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Intracellular Ca2+ sensing: role in calcium homeostasis and 
signaling

Rafaela Bagur and György Hajnóczky
MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, 
Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA

Summary

Ca2+ is a ubiquitous intracellular messenger that controls diverse cellular functions but can 

become toxic and cause cell death. Selective control of specific targets depends on spatio-temporal 

patterning of the calcium signal and decoding it by multiple, tunable and often strategically 

positioned Ca2+ sensing elements. Ca2+ is detected by specialized motifs on proteins, which have 

been biochemically characterized decades ago. However, the field of Ca2+ sensing has been 

reenergized by recent progress in fluorescent technology, genetics and cryo-EM. These approaches 

exposed local Ca2+ sensing mechanisms inside organelles and at the organellar interfaces, revealed 

how Ca2+ binding might work to open some channels, and identified human mutations and 

disorders linked to a variety of Ca2+ sensing proteins. We here, attempt to place these new 

developments in the context of intracellular calcium homeostasis and signaling.
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Calcium Homeostasis and Signaling

Intracellular free Ca2+ concentration widely varies depending on its location. The 

cytoplasmic [Ca2+] ([Ca2+]c) under resting conditions is ∼10-7M, 104 times lower than 

[Ca2+] in the extracellular millieu (∼10-3M). Inside the cell, Ca2+ levels in the nuclear 

matrix ([Ca2+]n) and in the mitochondrial matrix ([Ca2+]mt) are similar to that in the 

cytoplasm. However, other intracellular organelles, known as Ca2+ stores, can accumulate 

Ca2+ and maintain a higher [Ca2+] than the cytoplasm (1-5×10-4M). The main internal Ca2+ 

store is the endoplasmic reticulum (ER), and in muscle cells, the sarcoplasmic reticulum.

The low [Ca2+]c is maintained through the action of the plasma membrane Ca2+ transport 

ATPase (PMCA) and Na+/Ca2+ exchanger (NCX) in a resting cell. Upon elevated [Ca2+]c, 
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this activity is complemented by the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) 

that fills the ER/SR Ca2+ store and to a lesser extent, by the mitochondrial Ca2+ uniporter 

(mtCU). All these proteins sense and are activated by Ca2+, and therefore any elevations in 

[Ca2+]c stimulate removal of cytoplasmic Ca2+, resulting in a homeostatic control of [Ca2+]c 

(Fig. 1A, green arrows). Nevertheless, various cell stimuli such as membrane depolarization, 

extracellular signaling molecules, or intracellular messengers, promote an increase of 

[Ca2+]c from 100nM to 1 μM or more. This increase results from either the influx of 

extracellular Ca2+ via the plasma membrane (PM) Ca2+ channels or the release of Ca2+ from 

internal stores mostly via the 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor 

(RyR) from ER/SR (Fig. 1A, blue arrows). The [Ca2+]c increase is usually steep, followed 

by a decay giving rise to [Ca2+]c spikes or repetitive [Ca2+]c oscillations, which are 

supported by multiple positive and negative feedback effects of Ca2+ favoring synchronized 

activation and rapid deactivation of the Ca2+ channels and by the homeostatic regulation of 

the Ca2+ removal mechanisms. The Ca2+-regulated proteins present different thresholds for 

activity depending on their function. For example, PMCA and SERCA pumps have high 

affinities for Ca2+ and low pumping rate (≈30 and ≈10 Hz, respectively) (Juhaszova et al., 

2000; Lytton et al., 1992), which make them suitable to respond to modest elevations in 

cytoplasmic Ca2+ levels and to reestablish the resting Ca2+ level. NCX and MCU, show a 

lower affinity for Ca2+ and greater transport rates (150 - 300 Hz for NCX, (Boyman et al., 

2009)) and thus can limit larger [Ca2+]c transients. Each cell type presents a unique 

combination of Ca2+ channels and pumps to create a cell type-and agonist-specific calcium 

signal that suits their physiological requirements (Berridge et al., 2000).

