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Simple Summary: Approximately 20% of colorectal cancer (CRC) cases are diagnosed in individuals
under 40, with a severe prognosis due to germline variant accumulation. Many of these variants
have been classified as hereditary cancer causative, while others remain poorly researched. The
identification of germline variants across different populations is critical for accurate prognosis,
treatment, and follow-up. We aimed to identify and predict the functional implications of germline
variants using whole-genome sequencing of a Tunisian pedigree with Lynch syndrome CRC risk.
Two SNPs/indels were identified in genes with CRC association (MLH1 and PRH1-TAS2R14) and
four in genes with non-CRC cancer association (PPP1R13B, LAMA5, FTO, and NLRP14). Three
structural variants overlapped genes associated with non-CRC digestive cancer (RELN, IRS2, and
FOXP1) and one overlapped RRAS2 with non-CRC cancer associations. This study provides further
evidence of genetic predisposition according to the risk clustering of variants based on their functional
implications and risk mechanisms within the same pedigree.

Abstract: Recently, worldwide incidences of young adult aggressive colorectal cancer (CRC) have
rapidly increased. Of these incidences diagnosed as familial Lynch syndrome (LS) CRC, outcomes
are extremely poor. In this study, we seek novel familial germline variants from a large pedigree
Tunisian family with 12 LS-affected individuals to identify putative germline variants associated
with varying risk of LS. Whole-genome sequencing analysis was performed to identify known and
novel germline variants shared between affected and non-affected pedigree members. SNPs, indels,
and structural variants (SVs) were computationally identified, and their oncological influence was
predicted using the Genetic Association of Complex Diseases and Disorders, OncoKB, and My
Cancer Genome databases. Of 94 germline familial variants identified with predicted functional
impact, 37 SNPs/indels were detected in 28 genes, 2 of which (MLH1 and PRH1-TAS2R14) have
known association with CRC and 4 others (PPP1R13B, LAMA5, FTO, and NLRP14) have known
association with non-CRC cancers. In addition, 48 of 57 identified SVs overlap with 43 genes.
Three of these genes (RELN, IRS2, and FOXP1) have a known association with non-CRC digestive
cancers and one (RRAS2) has a known association with non-CRC cancer. Our study identified
83 novel, predicted functionally impactful germline variants grouped in three “variant risk clusters”
shared in three familiarly associated LS groups (high, intermediate and low risk). This variant
characterization study demonstrates that large pedigree investigations provide important evidence
supporting the hypothesis that different “variant risk clusters” can convey different mechanisms of
risk and oncogenesis of LS-CRC even within the same pedigree.
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1. Introduction

Colorectal cancer (CRC) is the most frequent neoplasm worldwide, accounting for 8%
of cancer-related deaths [1,2]. Pathogenetic variants in known high-penetrance cancer-risk-
associated genes have been implicated in up to 8% of all CRC cases, where one in five (20%)
cases of this type were diagnosed in under 40 year olds [3–5] compared to the average
worldwide age at diagnosis of 65 [6]. Familial association (defined to be families with at
least two affected members) appears in an estimated 35% of all CRC cases [7]. The most
common familial CRC is Lynch syndrome (LS) [8,9]. The familial forms of CRC genetic
predisposition have been correlated with germline mutations or epimutations in mismatch
repair (MMR) genes such as MLH1, MSH2, MSH6, and PMS2 for nonpolyposis cases and
in APC and MUTYH for Adenomatous colonic polyposis with recessive inheritance [4,5].
Despite the current knowledge of genetic predisposition in these hereditary forms of CRC
(such as LS, Gardner syndrome, Juvenile polyposis coli, and others), much of the familial
relationships and mechanisms of risk remain unexplained [10].

Genome-wide association via high throughput sequencing (HTS) technologies and
the wide collection of variant functional predictive analytics, clouded applications, and
databases are critical to the success of identifying new germline likely causative variants
implicated in cancer predisposition. These powerful emerging tools help detect deleterious
genomic changes in part responsible for the hereditary CRC development, diagnosis,
predicted optimal treatment, and therefore long-term prognosis. Approximately 40% of
patients with an inherited tumor syndrome exhibit a variant of uncertain significance,
as revealed through sequencing analyses that examine germline variants involved in the
production of truncated proteins and associated with alterations caused by hereditary
pathologies at the germinal level [11]. These variants typically involve a single amino acid
substitution, which cannot a priori be definitively classified as pathogenic or benign [12].
Conversely, synonymous nucleotide substitutions, which generally do not cause alterations
in protein structure, have been found to be pathogenic in some instances, depending on
their genomic location [13]. Additionally, variants appearing together in the same gene or
different genes may coexist and co-segregated with the disease phenotype within a single
family, potentially explaining the correlated predisposition risk of the family. In some cases,
these variants contribute more significantly to cancer risk than classic pathogenic Mendelian
variants, and when implicated in tumor predisposition, can cooperatively contribute to an
increased risk of cancer development as low-risk alleles [14,15]. However, HTS studies have
not covered all such cancers and therefore, it is highly likely that functionally pertinent
variants and mutations and genes conveying predisposition to CRC and LS are yet to be
discovered. This gap in the current knowledge of familial forms of CRC such as LS requires
further clinical evaluation of hereditary CRCs supported by germline studies of familial
cases [16].

In this study, we aim to identify, annotate, and computationally predict the functional
implication of previously known and novel germline SNPs, indels, and structural vari-
ants using a whole-genome sequencing approach of a Tunisian large pedigree with three
familiarly grouped members affected or at-risk to LS-CRC.

2. Materials and Methods
2.1. Sample/Data Collection

An LS-affected, large-pedigree Tunisian family with 37 total and 12 known affected
members was recruited for this study (Figure 1). Peripheral blood from 11 members (oval
circled) was collected. Individual subjects’ clinical, environmental, and behavioral data
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were collected from medical records and personal interviews based on an interrogatory
form conducted by the study personnel.
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Figure 1. A pedigree of predisposition to colorectal cancer Lynch syndrome. I, II, III, IV the number
of generations. * Sequenced subjects; Group 1 (high risk to LS group): subject and parent affected by
LS-CRC, red circles; Group 2 (intermediate risk to LS): subject LS-CRC free and one of the parents is
affected, green circles; Group 3 (low risk to LS): subject and both parents are LS-CRC free, blue circles.

