCs express high levels of Col3a1,
Col14a1, and Ecm1. Several of these cells also show high
expression of Mmp2, and Mmp3, suggesting that cells in
the anti-regenerative state remodel existing matrix and de-
posit fibrous matrix. The anti-regenerative HSCs also tend
to express higher levels of Spp1, which has been shown to
activate HSCs toward a pro-fibrotic state, suggesting a
positive feedback from the anti-regenerative state to re-
cruit more cells into this phenotype. Cells in the
anti-regenerative state also tend to express higher levels of
the TGF-β receptors Tgfbr2 (as did pro-regenerative and
mixed stellate cells), but not the ligand Tgfb1, which is
expressed at highest level in pro-regenerative and mixed
state HSCs. This indicates that HSCs in the
anti-regenerative state may be sensitive to TGF-β signal-
ing, but may not be the key source of TGF-β in the tissue.
The mixed phenotype expresses high levels of both the
collagen deposition module and growth factor production
modules. What separates this state from the
anti-regenerative state is the high expression of genes re-
lated to TGF-β signaling, cytokine signaling, and retinol
metabolism, including Rara and Rbp1. Several cells in the
mixed and pro-regenerative states express Tgfb1; there-
fore, there may be a coordination of anti-regenerative
HSCs and either mixed or pro-regenerative HSCs required
for sustaining anti-regenerative HSC populations during
chronic liver disease.
Understanding the molecular regulation underlying

each state suggests additional annotations that may be

Cook et al. BMC Systems Biology  (2018) 12:86 Page 11 of 29



appropriate to label the cell states. HSCs with high MMPs
may be classified as quiescent or as matrix-modulating.
HSCs with high GFs may be classified as pro-regenerative
in the context of response to PHx or as cytokine-regulated
HSCs or GF depositing HSCs in the context of normal tis-
sue function. HSCs with high levels of collagens may be
classified as anti-regenerative in the context of response to
PHx, as TGF-β response primed HSCs in the context of
normal tissue function, or as pre-fibrotic in the context of
disease progression. HSCs that express high levels of GFs
and collagens may be classified as a mixed phenotype in
the context of regeneration or as a hyper-functional HSC
or adaptive HSC in the context of normal liver function.

These adaptive HSCs may express high levels of multiple
functional gene modules to be able to respond to external
stimuli efficiently without having to produce additional
transcripts.

Dynamic balance of HSC states post-PHx is altered
between health and disease
We next investigated how the balance of HSC states pro-
gresses during liver mass recovery (Table 1). We examined
the distributions of cells within the four identified cell
states in four different ways. We first investigated whether
it was likely that at least one of the states resulted in a dis-
tribution of cells different than the others. We then

Fig. 6 Heatmap representation of gene expression values for individual HSCs. Cells are grouped based on functional state. Genes are grouped by
hierarchical clustering based on Pearson correlation. Gene annotations are colored based on functional annotations. Genes discussed in the text
have their names offset for ease of identifying them. Green = growth factors, gray = collagen-related genes, orange = Tgfb signaling, blue =matrix-
modulating genes. We also show overrepresented functions (GO Terms) for each gene group identified in our single cell data compared to the
background of all genes measured. * Indicates p-value < 0.05
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examined how cells are distributed in healthy livers prior
to and post-PHx. Subsequently, we compared the distribu-
tion of cells among states between healthy livers and
alcohol-adapted livers prior to PHx. Finally, we compared
the distribution of cells among states between healthy liver
and alcohol-adapted livers at 24 h post-PHx. Cells from
three biological replicates were collected and the distribu-
tions of these cells among states are reported in Table 1.
We used Pearson’s Chi-squared test to evaluate

whether the distribution of cells among states was inde-
pendent of the condition (control, ethanol-adapted, prior
to PHx, and 24 h post-PHx). We found that the cell state
distribution is not independent of experimental condi-
tion (p-value = 0.002); although it should be noted that
this test may give incorrect results for sample sizes as
small as in our study. Nevertheless, this result indicates
that at least one condition likely results in a distribution
different from the others.
We examined how the distribution of cells changes

prior to and following PHx. We expected a high propor-
tion of HSCs in the livers of control animals prior to re-
section to be in the quiescent state; however, we find that
HSCs are distributed among all the possible states with a
small fraction of cells in the quiescent state (11% of total
cells). Control livers at baseline have a high proportion of
cells in the mixed state (39%) and in the pro-regenerative
state (29%), and a slightly lower proportion of cells in the
anti-regenerative state (21%). We used Fisher’s exact test
for count data to compare the distribution of cells in
healthy rat livers prior to and post-PHx. We found no
statistical evidence to support a difference in distribution
due to PHx (Benjamini & Hochberg corrected p-value =
0.37). The following differences we observe may therefore
be an artifact of our small sample size. Following resection,
control livers show a strong response of pro-regenerative
cells (38%) and maintain a large population of mixed cells
(35%). Relatively few cells are found in the anti-regenerative
state (6%). The balance of cells in the pro-regenerative and
mixed states appears to shift at 24 h post-PHx compared to
baseline, i.e., the relative proportion of pro-regenerative cells
to mixed cells is higher at 24 h post-PHx compared to the
baseline ratio. Following resection, it is possible that cells in
the mixed state shift to the pro-regenerative state. A larger

sample size of single cells, however, is necessary to robustly
determine a shift in the cell state distribution. Such a shift
may correspond to lifting a “brake” on growth factor effect-
iveness, allowing the hepatocytes to progress through the cell
cycle.

HSC state dynamics during ethanol-preconditioning and
impaired regenerative response to partial hepatectomy
Following adaptation to chronic ethanol consumption,
the regenerative ability of the liver is greatly reduced,
leading to suppression of hepatocyte replicative capacity
that is apparent through reduced tissue mass by 24 h
post-PHx and exaggerated by 48 h post-PHx [31, 47].
We investigated how chronic ethanol feeding alters the
balance of HSC states at baseline and at 24 h post-PHx
(Table 1). We found that largest difference in HSC state
balances in ethanol-fed rat livers prior to resection. In
contrast to control livers, ethanol-fed rat livers have a
high proportion of cells in the anti-regenerative state
(33%) prior to resection (baseline). This condition also
shows a reduced fraction of cells in the pro-regenerative
(17%) and mixed states (19%). Fisher’s exact test for
count data indicates that cell distributions are dependent
on ethanol adaptation when comparing healthy livers to
ethanol adapted livers prior to PHx (Benjamini & Hoch-
berg corrected p-value = 0.051). This result suggests that
the main effect of chronic ethanol intake on HSCs is to
enhance HSC transition to the anti-regenerative state
and attenuates other HSC states prior to resection. Such
a cell state population balance after adaptation to
chronic ethanol intake may result in a preconditioning
of the extracellular matrix in such a way as to impair re-
generation following resection.
Our model predictions, however, are not entirely con-

sistent with our experimental results (shown in Table 1)
on the distribution of HSC states post-PHx in ethanol
group – specifically, analysis of single cell data shows
that the proportion of anti-regenerative HSC state is not
increased at 24 h post-PHx in ethanol-fed rats. Instead,
ethanol-fed rats show a similar HSC response to resec-
tion as control rats (Benjamini & Hochberg corrected
p-value = 0.70 for Fisher’s exact test on count data), al-
beit with more quiescence (29% quiescent in ethanol-fed
rats compared to 21% quiescent in control rats). Follow-
ing resection, ethanol-fed rats also have high proportions
of cells in the pro-regenerative state (39%) and mixed
state (32%) and no cells in the anti-regenerative state
(0%). These results indicate that HSCs may have a dy-
namic transition insufficiency following resection, result-
ing in greater numbers of quiescent cells. At 24 h
post-PHx, the numbers of cells sampled show this dy-
namic insufficiency only subtly but analysis of other
measurements, such as tissue-scale gene expression, may
be able to shed further light on this behavior. The

Table 1 Distribution of hepatic stellate cell states in each
condition

State Control
0 h

Ethanol
0 h

Control
24 h

Ethanol
24 h

Quiescent 0.11 0.31 0.21 0.29

Pro-Regen 0.29 0.17 0.38 0.39

Anti-Regen 0.21 0.33 0.06 0.00

Mixed 0.39 0.19 0.35 0.32

Total Cell Number 38 36 34 31
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dynamic HSC insufficiency could be due to an altered
transition propensity of HSCs from their baseline states
or a dynamic insufficiency in intercellular signaling that
contributes to suppressed transitions. The larger magni-
tude differences between ethanol and control HSC
population balances at baseline compared to 24 h post-
PHx indicates that chronic HSC imbalances may have
more of an effect impairing regeneration than any dy-
namic insufficiencies.