The low resting [Ca2+]c and the calcium signal have to be tightly regulated because almost 

every aspect of cell function is controlled by Ca2+, including secretion, gene expression, 

muscle contraction and metabolism, and any unregulated [Ca2+] elevations would cause cell 

injury or cell death (Fig. 1B) (Clapham, 2007; Hajnoczky et al., 2006; Neher and Sakaba, 

2008). Furthermore, regulation of organelle-specific cell functions might depend on 

propagation of the [Ca2+]c signal into specific organelles like the nucleus for gene regulatory 

events (Zhang et al., 2009) and mitochondrial matrix for oxidative metabolism (Griffiths and 

Rutter, 2009).

Molecular mechanisms of Ca2+ sensing

The information encoded in the calcium signal is deciphered by various intracellular Ca2+-

binding motifs. These motifs are present in the effector proteins, including Ca2+ channel 

proteins (i.e. IP3R and RyR) and proteins mediating Ca2+-controlled cell functions (i.e. 

isocitrate dehydrogenase (ICDH) (Fig. 2A). Ca2+-binding motifs are also present in 

specialized Ca2+-sensing proteins, which couple changes in [Ca2+] to a wide variety of 

cellular functions depending on their localization, pattern of modulation, and the Ca2+ 

source. These proteins either simply associate with the effector proteins (e.g. calmodulin 

(CaM), troponin C) or display enzyme activity (e.g. calcineurin or calpain) to relay the effect 

of Ca2+-binding to the effector proteins (Fig. 2B and C, respectively). CaM can also confer 

Ca2+-sensitivity to enzymes like the Ca2+/CaM-dependent protein kinase (CaMK) that 

phosphorylates many effectors of Ca2+ to alter their activity (Fig. 2D). Depending on the 
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loop geometry of their Ca2+-binding site(s), Ca2+-binding proteins can be classified into 

three families: the EF-hand proteins, the annexins and the C2 domain proteins.

EF-hand proteins

The EF-hand denotes a Ca2+-binding motif that contains a Ca2+-coordinated loop that is 

flanked by two α-helices orientated almost perpendicular to one another. The bound Ca2+ 

ion is coordinated by 7 ligands (primarily carboxylate) in a pentagonal bipyramid 

arrangement (Strynadka and James, 1989). EF-hand domains are the most common Ca2+-

binding motifs found in proteins. This family of proteins presents a wide range of functions, 

which are as diverse as Ca2+ buffering in the cytoplasm, signal transduction between 

compartments and gene expression in the nucleus (Fig. 1B). The diversity of biological 

functions carried out by these proteins in a wide range of [Ca2+] is possible because Ca2+ 

binds to EF-hand domains with different affinities, extending from 10-6M to 10-3M (Gifford 

et al., 2007). Some Ca2+-binding proteins with relatively high affinity behave as Ca2+-buffer 

proteins, which modulate the shape and/or duration of Ca2+ signals and help maintain Ca2+ 

homeostasis. In contrast, Ca2+-sensors having affinity constants ranging between 10-5M and 

10-7M can detect and respond to a physiologically relevant change in intracellular [Ca2+]. 

These differences in function correlate with differences in the conformational changes 

induced by Ca2+ binding. Ca2+ binding to EF-hands of Ca2+ sensor proteins induces a 

conformational change, characterized by a significant opening of their structure that permits 

their interaction with downstream targets (Zhang et al., 1995). On the contrary, Ca2+ buffer 

proteins stay in a ‘closed’ conformation upon Ca2+ binding that is similar to their Ca2+-free 

state (Skelton et al., 1994).

A ubiquitously expressed and well-characterized protein specialized for Ca2+-sensing is 

CaM. CaM has two globular domains, each containing a pair of EF-hand motifs, connected 

by a central helix. Activation by Ca2+ binding causes each of the EF-hand domains of CaM 

to undergo a significant opening of their structure. As a result, the hydrophobic binding sites 

within the central helix of CaM are exposed to interact with downstream targets (Zhang et 

al., 1995). Ca2+-activated CaM (Ca2+/CaM) interacts in a Ca2+-dependent manner with 

either their target enzymes, leading to their own activation (e.g. CaMK and calcineurin), or 

the activation of their target proteins, resulting in the regulation of their function in a Ca2+-

dependent manner (e.g. Orai, Fig. 3B). The CaM-dependent activation of enzymes may 

occur by direct or sequential mechanisms (e. g. CaMK and calcineurin, respectively).