Lynch syndrome status within this family was tested and confirmed during routine
clinical work. The three patients collected from in the HRLS group were classified as
meeting both the Amsterdam criteria II that have been established by the International
Collaborative Group on HNPCC for assistance in identifying Lynch syndrome [17,18] and
the original Bethesda guidelines [19]. Subsequent blood germline testing using PCR ampli-
fication and direct sequencing of the entire coding region and the exon–intron boundaries
for MMR genes (MLH1, MSH2, and MSH6) [20,21] revealed a single deleterious germline
alteration affecting the MLH1 gene (mutation c.-168_c.116 + 713 del). This corresponds
to a 997 bp deletion that encompasses the entirety of exon 1, a portion of intron 1, and a
section of the MLH1 promoter, and was observed in all subjects within the HRLS group
who underwent germline testing.

Data summarized in Table 1 were recorded in a study database and maintained in a
secure, private manner consistent with the Declaration of Helsinki and the permission of
Salah Azaiz Institute Ethics Committee registration number: ISA/2016/02. All subjects
were informed about the purposes of the study and consented in writing to participate in
the study. The 11 subjects were stratified into three groups based on familial cancer status.
The high risk to LS group (HRLS, Figure 1, red ovals) are affected subjects of the pedigree;
intermediate risk to LS (IRLS, Figure 1, green ovals) includes CRC-free subjects that have at
least one affected parent, and low risk to LS (LRLS, Figure 1, blue ovals) are those with no
relatives affected in the subject’s immediate triplet (subject and both parents).
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Table 1. Demographic and clinical characteristics of the included family members.

Parameters HRLS N = 3 (%) IRLS N = 4 (%) LRLS N = 4 (%)

Gender (Males/Females) 1/2 0/4 2/2

Age (years) 1 48 ± 12.16 38.25 ± 17.63 35.50 ± 24.11

BMI 1 26.08 ± 3.11 26.77 ± 3.47 27.52 ± 2.64

Vegetable consumption

High 0 (0) 3 (75) 4 (100)

Low 3 (100) 1(25) 0 (0)

Brine consumption

High 2 (66.66) 0 (0) 1 (25)

Low 1 (33.34) 4 (100) 3 (75)

Meat consumption

High 2 (66.66) 2 (50) 3 (75)

Low 1 (33.34) 2 (50) 1 (25)

Fat consumption

High 0 (0) 4 (100) 3 (75)

Low 3 (100) 0 (0) 1 (25)

Smoking

Never used 1 (33.34) 3 (75) 2 (50)

Tobacco users 2 (66.66) 1 (25) 2 (50)

Alcohol

Never drink 1 (33.34) 4 (100) 2 (50)

Alcohol users 2 (66.66) 0 (0) 2 (50)

Physical activity level

High 0 (0) 2 (50) 4 (100)

Low 3 (100) 2 (50) 0 (0)

Medical History

Hypertension 2 (66.66) 3(75) 1(25)

Hyperglycemia 2 (66.66) 2(50) 0 (0)

Anemia 0 (0) 0 (0) 0 (0)
BMI: Body mass index; tobacco users: former users and current users; alcohol users: former drinkers and current
drinkers, 1: mean ± standard deviation; high risk to LS group (HRLS); intermediate risk to LS (IRLS); low risk to
LS (LRLS).

2.2. DNA Extraction and Quality Assessment

Genomic DNA was extracted from the 11 blood samples according to the manu-
facturer’s recommendation using a Flexigene DNA Whole Blood Kit (Qiagen, Hilden,
Germany). DNA quality and quantity were assessed using a Qubit fluorometer (Invitrogen,
Carlsbad, CA, USA) and electrophoresis migration in agarose gel 1%. The genomic DNA
with good quality was subjected to library preparation prior to sequencing.

2.3. Whole Genome Sequencing (WGS)

Libraries were prepared using Nextera XT kit (Illumina, San Diego, CA) and pair-
end sequencing (2 × 300 base pairs) with the Miseq Reagent V3 kit (Illumina) following
the manufacturer’s instructions. The Nextera enzyme mix was used to simultaneously
fragment input DNA and tag with universal adapters in a single tube reaction. Library
purification was performed by Agincourt AMPure XP beads (Beckman Coulter, IN, USA)
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and Bioanalyzer (Agilent, Wilmington, DE, USA) was used for quantification and quality
checking [22]. Libraries were sequenced using the Illumina NextSeq500 platform (Illumina
Inc., San Diego, CA, USA). A total of 1564.4 GB with 142.22 GB on average per sample of
raw data was generated on the sequencer, resulting in a mean sequence coverage depth of
45.88-fold (range of 37.71- to 59.17-fold).

2.4. Bioinformatic Variant Analysis (BVA)

The full bioinformatics variant analysis (BVA) is described in Figure 2 and the Sup-
plemental Material. We used a novel functional implicated variant pipeline created in our
previous work on breast cancer [23], modified to account for the pedigree relationship be-
tween subjects and familial and thus the risk-related nature of the detected variants. Briefly,
for each subject’s high-throughput sequencing (HTS) sequence, alignment, poor-quality
read filtering, single nucleotide polymorphisms (SNPs), insertions/deletions (indels), and
structural variants (SVs) were called and variant quality score recalibration and filtering,
annotation and removal of common and likely non-functional variants, and assessment of
cancer-associated genes were performed.
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Figure 2. Schematic representation of the germline variant prioritization workflow. WGS: whole
genome sequencing, QC: quality control, SNPs: single nucleotide polymorphisms, indels: inser-
tions/deletions, SVs: structural variants, CADD: combined annotation dependent depletion, OncoKB:
Oncology Knowledge Base.

