ROS Control Mitochondrial Motility through p38 and the Motor Adaptor Miro/Trak.

Valentina Debattisti
Thomas Jefferson University

Akos A. Gerencser
Buck Institute for Research on Aging

Masao Saotome
Thomas Jefferson University

Sudipto Das
Thomas Jefferson University

György Hajnóczky
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/pacbfp

Recommended Citation
Debattisti, Valentina; Gerencser, Akos A.; Saotome, Masao; Das, Sudipto; and Hajnóczky, György, "ROS Control Mitochondrial Motility through p38 and the Motor Adaptor Miro/Trak." (2017). *Department of Pathology, Anatomy, and Cell Biology Faculty Papers*. Paper 226.
https://jdc.jefferson.edu/pacbfp/226

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's [Center for Teaching and Learning (CTL)](https://ctl.jefferson.edu). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Pathology, Anatomy, and Cell Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
ROS Control Mitochondrial Motility through p38 and the Motor Adaptor Miro/Trak

Highlights

- ROS induce a reversible decrease in mitochondrial motility
- ROS-induced motility decrease is triggered independently of $[Ca^{2+}]_c$
- ROS-induced motility decrease does not require PTP opening or $\Delta\Psi_m$ dissipation
- p38α and the motor adaptor complex are required for ROS control of motility

Authors
Valentina Debattisti, Akos A. Gerencser, Masao Saotome, Sudipto Das, György Hajnoczky

Correspondence
gyorgy.hajnoczky@jefferson.edu

In Brief
Debattisti et al. examine how reactive oxygen species induce dose-dependent and reversible arrest of mitochondrial motility independently of $[Ca^{2+}]_c$ in two different mammalian models. The authors argue that ROS target the adaptor complex through p38α to decrease mitochondrial movements.
ROS Control Mitochondrial Motility through p38 and the Motor Adaptor Miro/Trak

Valentina Debattisti, 1,3 Akos A. Gerencser, 2,3 Masao Saotome, 1,3 Sudipto Das, 1 and György Hajnoczy 1,4,*

1 Mitocare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
2 Buck Institute for Research on Aging, Novato, CA, USA
3 These authors contributed equally
4 Lead Contact
*Correspondence: gyorgy.hajnoczy@jefferson.edu
https://doi.org/10.1016/j.celrep.2017.10.060

SUMMARY

Mitochondrial distribution and motility are recognized as central to many cellular functions, but their regulation by signaling mechanisms remains to be elucidated. Here, we report that reactive oxygen species (ROS), either derived from an extracellular source or intracellularly generated, control mitochondrial distribution and function by dose-dependently, specifically, and reversibly decreasing mitochondrial motility in both rat hippocampal primary cultured neurons and cell lines. ROS decrease motility independently of cytoplasmic [Ca2+]i, mitochondrial membrane potential, or permeability transition pore opening, known effectors of oxidative stress. However, multiple lines of genetic and pharmacological evidence support that a ROS-activated mitogen-activated protein kinase (MAPK), p38α, is required for the motility inhibition. Furthermore, anchoring mitochondria directly to kinesins without involvement of the physiological adaptors between the organelles and the motor protein prevents the H2O2-induced decrease in mitochondrial motility. Thus, ROS engage p38α and the motor adaptor complex to exert changes in mitochondrial motility, which likely has both physiological and pathophysiological relevance.

INTRODUCTION

Mitochondrial distribution and transport are central to many cellular functions, including cell differentiation (Chada and Hollenbeck, 2004), cell division to ensure proper inheritance (Yaffe, 1999), ATP supply at the local sites of demand, and Ca2+ buffering for intracellular Ca2+ homeostasis (Yi et al., 2004; Zucker, 1999). Strategic intracellular mitochondrial distribution depends on the movement of mitochondria, which is mediated by a complex of proteins first identified in genetic screens performed in Drosophila melanogaster. The anterograde mitochondrial transport in axons is abolished in either Milton or Miro mutants (Guo et al., 2005; Stowers et al., 2002); Milton co-immunoprecipitates with and attaches kinesin to mitochondria through Miro, an outer mitochondrial membrane (OMM) protein (Glater et al., 2006). In mammals, mitochondrial motility is mediated by trafficking kinesin proteins (Trak1 and Trak2, Milton homologs) that work as adaptors between Miro1 and Miro2 (Miro homologs) and dynein and kinesin motor proteins to allow movement of the organelles along the microtubules (Brickley et al., 2005; Fransson et al., 2006; Hirokawa et al., 1991; MacAskill et al., 2009a; Nguyen et al., 2014).

In the last decade, the mitochondrial motility machinery has been determined, but the signaling mechanisms underlying the specificity and the spatio-temporal control of the mitochondrial movements remained elusive. Mitochondrial membrane potential (Δψm) is central to mitochondrial movement because agents that depolarize mitochondria inhibit mitochondrial transport (Rintoul et al., 2003; Vanden Berghe et al., 2004; Yi et al., 2004). First, mitochondria with high Δψm were shown to preferentially move anterogradely while depolarized ones move retrogradely (Miller and Sheetz, 2004), but later studies showed no directionality difference between the two populations (Gerencser et al., 2008; Verburg and Hollenbeck, 2008). Changes in ATP/ADP likely affect movements because ADP slowly dissociates from the motor to act like an inhibitor. We and others previously showed that motility is regulated by the cytoplasmic Ca2+ concentration ([Ca2+]c), providing the basis for a homeostatic circuit in which the organelles decrease their movements along microtubules at the sites of high [Ca2+]c to locally buffer Ca2+ and contribute to ATP supply (Brough et al., 2005; Rintoul et al., 2003; Yi et al., 2004). Ca2+ sensing involves the helix-loop-helix structural domain (EF) hands of the Miro proteins (MacAskill et al., 2009b; Saotome et al., 2008; Wang and Schwarz, 2009).