Hepatic stellate cell state balance modulates liver
regeneration dynamics
In addition to investigating the altered balance of HSC
states caused by chronic ethanol intake followed by resec-
tion, we also investigated how cell-to-cell variability of the
transcriptional state of HSCs may be distributed in differ-
ent conditions (Fig. 7a and b). Both ethanol-fed and con-
trol groups have similar within-state cellular variability
prior to resection. The exact structure of this variability
may not be the same following ethanol treatment, how-
ever. For example, the transcriptional space occupied by
quiescent cells in control rats appears different from the
transcriptional space occupied by quiescent cells in
ethanol-fed rats at baseline. Following resection, there ap-
pears to be similar variability in both treatments as ob-
served prior to resection.
We sought to interpret our experimental results using our

model simulations as a framework to predict the effects of
hepatic stellate cell state imbalances on regeneration dynam-
ics. Specifically, we used our model to investigate how alter-
ing HSC dynamics could contribute to impaired liver
regeneration. We sought to simulate enhanced liver regener-
ation through altering the baseline balance of cells in the
pro-regenerative and anti-regenerative HSC states. We in-
creased the baseline fraction of pro-regenerative HSCs while
maintaining the baseline anti-regenerative fraction at zero.
Based on model simulations, we predict that increasing the
pro-regenerative fraction of HSCs at baseline, in the absence
of other changes, results in a rapid evolution of HSC state
distributions to match the nominal case (Fig. 7c), which is
accomplished through dynamic changes in the pro-regenera-
tive transition rates (Fig. 7d), without yielding a noticeable ef-
fect on the mass recovery profile (Fig. 7e). We then sought
to simulate impaired regeneration through increasing the
baseline amount of cells in the anti-regenerative phenotype,
consistent with our experimental results in ethanol-fed rats.
Similar to the previous case, changing the baseline level of
anti-regenerative HSCs in the absence of other changes re-
sults in a constrained evolution of HSC state distribution
prior to 24 h post-PHx to eventually follow the nominal tra-
jectory, due to changes in both pro-regenerative and
anti-regenerative transition rates (Fig. 7g). As before, this
baseline imbalance results in no discernible change the mass
recovery profile. The constrained HSC behavior in both

cases is likely the result of similar Kupffer cell regulation. Fol-
lowing PHx, simulated Kupffer cells respond identically re-
gardless of initial HSC conditions. Therefore, similar Kupffer
cell signaling post-PHx constrains HSC balances towards the
nominal case, leading to an effective regeneration response
regardless of initial HSC conditions. Neither increasing the
initial fraction of pro-regenerative HSCs nor increasing the
initial fraction of anti-regenerative HSCs results in a signifi-
cant change in liver mass recovery dynamics (Additional file
1: Figures S9 and S10). It should be noted that this result
should hold true only in the absence of other changes to the
liver microenvironment caused by changing the initial bal-
ances of cells in each of these cell states.
In contrast, changing the balance of pro-regenerative

and anti-regenerative transition propensities (kQ→ PR
HSC

and kQ→AR
HSC) results in a shift in the behavior of HSC

dynamics post-PHx (Fig. 7i, Additional file 1: Figure
S11). By increasing the anti-regenerative transition pro-
pensity of HSCs, fewer HSCs transition to the
pro-regenerative state and more cells transition to the
anti-regenerative state. Furthermore, because of the
positive feedback created by the production of TGF-β,
HSCs tend to remain in the anti-regenerative state ra-
ther than return to quiescence. This leads to a slight de-
crease in the apparent pro-regenerative transition rate,
likely caused by the reduced number of quiescent HSCs
due to anti-regenerative transition rate increases (Fig. 7j).
This increase in anti-regenerative HSCs leads to a sup-
pressed liver mass recovery post-PHx (Fig. 7k).

Matrix preconditioning and dynamic hepatic stellate cell
transition insufficiency contribute to suppressed liver
regeneration
Although our single cell gene expression analysis uncov-
ered imbalances in HSC states at baseline as characteriz-
ing disease versus control conditions, our simulations
suggest that these differences are not sufficient to alter
the response to resection. This indicates that the regen-
eration deficit in the ethanol group may be due to mul-
tiple hits that alter HSC behavior: the first hit to
precondition the ECM by increasing the fraction of
HSCs in the anti-regenerative state at the baseline
chronic ethanol-adapted state, and the second hit to de-
crease dynamically HSC functional state transitions
post-resection. If the altered matrix composition in the
ethanol-adapted state results in a stiffer or denser
matrix, it is possible that growth factors and other
matrix-bound factors are less able to intercalate into the
matrix to be available to promote cell growth
post-resection. Furthermore, such a dense matrix may
slow degradation due to metalloproteases. Using our
computational model, we investigated whether this
matrix preconditioning and dynamic transition insuffi-
ciency are sufficient to account for ethanol-induced
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Fig. 7 (See legend on next page.)
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suppression of liver regeneration by changing parame-
ters consistent with our hypotheses (changes to param-
eter values are shown in Table 2). We maintained
parameter values of parameters related to Kupffer cell
activation constant from our previous simulations to
maintain ethanol-induced increases in Kupffer cell acti-
vation post-PHx, resulting in high levels of IL-6 and
IL-10 (Fig. 8a). We then altered parameter values of pa-
rameters related to matrix deposition, matrix metallo-
protease function, and HSC transition propensity in
accordance with our experimental results (Table 2, Add-
itional file 1: Figure S12). We also reduced the value of
the parameter governing JAK activation rate in hepato-
cytes in response to IL-6 because studies have shown
that ethanol-adapted hepatocytes have a deficient
STAT3-pathway response to cytokine signaling [48, 49].
Tuning these parameter values allows us to match our
experimental observations that HSC population levels
are dynamically insufficient post-PHx, (Fig. 8b). Based
on the simulation results, we postulate that the dynamic
insufficiency of HSCs may be due to increased HSC
apoptosis in ethanol-adapted rats (Additional file 1: Fig-
ure S13). Following the alterations in the parameter
values discussed above, simulation results match the ex-
perimentally observed mass recovery data following 70%
PHx in ethanol-adapted rats (Fig. 8c) [47]. Our

simulations capture experimental observations that
chronic ethanol intake suppresses hepatocyte priming
(experiments show a reduced hepatocyte induction of
STAT3 following stimulation by IL-6 following ethanol
adaptation) (Fig. 8d), impairs hepatocyte replication
post-PHx (experiments show that ethanol-adapted rats
had reduced liver mass recovery at 24 and 48 h
post-PHx) (Fig. 8e), and results in hepatomegaly (experi-
ments show an alcohol-adaptation dependent increase in
hepatocyte volume and protein content, but not cellular
DNA content) (Fig. 8f ) [47, 48, 50]. Model simulations
suggest, however, that hepatocyte size increases early in
control rats in response to PHx but that the hepatomeg-
aly in the ethanol group is a delayed response to PHx.
Altered cell network behavior in ethanol-adapted animal
simulations leads to dramatic differences in tissue micro-
environment (Fig. 8g, h & Additional file 1: Figure S12)
but little difference in final amount of tissue
vascularization (Fig. 8i), suggesting that chronic ethanol
consumption does not impair revascularization of the
liver. These simulation results, however, are the result of
a particular choice of parameter values based on our hy-
pothesis of stellate cell preconditioning of the extracellu-
lar matrix in ethanol-adapted rat livers. These results
should be considered as a model-based hypothesis for
follow-on experimental testing.