3. Results
3.1. Clinical Characterization of the Pedigree Members

The large Tunisian pedigree (Figure 1) includes 39 members across four generations;
12 of them were diagnosed with LS CRC. In this study, 11 members’ (3 HRLS, 4 IRLS,
and 6 LRLS) germline genomes were fully sequenced and their medical, environmental,
and behavioral data were carefully analyzed. Individual and familial characterizations
are described in Table 1. The HRLSs presented an average age of 48 ± 12.16 and BMI
of 26.08 ± 3.11, IRLSs had an average age and BMI of 38.25 ± 17.63 and 26.77 ± 3.47,
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respectively, and the LRLSs had an average age and BMI of 35.50 ± 24.11 and 27.52 ± 2.64,
respectively. Male sex distribution was 33.34% (1/3) HRLS, 0% (0/4) IRLS, and 50% (3/6)
LRLS. Concerning lifestyle, 66.66% of HRLS recorded high brine and meat consumption,
100% of IRLS had a high fat consumption, and 75% of LRLS presented high meat and
fat consumption. A total of 66.66% of HRLS were tobacco and alcohol users, 25% of
IRLS were tobacco users, and 50% of LRLS were tobacco and alcohol users. A total of
66% of HRLS had hyperglycemia and hypertension, 75% of IRLS had hypertension and
50% had hyperglycemia, and 25% of LRLS had hypertension. An analysis of the clinical
characteristics of each group found no statistically significant associations.

3.2. Variant Characterization of the Pedigree
3.2.1. SNPs and Indels

Before filtering, 7,836,438 SNPs and 2,039,903 indels were detected across the 11 genomes.
A total of 23.63% (2,334,312 of 9,876,341) of all variants satisfied the low-frequency threshold
(<0.01 AF 1000 G ALL and non-TCGA ExAC ALL) and 3.46% (80,905 of 2,334,312) of the
variants demonstrated a probable deleterious function (CADD scaled score > 10). Subsequent
annotation stratified the likely functionally implicated variants into coding (2824) and non-
coding (78,081) variants. Lastly, filtering for variants predicted deleterious by having at least
three of MutationTaster, PolyPhen V2, Provean, and SIFT resulted in 1961 coding and
9826 non-coding predicted deleterious variants. From the 1961 low-frequency, predicted
functionally deleterious coding variants, 79 were found in all 11 sequenced individuals: 37
in all HRLS members, 27 in the IRLS group, and 15 in the LRLS. Of the 9826 non-coding
filtered variants, all 9826 were found in members of at least one group; 4171 of the 9826
were found in each HRLS member, 2820 were found in every IRLS member, and 2835 in
every LRLS member. In addition, 19 non-coding variants were exclusively detected only in
a particular group of the pedigree: 2 variants exclusive to members in HRLS, 3 exclusives
to IRLS, and 14 exclusives to LRLS, and 4 of these had a RegulomeDB Score < 4. Most of the
detected non-coding variants were Intergenic (37,412) and found in all samples, whereas
30344 Intronic variants were found in all samples, and only 7 were found in samples in the
same groups (Table 2).

3.2.2. SNP and Indels with Evidence of Familial and Risk-Implicated Genes

Of the 83 variants identified in the cohort, 39 genes were identified containing at least
one variant. PABPC3 had four variants (rs79397892, rs78826513, rs78552667, and rs80261016)
found in all samples and one variant (rs201411821) found in all high and intermediate
risk samples (HRLS and IRLS). Three of these five variants (rs78826513, rs201411821, and
rs80261016) were classified as oncogenic driver variants according to SNPnexus (“Driver”
as defined in the oncogenic classification by Cancer Genome Interpreter). KRT18 had four
variants found in all samples, though none satisfied the oncogenic (or “Driver” predicted
as tumor driver according to Cancer Genome Interpreter) threshold. One additional variant
(rs201602708) located in MACF1 did not satisfy the oncogenic threshold. Five of the detected
variants were in different genes that were previously described as common mutations in
a collection of cancers. rs63750539 in the MLH1 gene has been described in several types
of cancer including CRC and LS, rs373141354 in the PPP1R13B gene is associated with
melanoma according to the Genetic Association of Complex Diseases database, rs551763507
in the LAMA5 gene is correlated to neuroblastoma, rs76670455 in NLRP14 gene to leukemia,
and rs763119571 in TAS2R19 is also described in CRC according to the Cancer Genome
Interpreter database. Concerning non-coding variants, four variants belonging to different
genes (rs544153916 in PODN, rs116197074 in SCP2, and rs116526711 in MAML3) were noted
only in samples from the LRLS group, and one of these variants rs115378978 in the FTO
gene was previously associated with prostate cancer according to Disorders and SNPnexus
databases (Table 3).
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Table 2. Variants count for the whole pedigree subjects and shared variants by subjects under the
same pedigree group with the functional annotation of noncoding variants according to ANNOVAR.

Variants Filtering Variant Count

VQSR 9,876,341 (7,836,438 SNPs and 2,039,903 Indels)

<0.01 AF 1000 G ALL and non-TCGA ExAC ALL 2,334,312

CADD (SNPs) or CADD Indel (Indels) Scaled Phred
Score > 10 80,905

Variant stratification Coding Variants Non-Coding Variants

Total count 2824 78,081

Predicted deleterious by having at least three of
MutationTaster, PolyPhen V2, Provean, and SIFT 1961 9826

Shared by all samples in a group 79 (HRLS: 37; IRLS: 27; LRLS: 15) 9826 (HRLS: 4171; IRLS: 2820; LRLS: 2835)

Exclusive to a particular group 0 19 (HRLS: 2; IRLS: 3; LRLS: 14)

RegulomeDB Score < 4 NA LRLS: 4

Functional annotation of noncoding variants according to ANNOVAR

Variants annotation according to region hit from RefSeq Variants shared by all subjects Variants shared by subjects in the same group

Intergenic 37,412 10

Intronic 30,344 7

ncRNA_intronic 5072 0

3′UTR 2169 0

Upstream and Downstream 1825 2

5′UTR5 768 0

ncRNA_exonic 447 0

RefSeq: reference sequence database; ncRNA: non-coding transcript variant; NA: not applicable; VQSR: Variant
Quality Score Recalibration; ExAC: exome aggregation consortium; AF: allele frequency; 1000 G: 1000 genomes
project for all individual in this release; CADD: combined annotation dependent depletion; SNPs: single nucleotide
polymorphisms; indels: insertions/deletions; PolyPhen V2: PolyPhen Version 2; high risk to LS group (HRLS);
intermediate risk to LS (IRLS) low risk to LS (LRLS); TCGA: The Cancer Genome Atlas Program; SIFT: sorting
intolerant from tolerant; PROVEAN: Protein Variation Effect Analyzer.