In the first case, CaM interaction and activation of target enzymes only occur under elevated 

[Ca2+]c, whereas in the sequential mechanism, partial Ca2+-activation of CaM, under resting 

Ca2+ conditions, is enough to interact with target enzymes and form an inactive low affinity 

complex. For its activation, this complex requires further binding of Ca2+ to CaM's EF 

hands. This specific mechanism would provide a sensitive switch for control of enzyme 

activity within a narrow range of free [Ca2+] (Kincaid and Vaughan, 1986). In addition to 

Ca2+/CaM interaction with downstream targets, Ca2+-free CaM (apo-CaM) can also interact 

with target proteins in a reversible or irreversible manner and regulates their activities. 

Therefore, CaM interaction with its target proteins is not only facilitated by its Ca2+-induced 

conformational change, but the interaction can also be mediated through Ca2+-independent 
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binding sites named IQ-motif. These motifs of sequence IQXXXRGXXXR provide binding 

sites for CaM and other proteins of the EF-hand family (Cheney and Mooseker, 1992).

Among the many downstream targets of CaM, CaMK enzymes are one of the best 

characterized (Swulius and Waxham, 2008). As a kinase enzyme, CaMK catalyze the 

transfer of phosphate from the gamma position of ATP to the hydroxyl group of Ser, Thr, or 

Tyr within protein substrates. Therefore, this CaM-dependent enzyme transduces the 

intracellular calcium signals into changes in the phosphorylation state and activity of target 

proteins. CaMK also performs autophosphorylation to increase its affinity for CaM, thus 

resulting in their association at low [Ca2+]c. The CaMK capacity to trap CaM enables these 

enzymes to detect the frequency of the calcium signals (Meyer et al., 1992). Depending on 

the downstream targets of CaMK, the members of this family can be classified into two 

classes: multifunctional kinases and substrate-specific kinases. Multifunctional kinases have 

multiple downstream targets (e.g. CaMKK, CaMKI, CaMKII and CaMKIV) and their 

activation can lead to signaling that affects many downstream pathways controlling a variety 

of cellular functions. In contrast, substrate-specific kinases have only one known 

downstream target (e.g. CaMKIII, phosphorylase kinase, and the myosin light chain kinases) 

and thereby, they usually have a specific function within the cell or tissue where they are 

expressed.

Calcineurin and calpain can directly bind and sense Ca2+ that affects their protein 

phosphatase and protease function, respectively. Calcineurin is regulated by Ca2+ both 

directly and via CaM. Calcineurin has been implicated in a wide variety of biological 

responses including lymphocyte activation, neuronal and muscle development (Schulz and 

Yutzey, 2004). On the other hand, calpain is uniquely regulated by Ca2+-binding to its EF-

hand domains. Members of the calpain family have been linked to various biological 

processes, including integrin-mediated cell migration, cytoskeletal remodeling, cell 

differentiation and apoptosis (Suzuki and Sorimachi, 1998).

Emerging literature highlights a sub-branch of the CaM family, the neuronal calcium sensor 

(NCS) proteins (Burgoyne, 2007). Some NCS proteins are uniquely expressed in neurons, 

while other members (such as NCS-1) are also expressed in other tissues (Kapp-Barnea et 

al., 2003). NCS proteins are implicated in the regulation of several neuronal functions. 

Tissue specific expression of Ca2+ sensing proteins like NCS can provide for selective 

control of specific pathways in different paradigms.

Annexins and C2 domain proteins

Annexins and C2 domains proteins present a unique architecture of their Ca2+-binding sites 

that allow them to peripherally dock onto negatively charged membrane surfaces in their 

Ca2+-bound conformation. As a result, these families are considered to provide a link 

between Ca2+-signaling and membrane functions (Fig. 1B). The Ca2+-binding sites of 

annexins don't present an EF-hand-type helix–loop–helix structure and only five of the 

seven coordination sites are provided by protein oxygen. The other two coordination sites 

are provided by water molecules, which can be replaced by phosphoryl groups when the 

annexin binds lipid (i.e. Ca2+-and phospholipid-binding motif) (Swairjo et al., 1995). 
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Knockout and knockdown approaches have revealed that multiples steps in the endocytosis 

and exocytosis process depend on annexin (Ali et al., 1989; Mayran et al., 2003). In 

particular, annexin 2 and 13 have been linked to endocytosis while annexin 1, 2 and 6 has 

been linked to exocytosis. The C2 domain is another Ca2+-and phospholipid-binding motif, 

but in this case the core structure of the domain is based entirely on β-sheets rather than on 