Discussion
In this work, we present a new framework for studying
the control of liver regeneration by the re-distribution of
different cell types across multiple functional states and
the interaction of cells in a dynamic network. Our model-
ing analysis indicates that, within this framework, HSCs
play an important role governing the dynamics of liver re-
generation. We therefore focus our experimental work on
exploring HSC behavior during effective and impaired re-
generation. Conventionally, HSCs have been assumed to
exist in one of two distinct states: quiescent and activated.
Quiescent HSCs assist in storage and transport of reti-
noids as well as in modulating the innate immune re-
sponse [51–53]. Activated HSCs change their morphology
and alter their gene and protein expression profiles to

(See figure on previous page.)
Fig. 7 Model analysis shows the impact of imbalances among multiple hepatic stellate cell transcriptional states on liver regeneration dynamics
(a-b) Topographic map representation of HSC states shows the clustering of HSCs in each condition measured. c HSC behavior is constrained
prior to 24 h post-PHx even after increasing the baseline fraction of pro-regenerative HSCs. This behavior assumes the absence of other changes
associated with changing baseline amounts. d Similar to the phase plane behavior, transition dynamics converge prior to 24 h post-PHx. e
Increasing the baseline amount of pro-regenerative HSCs has little effect on the dynamic regeneration profile. f HSC behavior is constrained prior
to 24 h post-PHx even after increasing the baseline fraction of anti-regenerative HSCs. This behavior assumes the absence of other changes
associated with changing baseline amounts. g Similar to the phase plane behavior, transition dynamics converge prior to 24 h post-PHx. h
Increasing the baseline amount of anti-regenerative HSCs has little effect on the dynamic regeneration profile. i Increasing the quiescent to anti-
regenerative transition rate leads to a dynamic change in HSC transcriptional state balances. j HSC transition dynamics change based on the
balance of transition rates. k Increasing the quiescent to anti-regenerative transition rate causes a suppressed regeneration profile. This type of
profile may be representative of liver function in diseased states, such as liver fibrosis

Table 2 Matrix-associated features predicted in chronic ethanol
use and corresponding parameter values

Feature Control Ethanol Parameter Value in Ethanol
(% of nominal)

ECM Density Sparse Dense kECM 400%

ECM
Composition

Not enriched
in fibrous
collagens

Increased
fibrous
collagens

κdeg 10%

Tissue Stiffness Relatively
low

Areas of
high
stiffness

kQ→ PR

kQ→ AR

65%
25%

Availability of
Matrix-bound
factors

High Low Kup 70%

Growth factor
intercalation

High Low kup 70%
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deposit fibrous collagens, causing scarring and worsening
fibrosis and cirrhosis [54]. In contrast to this view, our re-
sults show a much broader range of transcriptional pro-
files of HSCs isolated from ethanol-adapted and control
livers. Simulations using our computational model showed
that the balance of these HSC transcriptional states can
affect overall dynamics of liver regeneration. This is in
agreement with experimental studies suggesting that
HSCs can enhance hepatocyte and HepG2 cell replication,
but that livers adapted to chronic diseases characterized
by active HSCs (fibrosis and cirrhosis) exhibit impaired re-
generation [24, 55–58].

Our study shows that HSCs exhibit gene expression
profiles that correspond to distinct cellular functional
states. What is less clear is the path of progression of
HSCs through these functional states. One possibility is
that HSCs could exist in a “transcriptional continuum”
where cells can transition between any two states in re-
sponse to internal and external stimuli (Fig. 9a), with the
nature of the stimulus governing the type of transition
possible. Alternatively, HSCs could progress through a
series of states beginning at quiescent state and moving
towards an anti-regenerative state (Fig. 9b). In such a
scheme, progression to the anti-regenerative state

Fig. 8 Model prediction of the implications of HSC activation in chronic ethanol-fed rats. a Chronic ethanol use leads to increased levels of pro-
inflammatory and anti-inflammatory cytokines following PHx. b Chronic ethanol appears to lead to a deficient pro-regenerative HSC response
following PHx. c The effects of increased cytokine production, imbalanced HSC functional states, and changes to the tissue microenvironment
combine to suppress regeneration following ethanol adaptation. The simulated regeneration profile of ethanol adapted rats is consistent with
results from [38]. d-f Hepatocyte response to ethanol feeding and PHx. (G-I) Selected tissue microenvironment responses to ethanol feeding
and PHx
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requires transcriptional regulation into the pro-regenerative
and mixed states before reaching the anti-regenerative state.
Such a progression may correspond to the physiological
stages of regeneration, which may mean that such an or-
dered progression does not necessarily hold true for disease
contexts that yield diminished regeneration. It is also possible
that HSCs could progress through committed fate transitions
from a quiescent phenotype to a mixed phenotype (Fig. 9c).
In this scheme, the only way to rebalance the distribution of
HSC states is through cell death of terminally differentiated
HSCs. Further investigations are needed to identify which, if
any, of these hypotheses are correct.
No matter how the progression among HSC states oc-

curs, we postulate that the dynamic transition of HSCs
among these states may correspond to the distinct phases
of liver regeneration described in the literature. In this
scheme, during the priming phase of regeneration (0–12 h
post-PHx), HSCs would be predominantly in the
pro-regenerative and quiescent states, making GFs avail-
able for hepatocyte entry into the cell cycle and remodeling
basement matrix to allow for effective regeneration. During
the replication phase (12–72 h post-PHx), HSCs would be
predominantly in the mixed state, continuing to produce
GFs for hepatocyte replication but also actively producing
additional scaffolding to aid newly generated hepatocytes.
During the termination of regeneration (following ~ 96 h
post-PHx), HSCs would be predominantly in the
anti-regenerative state, no longer producing GFs but con-
tinue to remodel and produce extracellular matrix to allow
for hepatocyte migration and mass increase, as well as to
allow for revascularization of the tissue. The hypothesis
that HSCs exist primarily in the anti-regenerative state dur-
ing the termination phase is consistent with studies

showing that TGF-β and increase in extracellular matrix
can both inhibit hepatocyte proliferation. Whether TGF-β
signaling (within hepatocytes or in the non-parenchymal
cells) or matrix deposition contribute to the termination of
regeneration alone, or in combination with other factors
upregulated in the anti-regenerative HSC state, remains a
topic of active research [59, 60].
Our results show high variability in transcript expression

across single cells. This type of cell-scale transcript expres-
sion variability is typical and is understood as arising from
underlying biological heterogeneity and stochasticity. It has
been shown repeatedly that technical variability of sample
processing is orders of magnitude lower than biological vari-
ability across a wide range of assay techniques, including
single-cell, high-throughput qPCR [7], single-cell RNA-seq
[6], and single-cell protein hybridization and quantification
[61]. A key challenge to exploring single-cell-scale behavior
is to isolate an appropriate number of cells that enables a
meaningful analysis of underlying cell states. Some cell types
can be isolated more easily than others and with fewer pro-
cessing steps that influence RNA measures. One of the earli-
est single cell studies used ~ 150–200 single cells derived
from the earliest stages of embryo development for analysis
of cells states using high-throughput, real-time PCR of a se-
lect set of genes in each cell [62]. Our experimental efforts
utilized a similar number of cells and evaluated the expres-
sion of several genes relevant to HSC function. Recent stud-
ies have started to investigate thousands of single cells at a
time [63–67], with some studies using fewer cells [68, 69],
while a few studies using many more cells [11, 70]. We
employed laser capture microdissection to isolate HSCs
from flash-frozen tissue. This approach limits the sample
throughput in order to preserve in vivo cellular state as