Mitochondria are also a major site for production and scavenging of reactive oxygen species (ROS) that serve as both a mediator and a regulator of calcium signaling and are relevant for the control of mitochondrial function. Numerous studies have described ROS-induced changes in mitochondrial shape and distribution (Das et al., 2012; De Vos et al., 2007; Fang et al., 2012; Magrané et al., 2014; Morfini et al., 2013), but these changes can result from a variety of different mechanisms, and the effect of ROS on mitochondrial movements has not been addressed yet.

Here, we tested the hypothesis that ROS target motility to control mitochondrial dynamics. Alteration of mitochondrial distribution can be detrimental for several tissues, in particular for...
neurons, where impairments of mitochondrial transport machinery result in neurological deficits (Guo et al., 2005; Mattson et al., 2008; Nguyen et al., 2014) likely as a consequence of less efficient ATP supply and Ca\(^{2+}\) buffering in cell subdomains where organelles are lacking. We show that ROS exert a regulatory effect on mitochondrial motility. In both rat hippocampal neurons and cell lines (H9c2 cells and mouse embryonic fibroblasts [MEFs]), either external addition or intracellular generation of ROS decreases mitochondrial motility. The mechanism is dose dependent, reversible, and does not require permeability transition pore (PTP) opening or \(\Delta \psi_m\) dissipation. In addition, this effect can occur independent of \([Ca^{2+}]_c\). However, both chemical and genetic targeting of p38\(\alpha\) protects from the decrease in mitochondrial movements induced by \(H_2O_2\). Furthermore, anchoring mitochondria directly to kinesins without involvement of the physiological adaptors between the organelles and the motor protein prevents the \(H_2O_2\)-induced decrease in motility, indicating that ROS likely target the adapter complex with the involvement of p38\(\alpha\) to control motility of mitochondria.

RESULTS

ROS Induce a Decrease in Mitochondrial Transport in Neurons

To assess a possible role of ROS in the control of mitochondrial motility in neurons, we assayed the effects of \(H_2O_2\), menadione, and \(O_2^-\) in mito-roGFP1-transfected rat hippocampal neurons (Figures 1A1 and S1B1). The redox cycling compound menadione is a single electron reduced by ubiquinone in the inner mitochondrial membrane and subsequently reduces \(O_2\), resulting in \(O_2^-\) and \(H_2O_2\) (Eklöw et al., 1981); therefore, it was used to aggravate endogenous ROS production. A multiplexed assay (Gerencser and Nicholls, 2008) was applied to follow mitochondrial transport velocities, length, SH redox status of mito-roGFP1, and \(\Delta \psi_m\) (Figure 1A1–v). Velocities were measured using optical flow and also visualized by kymograms (Figure S1A). To quantify motility, we averaged optical flow for all visible neurites for each observed neuron. Importantly, this approach allowed a low rate of imaging at 5 min intervals to minimize phototoxicity-induced effects and to record multiple view fields cyclically, while velocities were calculated from a pair of frames recorded at each time point.

Both \(H_2O_2\) (50 \(\mu M\)) and menadione (10 \(\mu M\)) triggered simultaneous oxidation of roGFP and a decrease in the mitochondrial motility (Figures 1A1–1G; Figures S1A–S1E1). Increasing \(H_2O_2\) to 100 \(\mu M\) induced both higher oxidation and inhibition of mitochondrial velocity. When \(O_2^-\) (generated by 5–14 \(\mu M/L\) xanthine oxidase with 100 \(\mu M\) xanthine [X/XO]) was used as an oxidant, a decrease in motility was also observed (Figures 1D and 1I). Treatment with X/XO had a strong oxidative property (Figure 1E) but was less effective than \(H_2O_2\) in inhibiting mitochondrial transport. To control for cell viability, we measured plasma membrane potential (\(\Delta \psi_p\)) in separate experiments by an anionic plasma membrane potential indicator (PMPI) (Nicholls, 2006) and intracellular \([Ca^{2+}]_c\) by rhod2 (under our conditions, rhod2 compartmentalized mostly to the cytoplasm) (Figures S1G and S1H). \(\Delta \psi_p\) did not depolarize in the first 2 hr of the exposure to \(H_2O_2\) (100 \(\mu M\)) and menadione (10 \(\mu M\)). \([Ca^{2+}]_c\) did not elevate for 90 min in the presence of \(H_2O_2\), while it slightly but gradually increased with menadione.