α-helices (characteristic of the annexin structure) (Nalefski and Falke, 1996). Slight 

variations in the interconnecting loops residues of the β–sandwich core confer C2 domains 

with different abilities to respond to different Ca2+ concentrations and lipids. For instance, 

C2 domains of classical protein kinase C isoforms and synaptotagmins bind to the anionic 

headgroup of phosphatidylserine (Corbalan-Garcia et al., 1999; Fukuda et al., 1996) whereas 

the C2 domain of cPLA2 binds to the neutral phosphatidylcholine (Nalefski et al., 1998). 

This family of proteins is involved in membrane trafficking (e.g. Synaptotagmins and E-

Synaptotagmins) and signal transduction (e.g. protein kinase C isoforms).

Cryo-EM determination of Ca2+ sensing motifs

Recent developments in cryo-EM have enabled high-resolution determination of structures 

that resisted x-ray crystallography. Cryo-EM technologies allowed some illumination on the 

structural aspects of Ca2+ sensing by ion channels like the RyR (Bai et al., 2016; des 

Georges et al., 2016; Efremov et al., 2015; Wei et al., 2016; Yan et al., 2015; Zalk et al., 

2015), the IP3R (Bosanac et al., 2005; Fan et al., 2015; Seo et al., 2012) and the Ca2+-

activated K+ (BK) channels (Hite et al., 2017; Russo et al., 2009). Studies using single-

particle cryo-EM identified a pair of EF-hand domains at the central domain of RyR1 (4060 

– 4134) (des Georges et al., 2016; Wei et al., 2016) and modulator binding sites for Ca2+, 

ATP, and caffeine at the interdomain interfaces of the C-terminal domain (4957–5037) (des 

Georges et al., 2016). Although IP3R structure in its apo-state has been recently elucidated 

at near-atomic (4.7 A°) resolution (Fan et al., 2015), more studies are needed to define the 

molecular architecture of the domains that control channel gating. Up to date, the only 

information available is given by mapping the sequence conservation across the RyR and 

IP3R family. This analysis revealed that the Ca2+-binding domain described at the C-

terminal of RyR1 at the C-terminal is conserved, whereas the pair of EF-hands located at the 

central domain of RyR1 are absent in IP3R, thus suggesting that these EF-hands are not 

involved in Ca2+-activation (des Georges et al., 2016). This hypothesis is supported by the 

fact that deletion or sequence-scrambling of EF-hand domains in RyR2 and RyR1 didn't 

affect the activation of the channel by Ca2+ (Fessenden et al., 2004; Guo et al., 2016). In 

addition, the study of BK channels in the Ca2+-bound and Ca2+-free states have revealed the 

molecular basis of channel gating by voltage and Ca2+. At the level of Ca2+-sensing, this 

channel presents a “gating ring” at the cytoplasm which is formed by four Ca2+-sensors. 

Each sensor includes two regulators of K+ conductance (RCK) that regulate the conductance 

of K+ through the binding of two Ca2+ ions and a Mg2+ ion. Moreover, the central pore–gate 

domain (located in the transmembrane domain) appeared to be connected to both the voltage 

sensors, also located in the transmembrane domain, and to the Ca2+ sensors, located in the 

cytoplasm. Therefore, these data suggest a new shared pathway for channel activation (Hite 

et al., 2017; Tao et al., 2017).
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Localization and compartmentalization

Ca2+ regulates many different cellular functions. To achieve this versatility, the calcium 

signal displays a range of spatial and temporal patterns detected by various Ca2+ sensors 

differently. Although the bulk [Ca2+]c peaks at around 1 mM, close to the open Ca2+ 

channels, [Ca2+]c can reach 10-100 mM. These “nanodomains” provide meaningful signal 

for low affinity Ca2+ sensing motifs unresponsive to fluctuations in the global [Ca2+]c.