3.2.3. Structural Variants (SVs)

A total of 11,171 SVs were found via smoove. Of the total SVs detected, their classifica-
tions were 4120 deletions, 194 duplications, 6560 breakends, and 297 inversions. Filtering
for low-frequency novel variants resulted in 1122 deletions, 105 duplications, 5492 break-
ends, and 137 inversions. Filtering by highly likely functional (AnnotSV ranking > 3)
resulted in 164 deletions, 17 duplications, 274 breakends, and 18 inversions. Finally, filter-
ing for total length (>= 50 bp) resulted in 140 (of the 164) deletions. A familial analysis was
performed to test sharing across study groups found, finding 154 breakends, 133 deletions,
4 duplications, and 13 inversions in each of the 11 subjects. A total of 35 shared breakends
(23 shared within HRLS, 4 in IRLS, and 8 in LRLS) and 18 shared deletions (7 in HRLS,
4 in IRLS, and 7 in LRLS). Two duplications were shared by all members of LRLS and
one inversion in IRLS and one inversion in LRLS. AnnotSV analysis for the SVs genomic
location showed that 26 breakends and 17 deletions were intronic variants, but the 2 noted
inversions were Transcript Start-Transcript End variants and the only detected duplication
was an intronic variant (Table 4).
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Table 3. Classification of detected variants by gene and cancer impact according to pedigree groups.

Coding Variants

Genes
Detected Variants Stratified by Pedigree Groups AF Functional

Annotation Cancer Related CRC Related Oncogenic
Classification Tumor Driver

SNP ID HRLS IRLS LRLS

PABPC3

Variants Count 5 5 4

rs79397892 Yes Yes Yes 0.0054 EX - - Passenger True

rs78826513 Yes Yes Yes NA EX - - Driver True

rs78552667 Yes Yes Yes NA EX - - Passenger True

rs201411821 Yes Yes - NA EX - - Driver True

rs80261016 Yes Yes Yes NA EX - - Driver True

KRT18

Variants Count 4 4 4

rs78343594 Yes Yes Yes NA EX - - Passenger False

rs77999286 Yes Yes Yes NA EX - - Passenger False

rs75441140 Yes Yes Yes NA EX - - Passenger False

NA Yes Yes Yes NA EX - - NA NA

CNN2

Variants Count 2 2 1

rs77830704 Yes Yes Yes NA EX - - Passenger False

rs75676484 Yes Yes - NA EX - - Passenger False

SLC25A5

Variants Count 1 2 1

rs753913830 Yes Yes Yes NA EX - - Passenger False

rs199707714 - Yes - NA EX - - Passenger False

MYH13
Variants Count 1 1 1

rs186137259 Yes Yes Yes 0.0016 EX - - Passenger False

DNAH2
Variants Count 1 1 1

rs140035206 Yes Yes Yes 0.0022 EX - - Passenger False

ANP32B
Variants Count 1 1 -

rs76167314 Yes Yes - NA EX - - Passenger False
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Table 3. Cont.

Coding Variants

Genes
Detected Variants Stratified by Pedigree Groups AF Functional

Annotation Cancer Related CRC Related Oncogenic
Classification Tumor Driver

SNP ID HRLS IRLS LRLS

CNKSR1
Variants Count 1 1 -

rs140685957 Yes Yes - NA EX - - Passenger False

CTNNBIP1
Variants Count 1 1 -

rs138271667 Yes Yes - 0.0018 EX - - Passenger False

DNAH3
Variants Count 1 1 -

rs147732992 Yes Yes - 0.0034 EX - - Passenger False

KDM1A
Variants Count 1 1 -

rs144822945 Yes Yes - 0.0015 EX - - Passenger False

PRSS3

Variants Count 2 1 1

rs141382822 Yes Yes Yes NA EX - - Passenger False

rs751456445 Yes - - NA EX - - Passenger False

AATK
Variants Count 1 - -

rs61738829 Yes - - 0.0088 EX - - Passenger False

ALPK3
Variants Count 1 - -

NA Yes - - NA EX - - NA NA

ANKRD34B
Variants Count 1 - -

rs145614517 Yes - - 0.0030 EX - - Passenger False

ATXN2
Variants Count 1 - -

rs374319477 Yes - - NA EX - - Passenger False

CUX2
Variants Count 1 - -

rs202242120 Yes - - 0.0040 EX - - Passenger False

ERAP2
Variants Count 1 - -

rs145045143 Yes - - 0.0010 EX - - Passenger False
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Table 3. Cont.

Coding Variants

Genes
Detected Variants Stratified by Pedigree Groups AF Functional

Annotation Cancer Related CRC Related Oncogenic
Classification

Tumor
Driver

SNP ID HRLS IRLS LRLS

FAM136A
Variants Count 1 - -

rs80277652 Yes - - NA EX - - Passenger False

MACF1
Variants Count 1 - -

rs201602708 Yes - - 0.0002 EX - - Driver True

MLH1

Variants Count 1 - -

rs63750539 Yes - - NA EX

Leukemia; Lymphoma;
Melanoma; Pancreatic;

Liver; Fallopian; Endometrial;
Ovarian; Breast; Prostate;

Bladder; Thyroid;
Esophageal; Lung

Lynch syndrome; Colorectal
melanoma; Microsatellite

Instability; Hereditary
non-polyposis;
Colon; Gastric;

Stomach

Driver True

PCSK5
Variants Count 1 - -

rs372055352 Yes - - NA EX - - Passenger False

PLA2G6
Variants Count 1 - -

NA Yes - - NA EX - - NA NA

PPP1R13B
Variants Count 1 - -

rs373141354 Yes - - NA EX Melanoma - Passenger False

RIMKLA
Variants Count 1 - -

rs34142209 Yes - - 0.0082 EX - - Passenger False

RNF207
Variants Count 1 - -

NA Yes - - NA EX - - NA NA

SIPA1L3
Variants Count 1 - -

rs201766021 Yes - - 0.0002 EX - - Passenger False

XIRP1
Variants Count 1 - -

rs147417919 Yes - - 0.0032 EX - - Passenger False
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Table 3. Cont.