Fig. 9 Potential hepatic stellate cell transition patterns. a Star-type transitions could allow any functional state to shift its transcriptional profile into any
other functional state. b A cyclic transition pattern, like the cell cycle, could allow for distributions of cells aiding hepatocyte regeneration or homeostatic
renewal. Getting “stuck” in one phase of the cycle could lead to cell exit into apoptosis or pre-fibrotic phenotypes. c A cell fate commitment pattern
would allow cells to transition only one way. In such a pattern, quiescent cells would have to be continuously replenished. Perhaps hepatic stem cells
play a role in this replenishment
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compared to isolation techniques that require tissue perfu-
sion [7, 71]. It should be noted that several of the studies in-
vestigating single cells utilize tissues with multiple cell types,
requiring hundreds of cells to identify cell states within each
cell type. In our study, the use of laser capture microdissec-
tion allowed us to target one specific cell type and dimin-
ished the need for capturing hundreds of single cells to
conduct analysis of cells states. Notably, previous studies
have shown that data from even a low number of single cells
can be used to infer the distribution of cell states underlying
the overall tissue response [62].
Several opportunities exist to extend our current

study. Follow-on experimental efforts could build on the
initial evidence on the shifting distributions of hepatic
stellate cell states based on select genes by comprehen-
sively characterizing the transcriptome using RNA-seq
and related global assays. It should be noted, however,
that even when considering transcriptomic data, only a
fraction of the transcripts (a few tens to hundreds, de-
pending on the context) contribute to separation of
functional states, as evidenced by typical factorization
analysis of these data sets using strategies such as Princi-
pal Component Analysis, Multi-dimensional Scaling,
and Stochastic Embedding [1, 2, 4, 10]. The identity of
functional states depends on the subset of the transcrip-
tome that is considered as relevant to a specific context
under study. For example, fractionation of cell states
based on metabolic pathways may yield a different hier-
archy of cell states than fractionation based on transcrip-
tion factors, cell surface receptors, signaling pathway
components, or a combination thereof. Our analysis of
cellular functional states based on select set of approxi-
mately 100 transcripts could be considered as parallel to
single cell cytometry studies of select (~ 20–100) pro-
teins using the CyTOF approach that have uncovered
new insights into the cellular hierarchy of multiple cell
types, including immune cells and stem cells [72–74].
Another opportunity is to extend the computational

model to incorporate our novel experimental data de-
scribing single HSC gene expression. The model in-
cludes only three HSC states, excluding the mixed HSC
state identified as a major contributor to HSC popula-
tion balances. Accounting for this additional state, how-
ever, may require a more thorough understanding of
how HSCs transition across these states. To this end, fu-
ture investigations need to develop temporally inform-
ative data, for example through cell lineage tracing
techniques, to identify the dynamics governing progres-
sion of individual HSCs through different states. Add-
itionally, we considered hepatocyte replication following
resection as a uniform property of all hepatocytes, al-
though recent studies have begun to appreciate the con-
tributions of liver “stem cell-like” cells contributing to
regeneration [75, 76]. Our combined single-cell based

transcriptional analysis and computational modeling ap-
proach could be a powerful tool to investigate the con-
tributions of these “stem cell-like” hepatocytes as well as
additional hepatocyte transcriptional states to liver re-
generation and dynamic liver function. Further exten-
sions of our approach could be used to study the
relationship between spatial heterogeneity in the liver
and regeneration. Using our approach, we collected sin-
gle cells from portal and central regions of multiple liver
lobes and record exact spatial information about each
cell. Coupling such data with a spatially resolved cell
network model would allow for in-depth investigation
into how spatial heterogeneity affects regeneration and
vice versa.

Conclusions
Our study has several implications for studying the
mechanisms driving chronic liver diseases such as fibro-
sis, cancer, and others. Our results demonstrate that the
dynamic liver function is governed by multiple levels of
physiological controls: molecular, intracellular, and
inter-cellular networks. Molecular control of liver func-
tion has been widely studied, but has yet to progress to
promising therapies for severe liver disease [77, 78]. Pre-
vious studies have focused on the effects of canonical
cell types interacting or the effects of other organs, such
as adipose tissue, on liver function [57, 79]. Our work
takes a different approach, using a data-driven under-
standing of cell functional states to gain insights into
how the dynamic distributions of cells in various func-
tional states contribute to overall tissue function. In
summary, our study presents an integrated experimental
and computational modeling approach towards under-
standing the quantitative and dynamic contribution of
constituent cell states and their interactions to overall
tissue function, with broad application to study the im-
pact of chronic conditions and disease on response to
acute physiological perturbations.

Methods
Animal use
All animal studies were approved by the Institutional
Animal Care and Use Committee (IACUC) at Thomas
Jefferson University. Jefferson’s IACUC is accredited by
the Association for Assessment and Accreditation of La-
boratory Animal Care and experiments were designed
using the Guide for the Care and Use of Laboratory
Animals.
Adult (8–10 week old) Sprague-Dawley rats were sub-

jected to a standard Lieber-DeCarli pair feeding protocol
with 36% of calories provided by ethanol or carbohy-
drates (maltodextrin). Following 5–7 weeks of ethanol
feeding, rats were anesthetized and subjected to 70%
PHx by surgical removal of medial and left lateral lobes
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as per standard procedure [80, 81]. The medial and left
lateral lobes were quickly frozen in OCT blocks (Tissue-
Tek, QIAGEN, Valencia, CA) over a dry ice and metha-
nol bath to serve as within-animal, 0 h controls. At 24 h
post-PHx, rats were again anesthetized and the remnant
liver tissue was excised and frozen as before. Following
excision of the remaining liver mass, rats were sacrificed
by cervical dislocation. Tissue was stored at − 80 °C until
further use.

Immunohistochemical staining
Frozen liver tissue in OCT blocks was sectioned 10 μm
thick using a cryostat set at − 20 °C and thaw mounted
on glass slides. Sliced tissue was stored at − 80 °C for up
to 2 weeks. Immunohistochemical staining was per-
formed using a rapid staining protocol taking approxi-
mately 30 min to complete to preserve RNA integrity.
Slides were first fixed in cold acetone and hydogen per-
oxide (Sigma-aldrich, St. Louis, MO, 50 ml: 50 μl) for
30 s, then blocked and permeabilized with PBS contain-
ing 2% BSA (Sigma–Aldrich, St. Louis, MO) for 1 min.
Afterwards, liver sections were incubated with the pri-
mary antibody anti-glial fibrillary acidic protein (Gfap)
(ab4674, Abcam, Cambridge, MA), an HSC marker, for
4 min at room temperature. Then the slides were
washed, and were incubated for 4 min at room
temperature in the dark with the secondary antibody
Cy3 anti-chicken 1/200 with DAPI 1/10,000, phalloidin
2.5/100, and PBS containing 2% BSA. Then slides were
rinsed with PBS and dehydrated in graduated ethanol
concentrations (70–100%) and in xylene for 5 min.