Inhibition of Mitochondrial Motility and Mitochondrial Elongation Induced by ROS Are Triggered Independently

Mitochondrial fusion-fission dynamics and movements are mutually coupled (Liu et al., 2009; Mouli et al., 2009). The motility decrease caused by \(H_2O_2\) and \(O_2^-\) was accompanied by elongation of neuronal mitochondria (Figures 1Bv, 1G, and 1J), which then underwent fragmentation, swelling, and membrane depolarization (\(\Delta \psi_{m(1/2)}\); a surrogate for \(\Delta \psi_m\); Figures 1C, 1F, and 1G). The elongation effect of ROS on mitochondrial morphology we observed was reproduced for all of the oxidants used, but not for all concentrations and with some differences in the temporal scale (Figures 1G and 1J). Notably, cells rapidly convert \(O_2^-\) to \(H_2O_2\) by superoxide dismutases, which is then removed by catalase and the glutathione system. Menadione and glutathione depletion instead induced a prolonged mitochondrial elongation, which was observed even after 2 hr from the addition of the drug. Mitochondria appearing visually elongated were also luminal continuous as indicated by spatially synchronous fluctuations of \(\Delta \psi_m\); best observable in neurons in the glutathione-depleted conditions with 1-chloro-2,4-dinitrobenzene (CDNB) or ethacycnic acid (see below; Figure S1I). In contrast to shape changes, the inhibitory effect on mitochondrial motility was universal and early for \(H_2O_2\), X/XO, and menadione treatments for all used concentrations.

To investigate the temporal relationship of the loss of motility, shape changes, and \(\Delta \psi_m\), we plotted the parameters shown in Figures 1D, 1F, and 1G against each other pairwise (Figure 1H; Figures S1J and S1K). In Figure 1H, the measured properties gradually deviate from the baseline (“start,” 100% velocity and length) as the experiment progresses to the “end” (\(t = 120\) min). \(H_2O_2\) (50–100 \(\mu M\)) and X/XO (14 \(\mu M/L\)) treatments resulted in a characteristic track in the velocity-length

Figure 1. ROS Decrease Mitochondrial Transport Velocity in Neurons (See Also Figure S1)

(A–C) A hippocampal neuron expressing mito-roGFP1 loaded in the presence of tetramethylrhodamine, methyl ester (TMRM) at time point 0 (baseline, Ai), 30 min (Bi), and 3 hr (Ci) after treatment with \(H_2O_2\). Velocities of mitochondria (measured as optical flow, ii; arrows, motile mitochondria), redox state of mito-roGFP (expressed as 438/480 fluorescence ratio, iii), and changes in \(\Delta \psi_m\) (iv) are shown. The mito-roGFP image was also segmented to measure the length of mitochondria (v; arrows indicate fused mitochondria). The red quadrangle in (i) corresponds to (ii–v), and the red dashed outline in (ii–v) to a hand-drawn region of the analysis.

(D–G) Time courses of velocities (D), redox state of mito-roGFP1 (E), \(\Delta \psi_m\) (F), and mitochondrial length (fiber length) (G). The indicated treatments were present from \(t = 40\) min. Mock-treated cells (control, gray trace) are shown.

(i) and (J) Mean velocities (I) and mitochondrial length (J) at the indicated time after application of the indicated treatments in mito-roGFP1-expressing rat hippocampal neurons. *\(p < 0.05\); **\(p < 0.01\).
Figure 2. H$_2$O$_2$ Induces Mitochondrial Motility Inhibition in H9c2 Cells

(A) Measurement of mitochondrial movements in H9c2 cells transfected with mitoYFP and pretreated with Tg in a Ca$^{2+}$-free medium. Kymograms (lower) before (60 s), 8 min after (640 s) H$_2$O$_2$, and 1 min (610 s) after CaCl$_2$ additions. Cells were treated with solvent (+) or H$_2$O$_2$ where indicated.

(B) MitoYFP-expressing cells were loaded with fura-2 AM and pretreated as in (A). The upper row images show the site of mitochondrial movement (red: positive change, green: negative change between sequential images) at each time point. 340 (red) and 380 nm (green) channels of fura-2 are shown (lower row).

(C) Time courses of motility decay (red) and [Ca$^{2+}$]c (black) recorded simultaneously in the same cells. [Ca$^{2+}$]c-induced motility inhibition is shown at the end of the experiment.

(D) Time courses of motility decay after exposure to varying concentrations of H$_2$O$_2$. 100% inhibition was defined by CaCl$_2$ added at the end of the experiment.

(legend continued on next page)
diagram indicating initial motility inhibition with elongation, followed by further deceleration of mitochondria with shortening. Remarkably, X/XO (5 mU/mL) and myxothiazol + oligomycin treatments (used to specifically depolarize ΔΨm by inhibiting complexes III and V of the oxidative phosphorylation) caused instead partial deceleration with shortening, whereas menadione distinctly triggered partial deceleration with marked elongation. Figure S1J shows that the deceleration caused by specific ΔΨm depolarization by myxothiazol + oligomycin was far less in extent than the one caused by oxidants, when comparing them at identical potentials (e.g., at −10 mV depolarization). Notably, the myxothiazol + oligomycin-triggered shortening was probably due to swelling rather than fission as it was earlier shown (Gerencser and Nicholls, 2008; Yuan et al., 2007). Figures S1J and S1K indicate that H2O2- and menadione-induced inhibition of motility preceded ΔΨm depolarization, when we consider that ΔΨm was relatively stable in this time period (Figure S1I). Notably, H2O2-induced ΔΨm hyperpolarization may mask a small extent of ΔΨm depolarization, but this was not the case for menadione. In contrast, the start of a gradual ΔΨm depolarization preceded shortening of mitochondria. Altogether, the different velocity-length temporal tracks triggered by the different oxidants follow independent trends, supporting the idea that the effectors modulating motility and mitochondrial fusion-fission are distinct molecular entities.