Coding Variants

Genes
Detected Variants Stratified by Pedigree Groups AF Functional

Annotation Cancer Related CRC Related Oncogenic
Classification

Tumor
Driver

SNP ID HRLS IRLS LRLS

CD8A
Variants Count - 1 -

rs200750291 - Yes - 0.0012 EX - - Passenger False

LAMA5
Variants Count - 1 -

rs551763507 - Yes - NA EX Neuroblastoma - Passenger False

MRPL24
Variants Count - 1 -

rs561581574 - Yes - NA EX - - Passenger False

NLRP14
Variants Count - 1 -

rs76670455 - Yes - 0.0058 EX Leukemia - Passenger False

TAAR5
Variants Count - 1 -

rs9493386 - Yes - 0.0026 EX - - Passenger False

PRH1-TAS2R14
Variants Count - - 1

rs763119571 - - Yes NA EX - Colorectal Passenger False

TMEM8B
Variants Count - - 1

rs148540551 - - Yes 0.0014 EX - - Passenger False

Noncoding variants

PODN
Variants Count - - 1

rs544153916 - - Yes 0.0002 NA - - Not protein-affecting False

SCP2
Variants Count - - 1

rs116197074 - - Yes 0.0056 INT - - Not protein-affecting False

MAML3
Variants Count - - 1

rs116526711 - - Yes 0.007 INT - - Not protein-affecting False

FTO
Variants Count - - 1

rs115378978 - - Yes 0.0078 INT Prostate - Not protein-affecting False

AF: 1000 G Phase 3 all population allele frequency; row in bold: variant previously described as associated with cancer; CRC: colorectal cancer; SNP: single nucleotide polymorphism; ID:
identification; rs: reference SNP; INT: intronic; EX: exonic; NA: not applicable; high risk to LS group (HRLS); intermediate Risk to LS (IRLS); low risk to LS (LRLS).
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Table 4. Variants count for the whole pedigree subjects and shared variants by subjects under the
same pedigree group with variants location according to AnnotSV.

Variants Filtering Variant Count

Deletions and duplications:
duphold depth based 4314 (4120 DEL, 194 DUP)

Breakends and inversions: NA 6857 (6560 BND, 297 INV)

Total count BND DEL DUP INV

<0.01 AF 1000G ALL and <0.01
gnomAD 5492 1122 105 137

AnnotSV ranking > 3 274 164 17 18

Total length >= 50 bp NA 140 17 18

Shared by all samples in a group 154 (HRLS: 66; IRLS: 39;
LRLS: 49)

133 (HRLS: 48; IRLS: 46;
LRLS: 39)

4 (HRLS: 1; IRLS: 0;
LRLS: 3)

13 (HRLS: 4; IRLS: 4;
LRLS: 5)

Shared by all samples under a
particular group

35 (HRLS: 23; IRLS: 4;
LRLS: 8)

18 (HRLS: 7; IRLS: 4;
LRLS: 7)

2 (HRLS: 0; IRLS: 0;
LRLS: 2)

2 (HRLS: 0; IRLS: 1;
LRLS: 1)

Variant’s location according to AnnotSV

Variants annotation according to
hit from RefSeq BND DEL DUP INV

Intronic 26 17 1 0

Exonic 2 0 0 0

txStart-txEnd 0 0 0 2

NA 7 1 1 0

RefSeq: reference sequence database; NA: not applicable; AF: allele frequency; 1000 G: 1000 genomes project for
all individuals in this release; high risk to LS group (HRLS); intermediate risk to LS (IRLS); low risk to LS (LRLS);
bp: base pair; BND: breakend; DEL: deletion; DUP: duplication; INV: inversion; gnomAD: Genome Aggregation
Database; txStart-txEnd: Transcript Start-Transcript End.

3.2.4. SVs with Risk-Implicated Genes

The 48 identified SVs were evaluated for functional prediction; the results showed that
43 SVs overlapped with genes with a probable functional impact, and 9 SVs overlapped
with genes with an unlikely functional impact. Of these 43 SVs of probable impactful,
5 SVs overlapped with 4 genes with likely impact, 4 in the HRLS group (2 SVs in RELN,
1 each for FOXP1 and RRAS2 genes), and 1 in the IRLS group for the IRS2 gene previously
associated with multiple cancers, including CRC according to OncoKB Cancer Genes list
database. Two of the forty-three breakend SVs found in all members of the LRLS group had
a potential impact on RELN, a gene correlated to several cancers including gastric cancer
according to OncoKB Cancer Genes list database. One of the forty-three duplication SVs in
all members of the IRLS group contains IRS2, a gene associated with esophageal, intestinal,
stomach, and CRC cancers according to the My Cancer Genome database. One deletion
SV in all members of LRLS impacts FOXP1, a gene correlated to several cancers including
esophagogastric, gastrointestinal, and CRC in the My Cancer Genome database. Finally,
one breakend SV found in all members of HRLS affects RRAS2, a gene associated with both
breast and ovarian cancers according to the My Cancer Genome database (Table 5).
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Table 5. Classification of structural variants by gene and cancer impact according to pedigree groups.

Structural Variants

Genes
Detected Variants Stratified by Pedigree Groups AF Location Cancer Related CRC

Related

AnnotSV ID LRLS IRLS HRLS

ADAM10

Variants Count 2 - -

15_58912864_58912865_BND_1 Yes - - NA INT
- -

15_58913242_58913243_BND_1 Yes - - NA INT

ATP11A

Variants Count 1 - 1

13_113518019_113519165_DEL_1 Yes - - NA INT
- -

13_113499584_113500055_DEL_1 - - Yes NA INT

GIGYF2

Variants Count 2 - -

2_233668385_233668386_BND_1 Yes - - NA INT
- -

2_233668758_233668759_BND_1 Yes - - NA INT

LINC01137

Variants Count 2 - -

1_37938257_37938258_BND_1 Yes - - NA INT
- -

1_37938376_37938377_BND_1 Yes - - NA INT

RELN

Variants Count - - 1

7_103463079_103463080_BND_1 - - Yes 0.0001 INT Leukemia; Lung;
Hepatocellular Gastric