A major direction of recent progress on local Ca2+ sensing has been focused on detection of 

Ca2+ within organelles and at organellar interfaces (Fig. 3A). An example is the process 

known as store-operated Ca2+ entry (SOCE), whereby Ca2+ influx across the plasma 

membrane is activated in response to a decrease in the ER Ca2+ content (Fig. 3B). The main 

role of SOCE is to refill the intracellular Ca2+-stores to maintain the primary source of 

intracellular Ca2+ mobilization and a favorable environment for protein folding in the ER 

lumen. Essential components of the molecular machinery responsible for SOCE have been 

recently discovered. Among them, STIM1 (and its STIM2 isoform) is the ER 

transmembrane protein responsible for sensing the changes in [Ca2+]ER through a pair of 

Ca2+-binding EF-hand domain that are exposed to the ER lumen (Liou et al., 2005; Roos et 

al., 2005; Zhang et al., 2005). Under resting conditions, STIM1 is found associated with 

SARAF, which prevents its spontaneous activation (Jha et al., 2013; Palty et al., 2012). Upon 

activation of Ca2+ release from the ER, Ca2+ level in the ER lumen drops, thus causing 

dissociation of Ca2+ from STIM1's EF-hands. Store depletion is also accompanied by the 

dissociation of SARAF from STIM1 (Albarran et al., 2016; Jha et al., 2013). As a result, 

STIM1 oligomerizes and translocates to specific regions of the ER close to the plasma 

membrane (named ER-PM junctions), where it interacts with and activates the plasma 

membrane Ca2+ channel Orai (Park et al., 2009). Ca2+-influx through PM, such as that 

induced by SOCE, has been recently related to accumulation of extended synaptotagmin (E-

Syt) 1 at ER-PM contact sites (Idevall-Hagren et al., 2015). Three E-Syts have been shown 

to participate in the ER-PM tethering via their C2 domains. E-Syt1 interacts with PM in a 

Ca2+-dependent manner, whereas E-Syt2 and E-Syt3 interaction with PM only requires the 

presence of PI(4,5)P2 (Giordano et al., 2013). A recent addition in the mechanism of SOCE 

regulation is the discovery of CRACR2A, a cytoplasmic Ca2+ sensor that interacts with and 

stabilizes the STIM1-Orai complex at low [Ca2+]c conditions (Srikanth et al., 2010). 

Increase in the [Ca2+]c induces the dissociation of CRACR2A from the complex, resulting in 

the liberation of the Orai residues implicated in Ca2+/CaM binding and thereby, SOCE 

inactivation (Mullins et al., 2009).

Recently identified local Ca2+ sensing mechanisms are also located at the mitochondria, 

where intermembrane space Ca2+ sensors control mitochondrial Ca2+ uptake (Fig. 3C) and 

mitochondrial surface targeted Ca2+-sensors control mitochondrial motility and distribution 

along microtubules (Fig. 3D). Mitochondrial Ca2+ uptake via the mtCU is fundamental for 

energy metabolism and cell survival. The long-waited molecular composition of mtCU was 

finally revealed such that molecular details of the transport system can be studied, as well as 

its physiological relevance. The pore-forming component of the mtCU channel (MCU) is 

located in the inner mitochondrial membrane. MCU opening is tightly controlled by the EF-

hand Ca2+-sensing proteins MICU1 and MICU2, which are located in the intermembrane 

Bagur and Hajnóczky Page 6

Mol Cell. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



space that is rapidly equilibrated with the [Ca2+]c. At submicromolar [Ca2+]c conditions, 

MICU1/2 is required to keep MCU closed (Csordas et al., 2013; Mallilankaraman et al., 

2012; Patron et al., 2014). Loss of function mutation of the EF-hand doesn't interfere with 

MICU1/2-dependent closure of the MCU, indicating that binding of Ca2+ was not involved 

(Csordas et al., 2013). Releasing of ER Ca2+ via IP3R, which involves Ca2+-mediated 

feedback loops and perhaps clustering of IP3Rs, results in an increase of [Ca2+]c up to above 

10 μM at the ER-mitochondrial interface. At high [Ca2+]c, Ca2+ likely binds to the EF hand 

domains of MICU1/2 inducing a conformational change that promotes MCU opening (Fig. 