H2O2-Induced Mitochondrial Motility Inhibition Is Dose Dependent, Is Not Mediated by Ca2+, and Spares Other Organelles

To find out whether the ROS sensitivity of motility was a general cell mechanism and how it was mediated, we used H9c2 myoblasts because mitochondrial motility and its regulation by Ca2+ have been studied in this model. Cells were transfected with mitoYFP, and mitochondrial movement response to H2O2 addition was represented as kymograms in Figure S2A. The number of movement events significantly diminished 10 min after 200 μM H2O2 addition and drastically dropped down at 20 min (Figure S2B), reproducing what was observed in rat hippocampal neurons.

To check the possibility that an ROS-induced [Ca2+]c rise was the inducer of the motility decay, we next employed Ca2+-depleted H9c2 cells. Cells were pretreated with thapsigargin (Tg; 2 μM), an endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR) Ca2+-ATPase inhibitor, in a Ca2+-free extracellular medium to prevent intracellular Ca2+ mobilization and the ensuing Ca2+ entry. In these conditions, addition of 100 μM H2O2 inhibited motility of mitochondria, which appeared almost completely immobile after 8 min (540 s of time-lapse recording) as shown by the kymograms in Figure 2A. As expected, addition of 4 mM CaCl2 at the end of the run (610 s) resulted in full inhibition of movements. The inhibitory effect of H2O2 on mitochondrial transport in Ca2+-depleted conditions was also confirmed using the photoactivatable fluorescent protein technology (Eisner et al., 2014; Liu et al., 2009; Saotome et al., 2008). Here, the mitochondrial matrix-targeted fluorescent protein is activated in small subregions of the cell, and subsequent time-lapse images show moving of individual mitochondria to other areas (Figures S2C and S2D). In control cells, mitochondria with photoactivated content appeared more and more distant from the photoactivation areas (see images of 540 and 720 s), whereas in cells treated with 100 μM H2O2, they remained confined to the photoactivation areas (Figure S2C). Furthermore, when the photoactivated fluorescence was plotted for the photoactivation areas, the time-dependent fluorescence decay was suppressed in H2O2-pretreated cells (Figure S2D). Thus, 100 μM H2O2 inhibited mitochondrial transport in Ca2+-depleted conditions.

To confirm that no [Ca2+]c change was caused by H2O2, we also loaded cells with fura-2-acetoxyethyl ester (fura-2 AM). Moving mitochondria are shown in the mitoYFP image as red and green pixels in which fluorescence between sequential images (12 s interval) was changing over an empirically determined threshold (Saotome et al., 2008; Yi et al., 2004). The number of red and green pixels progressively decreased by H2O2 (100 μM) without any change in [Ca2+]c (Figures 2B and 2C). As expected, CaCl2 (4 mM) addition caused a [Ca2+]c increase and further decreased motility. Thus, H2O2-induced mitochondrial motility inhibition is independent of a change in [Ca2+]c. It was also present even at lower concentrations of H2O2, with the minimum effective concentration being 25 μM and a dose-dependent trend (200 μM; 68% ± 0.8%, 100 μM; 60% ± 1.3%, 50 μM; 41% ± 1.8%, 25 μM; 30% ± 1.7%, 12.5 μM; 3.6% ± 2%; n = 8–10) (Figures 2D and 2E).

Because ROS exposure can cause broad changes in the cells, we tested whether H2O2 also affected the transport of peroxisomes visualized by SKL-DsRed (Figure 2F). As for mitochondrial motility, SKL-DsRed-transfected H9c2 were Ca2+-predepleted, and the time lapse was recorded in Ca2+-free extracellular medium. H2O2 (100 μM) addition did not affect movements of peroxisomes as shown by kymograms at time point 540 s and by traces of motility decay in Figure 2G. As for mitochondria, addition of 4 mM CaCl2 caused rapid decrease of peroxisomal motility. Thus, H2O2 targeted mitochondrial motility without causing a broad organellar transport change.

H2O2 can cause membrane damage that leads to cell death. To test whether this happened during the time course of our measurements, we used propidium iodide (PI) exclusion. In H9c2 cells (or MEFs used in some experiments later on), addition of H2O2 (100 μM) failed to allow PI entry (Figures S2E and S2F). By contrast, digitonin, a detergent added at the end of the run, caused rapid intracellular accumulation of the dye.

Collectively, these results indicate that H2O2-induced targeting of mitochondrial motility is a general cell mechanism and it specifically impairs mitochondria movements, leaving peroxisomal motility or cell membrane integrity unaffected at least for the H2O2 doses used here. The H2O2-induced motility decay takes place independently from [Ca2+]c change and shows a
dose-response relationship with the lowest effective concentration of 25 μM.