Laser capture microdissection (LCM)
The LCM process was performed using a PixCell system
and CapSure Macro LCM caps (Arcturus Engineering,
Mountain View, CA). Single cells or 10 cell pools of cells
with positive staining (GFAP+) were lifted individually
on caps. HSCs from the first 7 layers of hepatocytes
around the portal or central vein were lifted and their
position was annotated for future analyses. The annulus
for the Laser was adjusted to the size of HSCs (approxi-
mately 10 μm, HSCs were lifted and screened for quality
as a whole cell on the cap after capture and only ac-
cepted if the cell target was fully lifted. During single cell
sampling both the tissue and the corresponding cap
were inspected for the removed cell body to ensure that
the fluoresced HSC of interest is collected. Lysis buffer
was added onto the single cell on the cap (5.5 μl; Life
Technologies, Grand Island, NY) and cooled on ice be-
fore storage at − 80 °C. Hepatocytes, which stained nega-
tive for Gfap (Gfap-) and were discernable by size and
morphology, were collected according to the same
procedure.

High-throughput quantitative PCR
Our sample preparation calls for processing the single cells
directly in a reverse transcriptase reaction rather than
extracting RNA. Following reverse transcriptase reactions,
cells were subjected to realtime PCR for targeted amplifica-
tion and detection using primers designed to target specific
genes using PrimerBlast [82]. Official gene symbols (from
the Nucleotide database of NCBI) were used to denote tar-
get genes throughout the manuscript. Refseq IDs are avail-
able in Additional file 1: Table S2. Where possible, primers
were designed with intron-spanning PCR primers (Primer
sequences can be found in Additional file 1: Table S2). The
standard BioMark™ protocol was used to pre-amplify cDNA
samples for 22 cycles using TaqMan® PreAmp Master Mix
per the manufacturer’s protocol (Applied Biosystems, Fos-
ter City, CA). qPCR reactions were performed using 96.96
BioMark™ Dynamic Arrays (Fluidigm®, South San Francisco,
CA) enabling quantitative measurement of multiple
mRNAs and samples under identical reaction conditions
(Spurgeon et al. 2008). Each run consisted of 40 amplifica-
tion cycles (15 s at 95 °C, 5 s at 70 °C, 60s at 60 °C). CT
values were calculated by the Real-Time PCR Analysis Soft-
ware (Fluidigm). Four 96.96 BioMark™ Arrays were used to
measure gene expression across the ~ 300 single cell sam-
ples included. The same serial dilution sample set was in-
cluded to verify reproducibility and test for technical
variability.

Data availability
Raw and processed data, code to process the data, and
the mathematical model used to interpret the data are
available as additional files (Additional files 2, 3 4 and 5).

Data normalization
Individual qRT-qPCR reactions were examined to ensure
the quality of each qRT-PCR reaction. Each reaction was
manually passed or failed based on the qualitative nature
of the reaction curves obtained from the PCR. Any reac-
tion below the limit of detection based on the CT-value
of DNA suspension buffer undergoing qPCR procedure
(no template control) was manually failed. Following this
pass/fail analysis, samples having greater than 25% failed
reactions and gene assays having greater than 80% failed
reactions were excluded from the present analysis. This
exclusion step further increases the quality and confi-
dence in the data used for analysis. A total of 139 single
cell samples (36 Ethanol 0 h, 31 Ethanol 24 h, 38 Con-
trol 0 h, and 34 Control 24 h) and 72 different gene as-
says were included in the present analysis.
Data was normalized using a modified -ΔΔCT method

[83]. The median of the highest quality genes (pass in
greater than 45% of samples) was used as a pseudo-
housekeeping gene to account for differences in cell size,
incomplete cell lifting, and BioMark™ assay loading
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variation. We normalized the raw CT values by subtract-
ing them from the pseudo-housekeeping gene value on a
per sample basis. We then removed any effects of rela-
tive expression levels across genes by median centering
the expression value of each gene to give our normalized
-ΔΔCT value for each reaction.

Cell type specificity analysis
Markers for four cell types were included in our
qRT-PCR assays: Apoa4 for hepatocytes, Itgam for Kupf-
fer cells, Pecam1 for endothelial cells, and Actb and
Gfap for HSCs. Each individual hepatocyte or HSC cap-
tured expressed high levels of its marker gene(s) and low
levels of marker genes for other cell types, often below
the limit of detection (Fig. 4b). We measured 42 gene as-
says in both hepatocytes and HSCs using two BioMark™
Arrays, one for each cell type. Batch effects were re-
moved by normalizing the dilution curves for the over-
lapping gene assays to each other. This strategy could be
used because the same dilution series was used for both
arrays. We then imputed missing data as the minimum
value for each assay minus 1 CT (to approximate the
limit of detection). This strategy of imputing missing
values as equal to the limit of detection was used be-
cause visual inspection of our data suggests that failed
reactions were often caused by transcripts being
expressed below the limit of detection rather than other
causes of reaction failure. We then performed principal
component analysis (PCA) on the collated raw CT
values from these cells to identify using an unsupervised
method if cell type was a major contributor to the vari-
ability in the data (Fig. 4c). This analysis also allowed for
us to identify genes that contribute significantly to the
variability in the data (Fig. 4d). Similar results were
found when analyzing 10-cell pools of HSCs and individ-
ual hepatocytes from the same BioMark™ array.

Linear discriminant analysis
High fidelity samples and assays were identified using a
threshold of > 30% of assays working per sample, and >
10% of cells expressing each gene. Gene expression iden-
tified as below the limit of detection was called as “NA”
in the original data, but we imputed values below the
limit of detection by assuming each non-expressed gene
had a CT value of the maximum (for that gene) plus
one, indicating that the gene is at least 2-fold below the
limit of detection (see above).
Linear discriminant analysis was then performed on

these data using the ‘MASS’ package in the computing
language R [84–86].

Silhouette score analysis
We calculated the silhouette score of the clusters identi-
fied in our linear discriminant analysis to quantify the

separation of the identified clusters. We used the ‘MASS’
package in R for this calculation [84]. We then random-
ized our data 1000 times and re-performed our linear
discriminant analysis and silhouette score calculation.
We calculated an empirical p-value for our silhouette
score by finding the number of random scores equal to
or greater than that calculated for our data.

Minimum spanning tree analysis
We calculated minimum spanning trees to identify a
possible progression of activation of single HSCs using
Euclidean distance in the spantree function from the
package ‘vegan’ in R [87]. Minimum spanning trees are a
graphical approach that connects all nodes (single cells)
in a data set that maintains a minimum weight between
edges, where weight is a measure of unfavorable connec-
tions. Highly correlated nodes are connected by edges,
making this technique appropriate to hypothesize pro-
gression of a single cell through highly correlated nodes.

Topological maps
Topological maps were produced from 2-dimensional
kernel densities of all HSCs in the linear discriminant
space using the R package MASS [84].

Model development rationale
Metabolic demand
Our model uses a lumped parameter, the metabolic de-
mand (M), to represent the cellular effects of the physio-
logical state of the animal. The metabolic demand can
be viewed as the cellular response to the normal stress
put on a healthy liver to maintain physiological func-
tions. It is likely related to a combination of external fac-
tors such as portal blood flow, portal pressure, nutrient
availability, toxin flux (such as lipopolysaccharide) and
intrinsic factors including hepatocyte metabolic capacity,
functional history, and transcriptional state. Each cell
type could have a different value for M, as each cell type
could integrate the effects of these physiological effects
differently. In a model describing individual cells, each
cell could have a different value for M, based on its his-
tory, state, and cell type. In our model, each cell type has
its own value for M. The metabolic load (defined as
metabolic demand per cell, or M/N, where N is the
functional mass of the liver) increases following partial
hepatectomy and is considered to be the driving force
for liver regeneration.