3C). High [Ca2+]c-induced rapid activation of the MCU seems to be required for effective 

sensing and decoding of short lasting [Ca2+]c spikes and oscillations (Csordas et al., 2013). 

The MCU-mediated [Ca2+]m increase activates the Ca2+-sensitive dehydrogenases (PDH, α-

KGDH and ICDH), glycerol-3-phosphate dehydrogenase (mtGPDH) as well as the 

ATPSynthase (Tarasov et al., 2012) (Fig. 1B) to enhance ATP production and in turn, meet 

energy demands. Notably, excessive Ca2+ uptake is sensed in the mitochondrial matrix to 

activate the permeability transition pore via cyclophilin D initiating a mitochondrial death 

pathway but the exact mechanism of Ca2+ sensing in this paradigm remains elusive (Baines 

et al., 2005; Basso et al., 2005).

Calcium signaling controls mitochondrial motility along the microtubules to support 

dynamic localization of mitochondria to the sites of [Ca2+] elevation, providing ATP 

production at the sites of energy demand. Ca2+ sensing is needed for this homeostatic 

distribution of the mitochondria (Yi et al., 2004). The mechanism for the Ca2+ effect on 

mitochondrial transport hasn't been completely elucidated. However, the role of two Ca2+-

sensing mitochondrial outer membrane proteins, Miro 1 and Miro 2 has been shown 

(Macaskill et al., 2009b; Saotome et al., 2008; Wang and Schwarz, 2009). These proteins 

interact with the adaptor proteins TRAK1/2 to anchor mitochondria to microtubular motor 

proteins kinesin, for anterograde movement, (MacAskill et al., 2009a; Wang and Schwarz, 

2009) and dynein, for retrograde movement (Russo et al., 2009). At low [Ca2+]c, Miro1/2 

facilitate mitochondrial movements along microtubules independent of their EF-hands. At 

high [Ca2+]c, functional EF-hand domains of Miro1/2 have been shown to be required to 

suppress mitochondrial movement (Macaskill et al., 2009b;

Saotome et al., 2008; Wang and Schwarz, 2009). For anterograde movement, two distinct 

mechanisms have been proposed to explain the Ca2+-induced inhibition: (1) the dissociation 

of kinesin from TRAK1/2 (MacAskill et al., 2009a) or (2) the dissociation of kinesin from 

microtubules due to its interaction with Miro1/2's EF-hand domains (Wang and Schwarz, 

2009). For retrograde movement, the mechanism responsible of Ca2+-induced inhibition of 

mitochondrial movement is unknown.

Disease linked to genetic impairments of Ca2+ sensing proteins

Human mutations of a range of Ca2+ transporters and sensing proteins have been linked to 

disease long ago. These mutations cause perturbation of specific components of the Ca2+-

controlling and/or processing machinery in a tissue-specific or global manner, which leads to 

the impairment of Ca2+ homeostasis (Brini and Carafoli, 2009). Recent progress in clinical 

genetics has helped to identify new mutations and patients exhibiting mutation/
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polymorphism in Ca2+ sensing proteins. Here we focus on mutations of some proteins 

referred to in the previous sections.

Up to now, more than 300 disease mutations in RyR which cause either gain-of-function or 

loss-of-function have been identified. Most of these mutations are clustered in three different 

regions of RyR sequence, which are located in: N-terminal region (first ∼600 amino acids), a 

central region (amino acids ∼2100–2500), and the C-terminal area (amino acid ∼3900–end). 

Mutations in the C-terminal area of RyR2 (including EF-hand and pore domains) have been 

recently related to Ca2+ sensing mechanisms (Jiang et al., 2004; Uehara et al., 2017). Three 

mutations in this area (N4104K, R4496C, and N4895D) have been shown to decrease the 

threshold for RyR2 activation by SR luminal Ca2+, thus affecting overload-induced SR Ca2+ 

release (Jiang et al., 2004). A single mutation at K4750Q in RyR2 causes hypersensitization 

to activation by either [Ca2+]c or SR luminal Ca2+ as well as loss of cytosolic Ca2+/Mg2+-

mediated inactivation and leads to a very severe clinical phenotype (Sugiyasu et al., 2009; 

Uehara et al., 2017). Mutations in RyR2 are linked to catecholaminergic polymorphic 

ventricular tachycardia (Priori et al., 2001), whereas RyR1 mutations are associated with 

central core disease (Zhang et al., 1993) and malignant hyperthermia (MacLennan, 1992).