Endogenous ROS Induce a Decrease in Mitochondrial Motility

Next, effects of endogenously produced ROS were studied first by dampening the antioxidant defense. In hippocampal neurons, glutathione depletion by ethacrynic acid (Vesce et al., 2005), CDNB (Figure 1I), or monochlorobimane (MCB; Figure S1F) reduced mitochondrial motility similarly to oxidants. These findings were recapitulated in mitoYFP-expressing H9c2 cells. MCB becomes fluorescent when it conjugates with glutathione (GSH) in the cells (MCB F/F0; 26.0 ± 0.7 versus 1.2 ± 0.0 of control; p < 0.01; Figure 3A); however, because GSH is a major natural scavenger of H2O2, the formation of intracellular MCB-GSH rapidly depletes GSH, resulting in an increase in intracellular ROS (Vesce et al., 2005). Upon MCB-GSH conjugation, a significant motility inhibition was observed (72.5% ± 0.9% versus 15.4% ± 0.9% of control; n = 7; p < 0.01; Figure 3B). Thus, an intracellular ROS source could reproduce the inhibitory effect on motility observed by externally administering H2O2.

To test whether mitochondrial motility was affected even when intracellular ROS were restricted to a small area of the cell, we loaded mitoYFP-expressing H9c2 cells with MitoTracker Red-CMxRos (MTR) and used photoillumination to generate localized intracellular ROS elevation (Figure 3C). Kymograms and plots of motility show a rapid and drastic effect on motility in the area of photoillumination (Figure 3D). To test whether photoillumination per se was exerting an inhibitory effect on motility, we counted the number of immobile mitochondria also in the adjacent area of the cell (Figure 3E). In the photoilluminated area, the number of immobile mitochondria was increased to 86.7%. In the area adjacent to the site of ROS generation, inhibitory effect was still present, even if with a lesser extent (34.8%). As a control, immobile mitochondria were counted in an area far away from the photoilluminated one, and no inhibition of mitochondrial motility was observed (Figure 3E). To further validate the role of ROS in photoillumination-induced motility inhibition, we pre-incubated cells with a scavenger, Mn(III) tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP) (Figure 3E). Notably, MnTE-2-PyP is a superoxide dismutase mimetic and thus converts O2·− to H2O2. H2O2 is then more efficiently eliminated by the GSH-dependent mechanisms than O2·− (Jezek and Hlavata, 2005). The superoxide dismutase
Figure 4. Mitochondrial Motility Inhibition by H$_2$O$_2$ Is p38α Mediated (See Also Figure S4)

(A and B) MitoYFP-expressing H9c2 cells were pretreated with Tg in a Ca$^{2+}$-free ECM; then H$_2$O$_2$ was applied in the presence (A) or absence of CsA (B). Motility is shown at 5 and 20 min exposure of H$_2$O$_2$ (white bars). H$_2$O$_2$ was eliminated by replacing it for catalase (black bars) at 5 min; then the recovery of motility was monitored. *p < 0.01 versus 5 min, **p < 0.01 versus catalase (+) 20 min.

(C) Graphic representation of ROS-mediated activation of MEK kinases JNK and p38.

(D) Motility decay (calculated as Δ between H$_2$O$_2$-treated and untreated cells) at the time point of 3 min after H$_2$O$_2$ addition to H9c2 cells. Where indicated, cells were pretreated with SP600125 or SB202190 for 20 min. Unexpectedly, these inhibitors alone caused some decrease in motility (46% ± 2% for SP600125 and 29% ± 3% for SB202190 versus 5% ± 1% untreated cells), indicating that the treated cells became frail and sensitive to imaging conditions. Nevertheless, H$_2$O$_2$
mimic resulted in attenuation of the photoluminiscence-induced motility inhibition, with a decrease in the number of immobile mitochondria of almost half of non-treated cells in the photoluminiscence area and also in the adjacent area (from 34.5% to 5.1%). Thus, when ROS is produced in a cellular subregion, the motility inhibition is also spatially confined, suggesting that ROS can serve as a local factor in the control of motility.

Neither Mitochondrial PTP Opening nor ΔΨm Loss Is Required for H2O2-Induced Mitochondrial Motility Inhibition

In mammalian cells, directional mitochondrial movements usually take place along microtubules. We therefore investigated whether ROS affected the spatial organization of mitochondria relative to microtubules. In Figure S3A, the confocal images of mitoDSRed and tubulin GFP co-transfected cells revealed that H2O2 did not evoke any change in the spatial relationship between mitochondria and microtubules (Figure S3A).

A main mitochondrial target of oxidative stress is the PTP, the opening of which commonly causes mitochondrial dysfunction (Rasola and Bernardi, 2011). Therefore, next it was investigated whether PTP is involved in the ROS-induced motility inhibition. Pre-incubation with the selective PTP inhibitor Me-Val-CSA (mCsA; 5 μM) did not suppress the ROS-dependent mitochondrial motility inhibition (Figures 3C, right panel, and 3D). The broad PTP/calcineurin inhibitor cyclosporine A (CsA) was also applied to Ca2+-depleted cells, and the H2O2-induced motility decay was evaluated (Figures S3B and S3C). CsA did not alter the H2O2-induced motility inhibition (64.8% ± 1.3% H2O2 alone versus 60.9% ± 1.3% of H2O2+CsA; n = 37; Figure 3E), confirming that PTP opening was not involved in the phenomenon.