Hepatocytes
The simulated hepatocyte state transition network in our
model follows the framework presented by [23], in which
hepatocytes can exist as quiescent, primed, or replicating
(Fig. 1a). IL-6 acting through the JAK-STAT signaling cas-
cade initiates immediate early (IE) gene signals in
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hepatocytes that catalyze their transition from the quies-
cent state to the primed state (Fig. 1b, Hepatocytes).
Primed hepatocytes can either return to quiescence, which
occurs at a constitutive rate, or primed hepatocytes can
enter the replicating state in response to sufficient levels
of growth factors (GF) produced by non-parenchymal
cells and liberated from the ECM. However, hepatocyte
replication is inhibited by increased levels of TGF-β [88].
Replicating hepatocytes double their number approxi-
mately every 30 h, and return to quiescence at a constitu-
tive rate, which can be increased by ECM buildup.
Hepatocytes responding to PHx (i.e. hepatocytes in the
primed and replicating states) are also able to increase
mass to respond to an increased metabolic demand when
the latter drives liver regeneration. Such a framework al-
lows a system representation where hepatocytes can re-
spond to metabolic challenges through replication and
through increasing functional capacity (mass) of each cell.
This framework is also applicable in disease contexts,
where replication may be impaired, providing a capability
for hepatocytes to ameliorate damage to tissue in the ab-
sence of a regeneration response. Other models have been
developed that include cell hyperplasia by representing
primed and replicating hepatocytes with discrete size in-
creases instead of allowing for a continuum of hyperplasia
[89]. However, these models have not yet been shown to
be able to capture disease-specific dynamics of liver re-
sponse to resection.
In addition, within our framework, hepatocytes are

able to sense and respond to hypoxia [90]. During liver
regeneration, hepatocytes may begin hypoxic signaling
when they have expanded into areas that are not yet vas-
cularized fully [91]. In our model, hypoxic signaling is
considered to occur as follows: hepatocytes respond to a
low vascularization by inducing Hypoxia Inducible Fac-
tor 1α (HIF-1α), which in turn induces hepatocytes pro-
duction of VEGF and therefore non-parenchymal cell
replication to replace lost tissue architecture [92].

Kupffer cells
Kupffer cell activation during liver regeneration and in
response to chronic and acute stresses has been studied
extensively [47, 93–96]. Our model accounts for two
functional states of Kupffer cells: quiescent and active
(Fig. 1a). In our simulations, active Kupffer cells can
transition along a gradient of M1 to M2 activation in re-
sponse to the autocrine feedback of the cytokines they
produce. Activated Kupffer cells return to quiescence at
a constitutive rate (Fig. 1b). In our model, Kupffer cells
are activated in response to an increased metabolic load;
and once activated, they begin to produce cytokines as-
sociated with an M1 activation phenotype, high produc-
tion of IL-6 and Tumor Necrosis Factor α (TNF-α), and
low production of Interleukin 10 (IL-10) and TGF-β

[95]. TNF-α interacts with several receptors to mediate a
variety of physiological responses in Kupffer cells.
TNF-α further increases numbers of activated Kupffer
cells within a population by binding to TNF receptors
(TNFRI and TNFRII) leading to NF-κB activation, tran-
scription of NF-κB target genes (including IL-6, IL-10),
immediate early (IE) gene expression, and Kupffer cell
activation [97, 98]. TNF-α also induces the production
of AP-1 and its downstream targets, including osteopon-
tin (OPN or SPP1), IL-10, and GM-CSF, which induce
production of TGF-β in Kupffer cells [99–101]. We
model the effects of these pathways by simulating acti-
vated Kupffer cells as constitutively expressing TNF-α,
IL-6, IL-10, and TGF-β. Kupffer cell activation is also
modulated by negative feedback, most prominently by
IL-10 impeding TNF-α production [102]. Our model in-
cludes a description of IL-10 antagonism of TNF-α pro-
duction. However, biologically, not even the highest
possible levels of IL-10 can inhibit TNF-α production
completely; therefore, our mathematical model allows
for a nominal amount of TNF-α production even at high
levels of IL-10 [103].
Kupffer cells respond to other external factors in

addition to activation signals. In response to poor
vascularization, HIF-1α is activated in Kupffer cells,
leading to production and secretion of PDGF [92]. Acti-
vated Kupffer cells also respond to external VEGF, pro-
duced by hepatocytes. VEGF induces Kupffer cells to
enter a replicating state, which results in a cell doubling
in ~ 30 h [104]. Replicating Kupffer cells return to the
activated state at a constitutive rate, which is increased
by ECM buildup.

Hepatic stellate cells
Much work has focused on characterizing HSC activa-
tion in the context of fibrotic or pro-fibrotic states, sev-
eral studies have also found that HSCs contribute to
liver regeneration through the production of growth fac-
tors that enhance regeneration, such as HGF, EGF, and
FGF [105, 106]. These disparate HSC functions led us to
postulate the existence of two mutually exclusive HSC
functional states: a pro-regenerative state, producing
growth factors, and an anti-regenerative state, producing
collagens and TGF-β (Fig. 1a).
In our model, HSCs are considered as transitioning into

distinct states in response to distinct external stimuli. IL-6
signals through the JAK-STAT signaling cascade to induce
production of growth factors, such as HGF and FGF, and
immediate early (IE) genes, which transition HSCs to a
pro-regenerative phenotype. These interactions are repre-
sented in our model as a physiological transition between
states (Fig. 1b). Studies investigating contributions of
non-parenchymal cells to liver regeneration [24] have
hinted at IL-6 induction of this pro-regenerative state.
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HSC transition to an anti-regenerative state, in contrast,
occurs throughTGF-β signaling via the SMAD2/3 pathway,
considered in our model as a state transition (Fig. 1b). The
functional effects of this anti-regenerative state on the liver
regeneration dynamics were matched to the known effects
of pro-fibrotic HSC activation on hepatocyte proliferation
and liver regeneration, which have been investigated rigor-
ously in vitro and in vivo [107, 108].
In our modeling framework, HSCs can enter a repli-

cating phenotype from either the pro-regenerative or the
anti-regenerative states in response to increased PDGF
levels. Replicating HSCs transition from their replicating
states back to their respective functional states (pro-re-
generative or anti-regenerative) at a constitutive rate and
a matrix-dependent rate. These matrix-dependent rates
are increased by ECM buildup, leading to a reduction in
levels of HSCs replicating.

Tissue-scale response
Maintenance of ECM and ECM-bound factors involves the
coordination of several cell types to control the compos-
ition and properties of the ECM. Many cell types within the
liver contribute to matrix degradation both through
constitutive degradation and through active degradation
using matrix metalloproteases (MMPs) [24, 109–112].
Consequently, we modeled matrix degradation as a cell-in-
dependent process. Intrinsic matrix degradation was mod-
eled as a constitutive rate of ECM removal, and extrinsic
matrix degradation as TNF-α inducing MMP production,
which increases ECM removal. The matrix itself is an active
contributor to liver regeneration by sequestering and re-
leasing growth factors during tissue homeostasis and during
the regeneration response. Our model includes a matrix
contribution to growth factor production by implicitly
representing GF produced by HSCs as coming directly
from these cells and from freed matrix-bound factors.
Matrix sequestration of growth factors is included explicitly
via a term that allows GF to be bound and sequestered by
ECM.
Vascularization was modeled at the physiological scale

by introducing a parameter representing the extent of
vascularization within the tissue (i.e., the total volume of
blood vessels and their distribution within the tissue). The
extent of vascularization increases in response to the
amount of VEGF produced by hepatocytes themselves
responding to hypoxia. As vascularization increases, hyp-
oxia decreases, causing VEGF levels to return to baseline.
This feedback mechanism acts to maintain vascularization
levels in the regenerating liver.