STIM1 mutations have also been reported, which can be classified as loss-of-function or 

gain-of-function mutations. In the first case, mutations in STIM1 cause almost complete loss 

of SOCE activity, although the protein expression is only moderately reduced. In contrast, 

gain-of-function mutations induce a continuous activation of SOCE that results in increased 

intracellular Ca2+ levels and therefore, impairment of Ca2+ homeostasis. In both cases, 

mutations can be located in the cytosolic C-terminus and interfere with intra- and 

intermolecular protein interaction with STIM1 and Orai1, or in the ER luminal Ca2+-sensing 

domain. Among them, p.R429C mutation has been reported to interfere with SOCE 

activation at multiple steps, causing constitutive accumulation of STIM1 at the ER-PM 

associations without cytoplasmic oligomerization and interaction with ORAI1 required for 

ORAI1 activation (Maus et al., 2015). Loss-of-function mutations in STIM1 clinically 

manifest as severe combined immunodeficiencylike disease, autoimmunity, muscular 

hypotonia, and ectodermal dysplasia. The gain-of-function mutations in STIM1 have been 

associated with a wider spectrum of diseases ranging from non-syndromic tubular aggregate 

myopathy (TAM) to York platelet and Stormorken syndromes depending on the mutation 

site. In the case of non-syndromic TAM, most of the mutations causing this disease are 

located in the EF-hand domain of STIM1 (summarized in (Lacruz and Feske, 2015)).

Searching for the molecular composition of mtCU and studying how the components work 

together have allowed a molecular diagnosis of patients with unclassified dysfunction. 

Recently, two elegant studies have shown human MICU1 mutations leading to the loss of 

MICU1 protein (Lewis-Smith et al., 2016; Logan et al., 2014). In both cases, MICU1 

deficiency caused abnormal mitochondrial Ca2+ handling, demonstrating the crucial role of 

Ca2+ sensing proteins in the regulation of mitochondrial Ca2+ uptake. More specifically, the 

patient cells display increased mitochondrial Ca2+ content (Logan et al., 2014). In murine 

models, mitochondrial Ca2+ overload and increased sensitivity to permeability transition 

have been also shown and been linked to pathogenesis (Antony et al., 2016; Liu et al., 2016). 

The MICU1 loss-of-function clinical phenotype is characterized by proximal myopathy, 
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learning difficulties and a progressive extrapyramidal movement disorder (Logan et al., 

2014) or fatigue and lethargy (Lewis-Smith et al., 2016).

Based on the clinical presentation of RyR, STIM1 and MICU1 mutations, a broad range of 

organ dysfunctions and human disorders are expected to be associated with mutations in 

Ca2+-sensing proteins. However, in the case of the Ca2+-sensing effector proteins, the 

mutations commonly alter more than just the Ca2+ sensitivity. Interestingly, several human 

mutations have also been documented in the specialized Ca2+ sensing protein, CaM and 

some of these mutations are confined to the C-domain's EF-hands and specifically alter the 

affinity for Ca2+ binding. The mutations were documented in infants who exhibited life-

threatening ventricular arrhythmias combined variably with epilepsy and delayed 

neurodevelopment (Crotti et al., 2013). The severe multisystem impairments indicate the 

fundamental relevance of Ca2+ sensing for normal development and health.