In hippocampal neurons, H2O2 and menadione inhibited motility before loss of ΔΨm, and in a greater extent than specific discharging of ΔΨm did. To further test the relationship between H2O2-induced motility inhibition and depolarization, we measured ΔΨm in Ca2+-depleted H9c2 cells. H2O2 did not alter ΔΨm at least when the motility inhibition became apparent (Figure S3D). In FCCP- and oligomycin-treated cells, dissipation of ΔΨm was gradually followed by the loss of motility, reflecting the slower kinetic of cytoplasmic ATP depletion (Yi et al., 2004) (Figure S3E). However, even during the uncoupler-induced depolarization, H2O2 caused further inhibition in motility (79.4% ± 1.3% versus 62.4% ± 1.2% of control; n = 21; p < 0.01; lower plot in Figure S3E), supporting that H2O2 suppressed motility independent of ΔΨm loss.

H2O2-Induced Mitochondrial Motility Inhibition Is a Reversible Process

Mitigation of endogenous H2O2 was increasing mitochondrial motility in neurons where N-acetyl-cysteine was applied, resulting in increased mitochondrial velocities after 40 min (Figure 1). To further assess the effects of antioxidants on H2O2-induced mitochondrial motility inhibition in H9c2 cells, we incubated the Ca2+-depleted cells with H2O2, and after the mitochondrial motility inhibition was documented (5 min), the extracellular H2O2 was eliminated by catalase (2,500 IU) and motility was reassessed at 20 min. As shown in Figure 4A, catalase treatment reversed H2O2-induced motility decrease (96.4% ± 5.5% of motility in treated versus 78.4% ± 4.4% in untreated). Again, treatment with CsA has no effect on the motility inhibition and its reversibility (Figure 4B), arguing against a role of PTP activation in the process.

p38α Is Required for the H2O2-Induced Mitochondrial Motility Inhibition

H2O2 was reported to induce many changes in protein phosphorylation and activation of signaling factors mediating phosphorylation like protein kinase C (Shibukawa et al., 2003), protein phosphatase 2A (PP2A) (Rao and Clayton, 2002), and mitogen-activated protein kinases (MAPKs) superfamily through activation of ASK1 MAP3 kinase (Figure 4G) (Ichijo et al., 1997; Saioh et al., 1998). To evaluate whether any of these pathways were involved here, we screened kinase and phosphatase inhibitors for motility regulation in the presence of H2O2. Neither okadaic acid (PP1 and PP2A inhibitor) nor staurosporine (PKC inhibitor) was able to influence on motility inhibition by H2O2. To selectively inhibit JNK or p38 MAPK kinases, we used SP600125 or SB202190 in a Ca2+-free condition. H2O2 was able to decrease motility in both kinase inhibitor untreated and SP600125-treated cells, but it was ineffective when SB202190 was used (Figure 4D), suggesting an involvement of p38.

Four isoforms of p38 exist in mammals (α, β, δ, and γ). In the heart, all four isoforms are present (Dingar et al., 2010). However, in the brain and many other tissues, only p38α and p38β are expressed (Jiang et al., 1996; Stein et al., 1997). Interestingly, p38 phosphorylation has recently been implicated in the regulation of ER-mitochondria associations and motility (Li et al., 2015), and activation of p38α inhibits anterograde fast axonal transport upon expression of a pathogenic mutation of superoxide dismutase 1 (SOD1) (Morfini et al., 2013). To test whether isoform α could play a role in motility regulation, we transfected H9c2 with a dominant-negative mutant of p38α (p38αDN), in which Thr180 and Tyr182 residues were mutated to prevent phosphorylation and activation of the MAPK. Dominant-negative interference with p38α also rendered mitochondrial motility gradually declining in our recording conditions (21% ± 3% of motility decay; Figure S2A). H2O2 suppressed the remaining motility to a smaller extent in p38αDN-expressing cells than in cells transfected with empty vector (EV; Figure 4E).

was able to decrease motility in both kinase inhibitor untreated and SP600125-treated cells, but it was ineffective when SB202190 was used (% of motility decay of 25 ± 4, 29 ± 4 and 4 ± 3, respectively). *p < 0.002.

(E) Motility decay (calculated as in D) at 8 min after H2O2 addition (black bar) to H9c2 cells transfected with empty vector (EV) or dominant-negative mutant of p38α (p38αDN) as indicated. *p < 0.002.

(F) Measurement of mitochondrial movements in wild-type (WT) and p38α knock out (p38α−/−) MEFs transfected with mitoYFP. Kymograms (lower) before (60 s) and 8 min after (540 s) H2O2 addition.

(G) Motility decay at 8 min after H2O2 addition (black bar) to mitoYFP-expressing MEFs as in (F). Motility was calculated as in (D). *p < 0.006.
Mitochondrial motility was then assessed in MEFs lacking p38α (p38α−/−). MEFs in general showed more resistance to H2O2-induced motility inhibition than hippocampal neurons or H9c2 cells: to achieve a motility decay of 52.2% ± 7.3% at time point of 8 min, we increased the H2O2 concentration from 100 to 200 μM. Addition of the same dose of H2O2 to p38α−/− MEFs did not cause a decrease of localized mitochondrial movements (Figure 4F) or general mitochondrial motility inhibition (Figure 4G), confirming that p38α is required for the H2O2-induced motility arrest.