Computational model description
Our computational model was extended from [23]. The
previous model included only a linear response of
non-parenchymal cells to resection. Our extended model

explores non-parenchymal cell behavior more fully. We
maintained the original model architecture and hepato-
cyte equations. Compared to the previous model [23],
our new model introduces 15 new differential equations
describing 2 new cell types and tissue vascularization
and 67 new parameters describing non-paranchymal cell
activation and signaling. All simulations were performed
in Matlab (Mathworks, Natick, MA) using ODE15s as
our ODE solver. We found that ODE23s gave similar re-
sults. All the simulation results included in the manu-
script were generated using ODE15s.

Hepatocyte equations
Our extended model maintains the framework of the
previously published initial model by allowing hepato-
cytes to exist in one of three states: Quiescent (Q),
Primed (P), or Replicating (R). Factors produced by
non-parenchymal cells in response to liver metabolic
load (metabolic demand per cell or M/N) shift hepato-
cytes between states, according to the following
equations.

d
dt

Q ¼ −kQP IE½ �− IE0½ �ð ÞQþ kRQ ECM½ �R
þ kreqσreqP−kapσapQ ð1Þ

d
dt

P ¼ kQP IE½ �− IE0½ �ð ÞQ−kPR GF½ �− GF0½ �ð Þ
P−kreqσreqP−kapσapP

ð2Þ
d
dt

R ¼ kPR GF½ �− GF0½ �ð ÞP−kRQ ECM½ �R
þ kprolR−kapσapR ð3Þ

Where [IE] represents the concentration of immediate
early genes expressed in response to STAT-3 transcrip-
tional regulation and [ECM] represents the amount of
extracellular matrix. σap and σreq are sigmoidal functions
defined as:

σap ¼ 0:5 � 1þ tanh
θap−N

.
M

� �
βap

0
@

1
A

0
@

1
A ð4Þ

σreq ¼ 0:5 � 1þ tanh
θreq− GF½ �� �

βreq

 ! !
ð5Þ

The parameters β and θ in each of these equations are
tuned so that when metabolic load is high, σap is high;
conversely, when [GF] is high, σreq is low. Therefore,
when cells are highly stressed (high metabolic load),
apoptosis occurs at a high rate; when GFs are available,
cells remain in the “Replicating” state.
The JAK-STAT signaling pathway, GF production, and

ECM production are modeled as a combination of first
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order and Michaelis-Menten kinetics, as shown in the
following equations.

d
dt

JAK½ � ¼ V JAK IL6½ �
IL6½ � þ kJAKM

−κJAK JAK½ � þ k2 ð6Þ

d
dt

STAT3½ � ¼ VST3 JAK½ � proSTAT3½ �2
proSTAT3½ �2 þ kST3M 1þ SOCS3½ �=kSOCS3I

� �

−
V IE STAT3½ �
STAT3½ � þ kIEM

−
VSOCS3 STAT3½ �
STAT3½ � þ kSOCS3M

−κST3 STAT3½ �
þ k3

ð7Þ
d
dt

SOCS3½ � ¼ VSOCS3 STAT3½ �
STAT3½ � þ kSOCS3M

−κSOCS3 SOCS3½ �

þk4
ð8Þ

d
dt

IE½ � ¼ VIE STAT3½ �
STAT3½ � þ kIEM

−κIE IE½ � þ k5 ð9Þ

d
dt

GF½ � ¼ kGF
Mhepatocyte

N
−kup GF½ �

ECM½ �−κGF GF½ � þ k7
ð10Þ

d
dt

ECM½ � ¼ −kdeg IL6½ � ECM½ �−κECM ECM½ � þ k6 ð11Þ

Where [proSTAT3] represents the concentration of
monomeric STAT-3 available to dimerize following IL-6
signaling.
Hypoxia inducible factor (HIF-1α or HIF) is modeled

as increasing when the liver mass increases faster than
vascularization. HIF-1α then stimulates VEGF produc-
tion within hepatocytes.

d
dt

HIF½ � ¼ N−N0ð Þ
HL

kHIF 1− tanh 3 � Vascularizationð Þð Þ

−
VVEGF HIF½ �

KVEGF
M þ HIF½ �−κHIF HIF½ � þ KHIF

SS

ð12Þ
Where HL is the tissue hypoxia load or tissue oxygen

demand, kHIF is the maximum HIF production rate, the
3 in the tanh function is a scaling term to ensure HIF
production stops when the vascularization is appropriate
for the organ mass, VVEGF and KM

VEGF are the
Michaelis-Menten parameters for VEGF production
from HIF, κHIF is the degredation rate of HIF, and KSS

HIF

is the steady state HIF production of the organ. VEGF
production from HIF in hepatocytes is modeled accord-
ing to Michaelis-Menten kinetics.

d
dt

VEGF½ � ¼ VVEGF HIF½ �
KVEGF

M þ HIF½ �−κVEGF VEGF½ �

þKVEGF
SS

ð13Þ

Where κVEGF is the degradation rate of VEGF and
KSS

VEGF is the steady-state VEGF production.
One of the unique characteristics of regenerating hepa-

tocytes is that they maintain (at least to a large extent)
their capacity for healthy liver metabolism and tissue func-
tion while undergoing a proliferation response to resec-
tion. As a result of this, the overall cellular response to
signaling is coupled to total number of hepatocytes. In our
model, the molecular signals governed by eqs. 6–13 de-
pend on the total amount of liver mass, N (eq. 14). The
liver mass, N, is considered as primarily a function of he-
patocytes in different states (eqs. 1–3), along with a
growth variable accounting for hypertrophy (eq. 15).
Hence, the cellular and molecular state variables are inter-
linked in both directions.

Tissue equations
The overall hepatocyte mass, N, includes hypertrophy
and cell growth (hyperplasia) of primed and replicating
cells in response to metabolic load as follows:

N ¼ Qþ G P þ Rð Þ ð14Þ

Where G represents the relative cell mass, which is
initially set to 1 and changes according to the following
equation:

dG
dt

¼ kgrowth
Mhepatocyte

N
−
Mhepatocyte

N0

� �
ð15Þ

Where N0 is the initial fraction prior to resection (set
to a value of 1 in our simulations) and kgrowth is a
species-specific cell growth rate representing how
quickly a single cell can increase mass.
Vascularization is promoted by increased levels of

VEGF and proceeds through a phenotypic rate (kvas).

d
dt

Vascularization½ � ¼ kvas VEGF½ �− VEGF0½ �ð Þ ð16Þ

IL6 and TGFβ can be produced by multiple cell types,
thus the composite equations for these species is shown
below, where the definitions of the terms contained in
the equations are shown in the following respective cell
type sections.
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d
dt

IL6½ � ¼ khepatocyteIL6
Mhepatocyte

N
−

V JAK IL6½ �
IL6½ � þ kJAKM

þKIL6
SS−hepatocyte þ kKCIL6AKC−κIL6 IL6½ � þ KIL6

SS−KC

ð17Þ
d
dt

TGFβ½ � ¼ kKCTGFAKC þ KTGF
SS−KC

þ kHCSTGFARA−κTGF TGFβ½ �
þ KTGF

SS−HSC ð18Þ

Kupffer cell equations
Kupffer cells were modeled to exist in one of three
phenotypic states: Quiescent, Active, and Replicating.
Kupffer cells become active initially due to physiological
cues and early signaling events post-PHx, which we
modeled using a lumped parameter (similar to the hep-
atocyte equations above). In addition to physiological
signals, Kupffer cell states are governed by molecular
parameters.