7_103463462_103463463_BND_1 - - Yes 0.0001 INT

DIP2C
Variants Count 1 - -

10_523437_523544_DEL_1 Yes - - NA INT - -

WDR37
Variants Count 1 - -

10_1164005_1164234_DEL_1 Yes - - NA INT - -

DCAKD
Variants Count 1 - -

17_43129091_43129429_DEL_1 Yes - - NA INT - -

CDH4
Variants Count 1 - -

20_60216779_60217071_DEL_1 Yes - - 0.0003 INT - -

MOV10L1
Variants Count 1 - -

22_50585735_50585941_DEL_1 Yes - - NA INT - -

DNA2
Variants Count 1 - -

10_70222778_70222779_BND_1 Yes - - NA INT - -

SBF2
Variants Count 1 - -

11_10293916_10293917_BND_1 Yes - - NA INT - -

ANO5
Variants Count 1 - -

11_22214883_22214884_BND_1 Yes - - NA EX - -

CHPT1
Variants Count 1 - -

12_102107161_102107162_BND_1 Yes - - NA INT - -

MYO5B
Variants Count 1 - -

18_47698458_47698459_BND_1 Yes - - NA INT - -

PLCB1
Variants Count 1 - -

20_8414039_8414040_BND_1 Yes - - 0.0005 INT - -

APOL1
Variants Count 1 - -

22_36651344_36651345_BND_1 Yes - - 0.0015 INT - -

NOP14
Variants Count 1 - -

4_2941531_2941532_BND_1 Yes - - NA INT - -

MRPS18A
Variants Count 1 - -

6_43655533_43655534_BND_1 Yes - - NA EX - -
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Table 5. Cont.

Structural Variants

Genes
Detected Variants Stratified by Pedigree Groups AF Location Cancer Related CRC Related

AnnotSV ID LRLS IRLS HRLS

CNTNAP2
Variants Count 1 - -

7_147571596_147571597_BND_1 Yes - - NA INT - -

DPP6
Variants Count 1 - -

7_153760690_153760691_BND_1 Yes - - NA INT - -

B4GALT1
Variants Count 1 - -

9_33130549_33130550_BND_1 Yes - - NA INT - -

IRS2

Variants Count - 1 -

13_110418067_110419056_DEL_1 - Yes - NA INT Esophageal CRC; Intestinal;
Stomach

RAP1GAP2
Variants Count - 1 -

17_2904534_2904873_DEL_1 - Yes - NA INT - -

ASIC2
Variants Count - 1 -

17_31596693_31596759_DEL_1 - Yes - NA INT - -

MMP20
Variants Count - 1 -

11_102472245_102472246_BND_1 - Yes - NA INT - -

KCNIP4
Variants Count - 1 -

4_20933624_20933792_DEL_1 - Yes - NA INT - -

ADGRE4P
Variants Count - 1 -

19_6987869_6987870_BND_1 - Yes - 0.0007 INT - -

DYNLRB1
Variants Count - 1 -

20_33116231_33116232_BND_1 - Yes - NA INT - -

DTX2
Variants Count - 1 -

7_76128462_76128463_BND_1 - Yes - NA INT - -

FIRRE
Variants Count - 1 -

X_130813255_130974327_INV_1 - Yes - NA TX - -

BCCIP
Variants Count - - 1

10_127513335_127513754_DUP_1 - - Yes NA INT - -

MGAT5
Variants Count - - 1

2_134966704_134970130_DEL_1 - - Yes NA INT - -

COL18A1
Variants Count - - 1

21_46930863_46930934_DEL_1 - - Yes NA INT - -

FOXP1

Variants Count - - 1

3_71242366_71242638_DEL_1 - - Yes NA INT

Bladder; Endometrial;
Lung; Salivary Gland;

Breast; Skin;
Hepatobiliary;

Prostate; Glioma

Esophagogastric;
Gastrointestinal;

CRC

CTNND2
Variants Count - - 1

5_11816774_11817546_DEL_1 - - Yes NA INT - -

FSTL4
Variants Count - - 1

5_132918980_132924990_DEL_1 - - Yes NA INT - -

DLGAP2
Variants Count - - 1

8_1047119_1047802_DEL_1 - - Yes 0.0001 INT - -

PPP2R5A
Variants Count - - 1

1_212472702_212472703_BND_1 - - Yes NA INT - -
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Table 5. Cont.

Structural Variants

Genes
Detected Variants Stratified by Pedigree Groups AF Location Cancer Related CRC Related

AnnotSV ID LRLS IRLS HRLS

BMS1P4
Variants Count - - 1

10_75489277_75489278_BND_1 - - Yes NA INT - -

IFITM3
Variants Count - - 1

11_308031_320995_INV_1 - - Yes NA TX - -

RRAS2
Variants Count - - 1

11_14348706_14348707_BND_1 - - Yes NA INT Breast; Ovarian -

PRKRA
Variants Count - - 1

2_179314967_179314968_BND_1 - - Yes NA INT - -

Structural variants with no overlapping genes

NA

Variants Count 6 0 3

17_41438043_41440177_DEL_1 Yes - - NA NA

NA NA

11_1961293_1961294_BND_1 Yes - - NA NA

17_38679442_38679443_BND_1 Yes - - NA NA

19_17459958_17459959_BND_1 Yes - - NA NA

6_28863601_28863602_BND_1 Yes - - 0.0002 NA

6_28863898_28863899_BND_1 Yes - - 0.0002 NA

17_41436517_41442619_DUP_1 - - Yes NA NA

9_107816642_107816643_BND_1 - - Yes NA NA

9_107817348_107817349_BND_1 - - Yes NA NA

AF: 1000 G Phase 3 all population allele frequency; row in bold: gene previously described as associated with
cancer; CRC: colorectal cancer; ID: identification; INT: intronic; EX: exonic; NA: not applicable; txStart-txEnd:
Transcript Start-Transcript End; high risk to LS group (HRLS); intermediate risk to LS (IRLS); low risk to LS (LRLS).

4. Discussion

Several studies have examined the complex molecular heterogeneity of LS CRC in
large families. The literature suggests that LS is caused by genetic and epigenetic variants
sporadically found in genes, such as MMR (MLH1, MSH2, MSH6, PMS2, and EPCAM)
associated with flat intra-mucosal neoplastic lesions [24,25]. However, a recent study by
Binder et al. defined a third pathway for LS and showed the existence of two distinct
genetic subtypes of the LS CRC [26]. These recent findings suggest that the risk and genesis
of LS CRC may be caused by various multiply expressed functionally important “variant
risk clusters” of germline mutations, each cluster independently associated with various
pathways to carcinogenesis, and in a similar manner, each cluster may define both the
type and degree of risk to LS CRC even within one large pedigree. The evidence of our
results coupled with the broader collection of results in the literature supports such a
working hypothesis.