The Motor Adaptor Complex Is Essential for Mediating the H2O2-Induced Mitochondrial Motility Decay

Mitochondrial movements along microtubules and microfilaments are achieved through an adaptor complex (containing Miro1/2 and Trak1/2) and motor proteins (kinesins, dyneins, and myosins). Because the spatial relationship between mitochondria and microtubules is not affected by H2O2 (Figure 2G), we reasoned that the activity of one of these two components could be the target of p38 for achieving ROS-induced inhibition of motility. Kinesin KIF5C has been already described as a target of p38 (Morfini et al., 2013); phosphorylation of its serine residue in position 176 regulates cargo transport by promoting disengagement of the motor from microtubule tracks (Padzik et al., 2016). Kif5B, one of the kinesins responsible for movements of mitochondria (Tanaka et al., 1998), together with Kif1B and KLP (Nangaku et al., 1994; Tanaka et al., 2011), belongs to the same kinesin family as Kif5C (Kanai et al., 2000). Serine 176 is conserved between KIF5C and KIF5B, and is also found in KIF1B (Figure S4C). We therefore created a phospho-resistant mutant of KIF5B by mutagenizing residue 176 to alanine (KIF5BS176A) and used it to transfet H9c2 cells (Figure S4D). After exposure to H2O2, H9c2 expressing the phospho-resistant mutant of KIF5B exhibited approximately the same percentage of motility decay documented in control cells (55.7% ± 2% for KIF5BS176A and 60.3% ± 2% for EV-transfected cells; Figure S4E). Therefore, expression of phospho-resistant KIF5BS176A was unable to prevent mitochondrial motility inhibition exerted by H2O2.

This kinesin in combination with the FRB-FKBP drug-inducible heterodimer was then employed to determine the involvement of Miro/Trak protein complex in the effect exerted by H2O2. HA-KIF5B (1-807)-FRB, the truncated KIF5B lacking its tail domain, which is known to be constitutively active without interference of regulatory pathways (Kapitein et al., 2010), was fused to FRB and was co-expressed with TOM20-mCherry-FKBP (Chung et al., 2016). Addition of rapalog causes heterodimerization between adjacent FRB and FKBP domains to directly connect kinesin motor proteins to mitochondria. The rearrangement of mitochondrial distribution upon rapalog addition is shown in Figure 5A: mitochondria initially accumulated around the nucleus (150 s) aligned with the microtubular tracks (240 s; see also Figure S4F), where Kif5B is probably anchored, and then move to the peripheral tips of the cell, where they form aggregates (600 s, arrowheads, lower right panel). Cells untreated with rapalog did not show any change in the mitochondrial distribution during the same time (Figure 5A, upper panel).

To assess whether the rapalog-induced anchoring to Kif5B was affecting motility, we quantified the amount of moving mitochondria (represented as red and green pixels, Figure 5B). Expression of the anchor components, in the absence of rapalog, did not substantially change it (Figure 5B, first row). In the same condition, H2O2 caused a decrease in mitochondrial motility (second row). However, when mitochondria were directly anchored to KIF5B, H2O2 was unable to induce a decrease in the motility (Figures 5B, last two rows, 5C, and 5D). Mean traces of the motility decay for the conditions described above are shown in Figure 5C. These data suggest that H2O2 targets the motor adaptor complex via p38α to suppress mitochondrial movements.

DISCUSSION

This work provides evidence for the control of mitochondrial motility by ROS, through a p38α-dependent pathway and the adaptor complex that anchors mitochondria to the microtubular motor proteins. Both external and internal sources of ROS cause a decrease in mitochondrial motility in rat hippocampal neurons and H9c2 cells. This is attained by small amounts of ROS like 25 μM H2O2 and is rapidly reversible. ROS can stop mitochondrial movements independent of [Ca2+]c, a well-known mitochondrial motility regulator, and of ΔΨm. Furthermore, ROS-induced mitochondrial dysfunction or PTP opening is not involved in H2O2-induced motility decay. Based on genetic and pharmacological evidence, ROS inhibition of mitochondrial motility requires a p38α pathway and seems to target specifically the adaptor complex that links mitochondria to the microtubular motor proteins.

Due to their polarized and complex functional and structural organization, neurons need to distribute mitochondria in neurites, to reach areas where their metabolic activity is required (like synapses) and to easily drive their engulfment and elimination and replacement when they become dysfunctional during cellular stress. ROS function as intracellular messengers in long-term potentiation but also represent a source of synaptic stress, when their elevation is sustained. We here showed that oxidative stress (H2O2, O2•−, menadione, and GSH depletion) rapidly suppresses mitochondrial velocity in rat hippocampal neurons in a dose-dependent manner. Importantly, inhibition of motility was distinguished from ROS-induced mitochondrial elongation and fragmentation, which are evoked by prolonged/ massive ROS exposure. We have studied the mechanism of the motility inhibition (see below) and speculate that a separate ROS-activated pathway engages the mitochondrial fusion-fission proteins likely by posttranslational modification, but establishing this point requires further studies.