d
dt

QKC ¼ −kQA TNF½ �− TN F0½ �ð Þ þ MKC

N
−M

� �� 	
QKC

þ kreqσreqAKC−kapσapQKC

ð19Þ
d
dt

AKC ¼ kQA TNF½ �− TN F0½ �ð Þ þ MKC

N
−MKC

� �� 	
QKC þ kRA

ECM½ �RKC−kreqσreqAKC−kAR VEGF½ �− VEGF0½ �ð Þ

AKC−kapσapAKC

ð20Þ
d
dt

RKC ¼ kAR VEGF½ �− VEGF0½ �ð ÞAKC−kRA ECM½ �RKC

þ krepRKC−kapσapRKC

ð21Þ
Where QKC, AKC, and RKC represent quiescent, acti-

vated, and replicating Kupffer cells, respectively. Requies-
cence, apoptosis, and replication are governed similar to
hepatocytes with [VEGF] replacing [GF] in the sigmoidal
requiescence function, see eq. 5. Once activated, Kupffer
cells secrete multiple molecules at different rates.

d
dt

TNF½ � ¼ kTNFAKC
kNomTNF þ IL10½ �

IL10½ �
� �

−κTNF TNF½ �
þ KTNF

SS

ð22Þ

d
dt

IL10½ � ¼ kIL10AKC−κIL10 IL10½ � þ KIL10
SS ð23Þ

Each protein is produced at a phenotypic rate kxx,
where xx is the species of interest. Each protein is de-
graded according for first order kinetics at a rate κxx and
produced or degraded at a steady-state rate of Kss

xx. In
addition, the production of [TNF] is slowed by [IL-10]
such that when [IL-10] is close to its initial value of 1,
[TNF] is produced at a nominal rate according to
kTNF

Nom.

Hepatic stellate cell equations
HSCs were simulated as existing in a quiescent state, two
active states (pro-regenerative and anti-regenerative), and
two replicating states (one from each activation state).
Shifts between these states are catalyzed by molecular
abundances, as shown in the equations below.

d
dt

QHSC ¼ −kQ→PR IL6½ �− IL60½ �ð ÞQHSC þ kPR→QσreqPRA−kQ→AR

TGFβ½ �− TGFβ0

 �� �

QHSC þ kAR→QσreqARA−kapσapQHSC

ð24Þ

d
dt

PRA ¼ kQ→PR IL6½ �− IL60½ �ð ÞQHSC−kPR→QσreqPRA þ kPRR→PR

ECM½ �PRR−kPR→PRR PDGF½ �− PDGF0½ �ð ÞPRA−kapσapPRA

ð25Þ

d
dt

PRR ¼ kPR→PRR PDGF½ �− PDGF0½ �ð ÞPRA−kPRR→PR

ECM½ �PRR þ kprolPRR−kapσapPRR

ð26Þ

d
dt

ARA ¼ kQ→AR TGFβ½ �− TGFβ0

 �� �

QHSC−kAR→QσreqARA

þkARR→AR ECM½ �ARR−kAR→ARR PDGF½ �− PDGF0½ �ð Þ

ARA−kapσapARA

ð27Þ

d
dt

ARR ¼ kAR→ARR PDGF½ �− PDGF0½ �ð ÞARA−kARR→AR ECM½ �ARR

þkprolARR−kapσapARR

ð28Þ

Where kX→ XX is the transition propensity from cell
states X to cell state XX. Q is the quiescent state, ARA is
the anti-regenerative activation state, PRA is the
pro-regenerative activation state, and ARR and PRR are
the anti-regenerative replicating state and the pro-regen-
erative replicating state, respectively.
Once activated, HSCs produce pro-regenerative or

anti-regenerative molecules depending on the activation
state.
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d
dt

HGF½ � ¼ kHGF
knomHGF þ TGFβ½ �

TGFβ½ �
� �

PRA−kup HGF½ �

ECM½ �−κHGF HGF½ � þ KHGF
SS

ð29Þ
d
dt

ECM½ � ¼ kECMARA−κdeg TNF½ �

ECM½ �−κECM ECMð Þ þ KECM
SS

ð30Þ
Each protein is produced at a phenotypic rate kxx,

where xx is the species of interest. Each protein is de-
graded according for first order kinetics at a rate κxx and
produced or degraded at a steady-state rate of Kss

xx. In
addition, the production of [HGF] is slowed by [TGFβ]
such that when [TGFβ] is close to its initial value of 1,
[HGF] is produced at a nominal rate according to
kTNF

Nom. Furthermore, [HGF] can be sequestered in the
ECM with an uptake rate of kup. This model does not
allow explicitly for sequestered HGF to be re-released
during regeneration.

Parameter estimation
Where possible, parameters related to molecules or cells
found in the original model by Cook, Ogunnaike, and
Vadigepalli [23] were tuned using a gain-matching tech-
nique. Parameters were selected so that the production of
molecules included in the original model occurred with
approximately the same dynamics during the first 10 h
post-PHx in both models and followed previously-studied
dynamics (Additional file 1: Figure S14).
All other parameters were estimated using order of

magnitude estimates so that the parameters were of the
same magnitude as the parameters above. These
remaining parameters were tuned manually to match ex-
perimentally observed molecular profiles or physiological
observations during liver regeneration qualitatively. A
complete table of model parameter values used and
physiological interpretations can be found in Additional
file 1: Tables S1-S3. While the dimensionality of the
single-cell HSC data generated in this work is large, the
number of parameters that are constrained by these new
data are relatively fewer, as the experimental results are in-
formative primarily of the balance of HSC functional
states. In contrast to HSC-related parameter values, other
parameter values were largely unconstrained due to the
relatively large number of parameters compared to the
limited experimental data. Put more clearly, the amount
of data available for parameter fitting is relatively low and
is not sufficient for estimating the large number of param-
eters included in our model precisely. We sought to quan-
tify how these imprecise parameter estimates influence

the model outcome beyond what is typically included in
sensitivity analyses by including in Additional file 1: Table
S1-S3 two columns that indicate the model outcome (re-
covery fraction) for parameter values 1/2× to 2× of nom-
inal value, and for parameter values 1/10× to 10× nominal
value. Although many parameters are unconstrained by
experiments, parameters with large effects on the regener-
ation outcome are constrained by the model structure and
quantitative relationship to other parameters, etc., while
parameters with small effects on regeneration outcome
are more traditionally unconstrained (but also likely less
important to identify experimentally). The parameter
values presented in this work, therefore, should be inter-
preted in terms of their relationship to other parameters
and relative influence on model behavior.

Sensitivity analysis
Global sensitivity coefficients were estimated by sampling
the model’s parameter space within 10% to 1000% of each
parameter’s nominal value using a Latin hypercube sam-
pling method to sample each parameter uniformly over
three orders of magnitude. We then simulated liver regen-
eration following 70% PHx using 150 parameter sets for
the sensitivity analyses including kap and 1500 parameter
sets for the sensitivity analyses excluding kap. We calcu-
lated the overall mass recovery (Ni) for each case of liver
regeneration and the time to liver failure (ti) for each case
of failed regeneration. We then calculated regeneration
sensitivity coefficients and failure sensitivity coefficients
for each parameter according to the partial rank correl-
ation coefficient (PRCC) formulation using the “partial-
corr” function in Matlab.

Additional files
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S1-S4. (DOCX 2680 kb)

Additional file 2: Collated single cell mRNA expression data used in this
study. (TXT 111 kb)

Additional file 3: R Code used to analyze the single cell data used in
this study. (R 20 kb)

Additional file 4: Matlab code containing the mathematical model
used in this study. (M 19 kb)

Additional file 5: Zip file containing the raw mRNA expression data
generated from single cells used in this manuscript. Data were manually
inspected for reactions with CT values above those for water (below the
limit of detection). These reactions were manually failed resulting in their
removal from the data sets. Processed and unprocessed data are
included. (ZIP 2160 kb)
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