These observations lead to the hypothesis that, in addition to the relatively well-
characterized MMR deficiency in LS, other germline mutations or groups of mutations may
contribute to the disruption of previously unassociated pathways, thus being associated
with varying risks and oncogenesis of LS CRC. In this study, we investigated the germline
mutational profiles of a large pedigree Tunisian family with Lynch syndrome-associated
colorectal cancer using high throughput whole-genome sequencing. Subjects were grouped
by familial cancer status into high, intermediate, and low risk to LS. Overall, we identified
94 germline variants, including 11 novel and rare cancer pathogenic variants previously
described in cancer. Then, we clustered the identified germline variants according to the
pedigree risk status into LRLS, IRLS, and HRLS groups.
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The high-risk LS patients shared a missense mutation (rs63750539, p.Ala111Val) in
MLH1 which is unlikely to be the cause of LS-CRC predisposition.

The MLH1 gene has been established as a causative gene for LS and presents the
highest risk of CRC among individuals over 75 (46.6% of women and 51.4% of men) who
are affected by the MLH1 variation. Rates range from 0% (at age 30) to 48.3% (at age 75) in
females, and from 4.5% (at age 30) to 57.1% (at age 75) in males [22,23]. In another study,
MLH1 variants were correlated with the highest risk of developing CRC in both heredity
and sporadic cases [27]. Furthermore, two MLH1 5′UTR variants (c.-28A > G and c.-7C > T)
were associated with early-onset CRC [28]. In addition, a cohort study reported that MLH1
is the most frequently mutated gene in early-onset sporadic CRC patients, exhibiting four
pathogenic variations: c.C793T (p.R265C), c.C1029A (p.Y343X), c.C793T (p.R265C), and
c.C1029A (p.Y343X) [29]. On the other hand, recent studies have found that promoter
methylation of the MLH1 gene is prone to be silenced in CRC carcinogenesis pathways, and
around 50% of MLH1-deficient tumors exhibit MLH1 promoter methylation [30]. Moreover,
MLH1 promoter methylation in CRC cases was highly correlated with a BRAF V600E
somatic mutation [31]. This variant was clinically classified as a hereditary sequence variant
identified in disease-related genes directly affecting the clinical management of patients
with LS-CRC [32]. To better understand the high risk effect on the pedigree, we investigated
known driver mutations that are likely related to MMR deficiency. First, we investigated
mutations in genes that play a key role in the adenoma–carcinoma model of CRC such as
APC, KRAS, TP53, and binding/transactivated genes. We found the rs373141354 variant in
the PPP1R13B gene (p.Gly866Arg), which assists TP53 activation during the cell apoptosis
and lowers their ability shared by all subjects HRLS group [33]. Although TP53 is known to
be rarely mutated in LS [34], our findings can be attributed to the high efficiency of TP53 in
maintaining genomic integrity by arresting cells with mutated or damaged DNA in the G1
phase of the cell cycle to enable the repair mechanism or induce the apoptosis pathway [35].
The balance between cell cycle arrest and induced apoptosis depends on TP53 efficiency,
which is related to the PPP1R13B activity identified in our research. Hence, we suggest that
the variant rs373141354 (p.Gly866Arg) is associated with an increased risk of LS-CRC due
to its low efficiency in cell cycle arrest.

Concerning the detected SVs overlapped with genes that have been previously
correlated with different types of cancers, including digestive cancers, four shared
SVs were found among HRLS subjects. Two SVs (7_103463079_103463080_BND_1 and
7_103463462_103463463_BND_1) were found to be related to the intronic region of the
RELN gene, which has been correlated to several cancer risks including gastric cancer [36].
The large CpG islands are located at RELN promoter sites, and their transcriptional
silence has been shown to be strongly controlled by promoter hypermethylation [37].
Consequently, a relationship between SVs and DNA methylation in cancer is speculated.
Recent studies suggest that somatic copy number alterations in cancer are associated with
DNA methylation [38], and numerous studies demonstrate that SVs may have a causal
role in regulating CpG methylation [39,40]. Conversely, it is also possible that methylation
could lead to SV imbalance by increasing DNA breaking [41,42]. Our observation enhances
our growing understanding of the relationship between genetic (SVs) and epigenetic
variation in cellular phenotype and the mechanism of gene regulation as well as the traits
underlying the evolution of cancer with the presence of SVs in specific genome sites. The
71242366_71242638_DEL_1 deletion was noted in the FOXP1 gene. A large amount of
substantial evidence has demonstrated that the tumor microenvironment is closely linked
to the initiation, promotion, and progression of CRC through various mechanisms, such as
immune suppression and the angiogenesis process [43]. Variation in FOXP3, an intracellular
key molecule for Treg development and function, has been associated with a dysregulation
in subverting antitumor immune responses and promoting tumor progression. The last
SV detected, 11_14348706_14348707_BND_1, was related to the intronic region of the
RRAS2 gene, which has previously been described in breast and ovarian cancers [44]. The
role of LS in ovarian cancer was established and widely accepted, but the long-standing
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question of whether breast cancer should also be included under the umbrella of LS is still
debated [45,46]. A recent study, consistent with other studies, shows that carriers of LS
mutations tend to have earlier manifestations of breast cancer [47].