To investigate the mechanisms underlying the ROS-induced mitochondrial motility inhibition, we switched to H9c2 cells that we had extensively used in previous works to dissect mitochondrial dynamics. ROS likely target functionally relevant SH groups in proteins, but the number of candidate proteins is high. We considered three potential mechanisms to decrease mitochondrial motility in response to ROS. First, ROS could induce a rise in [Ca2+]c through sensitization to threshold concentrations of inositol-1,4,5-trisphosphate (IP3)-linked agonists (Booth et al.,
Figure 5. The Adaptor Complex Is Essential for Mediating the H2O2-Induced Mitochondrial Motility Decay
(A) Confocal images of H9c2 cells expressing TOM20-mCherry-FKBP and HA-KIF5B (1-807)-FRB show the distribution of mitochondria (at 0, 150, 240, and 600 s) with (lower) or without (w/o) (upper) rapalog treatment. Note the rapalog-induced marked conglomeration of mitochondria at the distal tips of the cell at 600 s (arrowheads).
(B) Confocal images show motility in of H9c2 cells overexpressing mito-kinesin linker at times 0 and 540 s. Where indicated, rapalog and/or H2O2 was applied at 60 s.
(C) Mean traces of motility decay with (solid lines) or w/o (dotted lines) H2O2 addition in the presence (red) or absence (black) of rapalog. Treatments were applied at 60 s. Schematic representations of adaptor motor complex and the mito-kinesin linker before and after rapalog-induced heterodimerization are shown.
(D) Motility decay 8 min (540 s) after H2O2 (black bar) and rapalog addition. Experiments were as in (C). *p < 0.001.
Mitochondrial motility inhibition is induced by physiologically relevant doses of H₂O₂ and is rapidly reversed by removal of H₂O₂. This supports the idea that ROS might work as a physiological regulator of mitochondrial distribution, temporally decelerating the organelles when and where it is required. This process may enable to recruit additional mitochondria at the site of ROS elevation, and serve both ROS scavenging and propagation of ROS production, which may have relevance in pathophysiological conditions. Finally, in line with recent findings on ROS/Ca²⁺ communication at mitochondria-ER contact sites (Booth et al., 2016) and on the involvement of mitochondrial respiratory complex I- and III-originated ROS in ER-stress-induced caspase activation (Brand et al., 2016), a Ca²⁺-induced rise in mitochondrial ROS could serve as a signal to stop mitochondria in proximity to ER to establish new contact sites to serve as signaling modulators. Thus, our findings offer some clues relevant for mitochondrial quality control and for both cell survival and death signaling.

In the final phase of the writing of this manuscript, a paper came out on oxidative stress (paraquat and H₂O₂)-induced motility inhibition in fly neurons (Liao et al., 2017). Thus, ROS control motility both in fly and in mammalian cells, although in fly, the ROS effect seems to be mediated via [Ca²⁺]ₐ elevation, whereas in mammalian cells, ROS can engage robust motility inhibition even independent of Ca²⁺. Liao et al. (2017) speculated that elevated [Ca²⁺]ₐ acts through Miro1, a mitochondrial anchor for motors, and we provided experimental evidence that the motor adaptor complex is needed for the inhibitory effect of ROS. Interestingly, in fly, JNK was also implicated in the motility inhibition, whereas in mammalian cells, p38α is required and JNK is dispensable. p38α is present in fly but was not investigated by Liao et al. (2017). From the two studies, an evolutionarily conserved ROS phenotype emerges in motility that uses species-specific underlying mechanisms to target the mitochondrial motor adaptor complex.

EXPERIMENTAL PROCEDURES
Detailed protocols are available in the Supplemental Experimental Procedures.

Cell Culture, Loading, and Transfection
Primary hippocampal neurons, H9c2 myoblast cells, and MEF cells were prepared, transfected, and treated as in Gerencser and Nicholls (2008), Nguyen et al. (2014), and Yi et al., (2004). All procedures involving rats were carried
out according to the local animal care and use committee (Egyetemi Allatkisz-
deli Bizottsag) guidelines.

Fluorescence and Confocal Imaging
Time-lapse fluorescence microscopy of hippocampal neurons was performed on an Olympus IX81, while measurements [Ca2+]i, and/or mitochondrial motility in H9c2 and MEFs were carried out on an Olympus IX70 with UAPO 40 x oil 1.3 NA lens. Confocal imaging was performed using a Radiance 2100 (Bio-Rad).

Evaluation of Mitochondrial Motility
Mitochondrial velocities were measured as optical flow (Gerencser and Nicholls, 2008), whereas motility in H9c2 cells and MEFs was evaluated as described previously (Saotome et al., 2008; Yi et al., 2004).

Statistical Analysis
All experiments were performed with at least three different preparations. Data are presented mean ± SEM, and significance of difference was calculated by t test unless otherwise indicated. For measurements of mitochondrial velocities in neurons, nine cells were pooled from each preparation, and the results were tested using ANOVA (Dunnett’s post hoc test, treatment versus control, independ-ently for the two time points). For measurements of ΔΨm in neurons, data are % of baseline fluorescence (n = 81, 107, and 70 cells for control, H2O2, and menadione, respectively). For measurements of mitochondrial motility in H9c2 cells and MEFs for each condition, 7–10 cells/preparation were evaluated.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures and four figures and can be found with this article online at https://doi.org/10.1016/j.celrep.2017.10.060.

AUTHOR CONTRIBUTIONS
V.D., A.A.G., M.S., and G.H. conceived the ideas; V.D., A.A.G., M.S., and S.D. performed experiments; V.D., A.A.G., M.S., and G.H. wrote the manuscript.

ACKNOWLEDGMENTS
We thank Mr. David Weaver for the assistance with confocal microscopy and coding ImageJ macros for motility analysis. This work was supported by NIH grants DK51526 (to G.H.) and PL1 AG032118 (to A.A.G.). A.A.G. declares financial interest in Image Analyst Software.

REFERENCES