Perspectives

The vast physiological relevance of the intracellular Ca2+ sensing toolkit is supported by the 

severe mouse phenotypes and human disorders associated with deletions/mutations of 

various Ca2+ sensing proteins. Interestingly, deletion of some Ca2+ sensing proteins like 

STIM1 and MICU1 has more severe consequences in mice than a loss-of-function mutation 

in human. This difference likely involves more effective adaptation in humans, the molecular 

basis of which remains to be explored. The main intracellular Ca2+ sensing motifs have been 

defined and the long sought Ca2+ sensing proteins regulating store-operated Ca2+ entry and 

the mitochondrial Ca2+ uniport were identified recently. However, due to the amino acid 

sequence diversity in EF-hands and other Ca2+ sensing motifs, it is likely that the Ca2+ 

sensing protein family will continue to broaden. Future progress is also expected on the 

tuning of the Ca2+ sensors by posttranslational modifications, including changes in the thiol 

redox state. Since the Ca2+ controlled elements often strategically positioned close to a Ca2+ 

source, it is important to measure their Ca2+ exposure, which has become feasible by linking 

genetically encoded fluorescent Ca2+ sensors to the protein of interest and recording the 

fluorescence with high spatial/temporal resolution imaging. Furthermore, while many 

proteins have been resistant to x-ray crystallography, very recent results indicate that the 

structural rearrangements caused by Ca2+ binding might be determined by single-particle 

cryo-EM and other emerging structural approaches at least for some ion channels. This 

information is expected to greatly facilitate the development of new pharmacological 

approaches for targeting impairments of the Ca2+-regulation of cellular functions.
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Figure 1. A schematic representation of the Ca2+-regulated proteins involved in: cellular Ca2+ 

homeostasis and signaling
A) [Ca2+] in the different cellular compartments is indicated by a green scale ranging from 

100nM (light green) to 1mM (dark green). The Ca2+-transporting systems that increase 

[Ca2+]c are highlighted in blue, and in red those which decrease [Ca2+]c. The green arrows 

indicate the positive and negative feedback effects of [Ca2+]c on the Ca2+-transporting 

systems. B) Cellular processes regulated by calcium signaling are listed in this scheme as 

well as the main Ca2+- regulated proteins involved in each process. In parenthesis are 

indicated the Ca2+-binding motifs of the Ca2+-regulated proteins, which could belong to: the 

EF-hand proteins (EF – EF hand domains; CaM – Calmodulin), the annexins or the C2 motif 

proteins (C2).
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Figure 2. Different types of Ca2+-dependent regulation of effector's function depending on the 
localization of Ca2+-binding motif
Ca2+-binding sites can be present in the effector proteins (A) and thereby regulate their 

function in a Ca2+-dependent manner, or in specialized Ca2+-sensing proteins (B – D). These 

proteins may regulate effector protein activity by Ca2+-dependent association (i.e. Ca2+-

binding proteins, CaBP) (B) or by post-translation modifications (C – D). These 

modifications are displayed by enzymes that are regulated in a Ca2+-dependent manner 

either because they have a Ca2+-binding motif (i.e. Ca2+-binding enzymes, CaBEnzyme) (C) 

or because they are associated with a CaBP (D).
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Figure 3. Local calcium signaling is mediated by compartmentalized Ca2+-sensors within the cell
A) Scheme visualizing the cellular localization of Ca2+-sensors that regulate local function 

such as store-operated Ca2+ entry (SOCE) (B), mitochondrial Ca2+ uptake (C) or 

mitochondrial motility (D). B) SOCE is regulated by STIM1 which senses the ER lumen 

Ca2+ content via its EF-hands. Upon ER Ca2+ depletion, STIM1 undergo a Ca2+-regulated 

conformational change that promotes its oligomerization and activation of Orai Ca2+ 

channels. Increase of [Ca2+]c suppresses Ca2+ influx by triggering CaM binding to Ora1. C) 

Mitochondrial Ca2+ uptake via MCU is regulated by the Ca2+-sensing proteins MICU1 and 

MICU2. In resting conditions, MICUs interaction with MCU prevent mitochondrial Ca2+ 

uptake. Local Ca2+ release by IP3R promotes the MCU pore opening due to a Ca2+-

regulated conformational change of MICUs. D) Mitochondrial motility along the 

microtubules is controlled by the Ca2+-sensing protein Miro. At low cytoplasmic [Ca2+], 

Miro facilitates the retrograde and anterograde movement of mitochondria through its 

interaction via Milton/Trak with dynein and kinesin (KIF5), respectively. Upon Ca2+-

binding to Miro's EF hands due to an increase in [Ca2+]c, mitochondrial motility is 

suppressed in both directions.
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