Regarding the IRLS group, a unique missense variant rs551763507 (p.Gly3688Glu) in
the LAMA5 Laminin gene was identified in all subjects of the group. Based on Laminin’s
function, these variants are not the most probable candidates to play a role in CRC suscep-
tibility [48]. However, recent studies have identified LAMA5 in orthotropic metastases. The
expression of Laminin 511 was associated with the upregulation of a set of genes regulating
angiogenesis in TCGA data [48,49]. The Gordon group has demonstrated that the Laminin
chains are localized within the vascular basement membrane on the basolateral surface
of cancer cells, while colonic epithelial cells normally do not express vascular basement
membrane Laminins. Consequently, the profound effect on vascular morphology and
function upon LAMA5 mutation and inhibition of LAMA5 expression specifically by colon
cancer cells indicates that cancer cell Laminin 511 deposition is important for colonic cells,
promoting angiogenesis. Our results may suggest that inhibiting the production of vascular
basement Laminins by tumor cells may serve as an efficient approach to prevent growth
and the ability of tumor cells to regulate angiogenesis. Another novel variant was identified
as an IRLS member as rs76670455 in the NLRP14 gene. NLRP14 has been described as a
negative regulator of IFN responses. Interestingly, as inflammatory signaling pathways
contribute to B cell lymphoma transformation, it is tempting to speculate that NLRP14
might contribute to cancer [50]. Another interesting aspect of NLR proteins is their expres-
sion in a panel of immune cells, notably myeloid cells and B cells, and their function as a
negative regulator of inflammatory responses [51]. This differential expression of NLRP14
might be involved in the malignant transformation process. For the noted SVs in this HRLS
pedigree group, only one variant was detected, the 13_110418067_110419056_DEL_1 in
the intronic region of the IRS2 gene, which was shared by all IRLS subjects and has been
described as related to several digestive cancers. Over-expression of IRS2 increases CRC
cell adhesion to a similar extent as IGF-1 stimulation. Changes in adhesion, both increasing
and decreasing, are important properties of metastasizing cancer cells and are involved in
the invasion process, migration, and distant seeding of tumors [52]. In addition, it has been
proven that the PI3K pathway is frequently dysregulated during CRC progression [53].
The TCGA Network demonstrated that high levels of IRS2 expression are mutually exclu-
sive with IGF2 over-expression and with other mutations in the PI3K pathways in CRC.
This suggests that the over-expression of IRS2 may be one mechanism by which the PI3K
pathway could be dysregulated in CRC [54]. In summary, IRS2 appears to be a potential
candidate as an oncogene driver, and the IGF1R-IRS2-PI3K axis could be an important
therapeutic target in CRC.

In connection with variants specific to LRLS, we noted rs763119571 in the TAS2R19
gene with a deleterious function. Previous research has shown the association of this
variant with CRC risk [24]. Genetic variants in type 2 bitter taste receptors (TAS2R) may
influence health-related outcomes and are expressed within the oral cavity [55,56], the
gastrointestinal mucosa [57], and the lungs [58]. TAS2R variants are hypothesized to play
roles in an individual’s food preferences [59] and the neutralization and expulsion of toxins
from the colon/rectum [60], thereby influencing cancer risk. The last noted variant with
the deleterious function was rs115378978 in the FTO gene. Different polymorphisms of the
FTO gene have been consistently associated with obesity. However, recent genome studies
reveal that genetic variants in this gene are associated not only with human adiposity
and metabolic disorders but also with several cancers, including colorectal cancer, since
they can activate several signaling and hormonal pathways to increase cancer incidence.
The hormones included in this carcinogenesis process could be ghrelin, oxytocin, and
Leptin. Hence, FTO polymorphisms could exert an influence on the hormonal balance
and physiologic factors and might increase cancer risk [60]. The variants identified in
FTO, TAS2R, and NLRP14 genes were correlated with lifestyle-related factors for cancer
installation, which are expected to be found in cases belonging to the LRLS group who
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are CRC-free. No oncogenic impactful SVs were detected in the LRLS group, which may
explain the low risk of these subjects developing LS CRC and the crucial role of these
variants in heredity cancer development.

Our current findings clearly illustrate that subtle, familiarly grouped genetic factors
underlying risk to LS CRC extend beyond the well-documented familial CRC syndrome
genes. Our data suggest that comprehensive germline testing in all LS CRC patients will
provide comprehensive results to identify substantially more opportunities for robust
and accurate genetically driven cancer characterization and subsequent prevention than
established in current practice. Moreover, the magnitude of developing secondary cancer
(breast or ovarian) is still unknown. Hence, our study sheds light on the importance of
risked grouped germline screening to identify secondary risks and even predict the site of
metastases during CRC progression.

This study’s limitations include the lack of testing on all family members. On the
other hand, given the limited studies on SV identification, the impact of the SVs found
in our study was predicted based on the hypothesis and recent functional studies. Thus,
further studies in many LS-CRC families are needed to confirm the effect of the 57 SVs
identified in our study. In addition, despite the extensive advantages of whole-genome
sequencing and data processing, there remain several gaps in the technology and analysis.
For example, the restricted resolution is caused by limitations in the read depth related
to the quality of aligned sequences; a higher depth provides a greater power to call and
identify new variants [61]. However, our mixed pipeline generated for our WGS-specific
study allows us to detect new and known coding and non-coding variants across the whole
genome of the 11 sequenced individuals, greatly facilitating the germline profile evolution
of LS-CRC pedigrees and opening new opportunities for cancer pedigree studies. The
introduction of several commercially available multigene panels has tremendous promise
for clinical use but simultaneously raises weaknesses such as clear criteria for selecting
above average risk patients to undergo such clinical panel testing [62] and the optimal
choice of the prescribed panel [63]. Several multigene panels are available for hereditary
CRC and the National Comprehensive Cancer Network (NCCN) has provided a useful
protocol for predicting the appropriate panel according to the family history of patients to
better optimize the patient care [64]. A limitation of our study is that not all members of
the family were tested for the MLH1 gene variant (c.-168_c.116 + 713del) detected in the
family. This may lead to the study being considered a population-based WGS investigation
in the context of MLH1 carriers and non-carriers, potentially weakening our conclusions
about genetic modifiers in LS.

5. Conclusions

In this study, we analyzed the germline landscape of a Tunisian family with a predispo-
sition to LS CRC and identified a total of 94 germline variants affecting 39 genes, 6 of which
have been previously described in cancer, and 57 SVs, 48 of which were related to 43 genes,
with 4 of these genes categorized as oncogenes. According to the familial definition of LS
risk in the pedigree members, we identified three “variant risk clusters” associated with
the high, intermediate, and low LS CRC risk groups in the pedigree. The results showed
that variants related to high-risk LS members may be causative of the disease, while other
variants present in intermediate-risk members may develop LS through very different
mechanistic disruptions and low-risk members with these variants may not develop LS at
all. The application of HTS technology with such variant clustering for germline screening
will efficiently provide further insights into the etiology of hereditary cancer and a huge
opportunity to improve LS clinical suspicion. The significance of germline variants in
cancer predisposition is still poorly explored, and this study contributes to filling this
knowledge gap.
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