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SUMMARY

Mitochondrial distribution and motility are recog-
nized as central to many cellular functions, but their
regulation by signaling mechanisms remains to be
elucidated. Here, we report that reactive oxygen spe-
cies (ROS), either derived from an extracellular
source or intracellularly generated, control mito-
chondrial distribution and function by dose-depen-
dently, specifically, and reversibly decreasing
mitochondrial motility in both rat hippocampal pri-
mary cultured neurons and cell lines. ROS decrease
motility independently of cytoplasmic [Ca2+], mito-
chondrial membrane potential, or permeability tran-
sition pore opening, known effectors of oxidative
stress. However, multiple lines of genetic and phar-
macological evidence support that a ROS-activated
mitogen-activated protein kinase (MAPK), p38a, is
required for the motility inhibition. Furthermore,
anchoring mitochondria directly to kinesins without
involvement of the physiological adaptors between
the organelles and the motor protein prevents the
H2O2-induced decrease in mitochondrial motility.
Thus, ROS engage p38a and themotor adaptor com-
plex to exert changes inmitochondrial motility, which
likely has both physiological and pathophysiological
relevance.

INTRODUCTION

Mitochondrial distribution and transport are central to many

cellular functions, including cell differentiation (Chada and Hol-

lenbeck, 2004), cell division to ensure proper inheritance (Yaffe,

1999), ATP supply at the local sites of demand, and Ca2+ buff-

ering for intracellular Ca2+ homeostasis (Yi et al., 2004; Zucker,

1999). Strategic intracellular mitochondrial distribution depends

on the movement of mitochondria, which is mediated by a com-

plex of proteins first identified in genetic screens performed in

Drosophila melanogaster. The anterograde mitochondrial trans-

port in axons is abolished in either Milton or Miro mutants (Guo

et al., 2005; Stowers et al., 2002); Milton co-immunoprecipitates

with and attaches kinesin to mitochondria throughMiro, an outer

mitochondrial membrane (OMM) protein (Glater et al., 2006). In

mammals, mitochondrial motility is mediated by trafficking kine-

sin proteins (Trak1 and Trak2, Milton homologs) that work as

adaptors between Miro1 and Miro2 (Miro homologs) and dynein

and kinesin motor proteins to allow movement of the organelles

along the microtubules (Brickley et al., 2005; Fransson et al.,

2006; Hirokawa et al., 1991; MacAskill et al., 2009a; Nguyen

et al., 2014).

In the last decade, the mitochondrial motility machinery has

been determined, but the signaling mechanisms underlying the

specificity and the spatio-temporal control of the mitochondrial

movements remained elusive. Mitochondrial membrane poten-

tial (Dcm) is central to mitochondrial movement because agents

that depolarizemitochondria inhibit mitochondrial transport (Rin-

toul et al., 2003; Vanden Berghe et al., 2004; Yi et al., 2004). First,

mitochondria with high Dcm were shown to preferentially move

anterogradely while depolarized ones move retrogradely (Miller

and Sheetz, 2004), but later studies showed no directionality dif-

ference between the two populations (Gerencser et al., 2008;

Verburg and Hollenbeck, 2008). Changes in ATP/ADP likely

affect movements because ADP slowly dissociates from themo-

tor to act like an inhibitor. We and others previously showed that

motility is regulated by the cytoplasmic Ca2+ concentration

([Ca2+]c), providing the basis for a homeostatic circuit in which

the organelles decrease their movements along microtubules

at the sites of high [Ca2+]c to locally buffer Ca2+ and contribute

to ATP supply (Brough et al., 2005; Rintoul et al., 2003; Yi

et al., 2004). Ca2+ sensing involves the helix-loop-helix structural

domain (EF) hands of the Miro proteins (MacAskill et al., 2009b;

Saotome et al., 2008; Wang and Schwarz, 2009).

Mitochondria are also a major site for production and scav-

enging of reactive oxygen species (ROS) that serve as both a

mediator and a regulator of calcium signaling and are relevant

for the control of mitochondrial function. Numerous studies

have described ROS-induced changes in mitochondrial shape

and distribution (Das et al., 2012; De Vos et al., 2007; Fang

et al., 2012; Magrané et al., 2014; Morfini et al., 2013), but these

changes can result from a variety of different mechanisms, and

the effect of ROS on mitochondrial movements has not been

addressed yet.

Here, we tested the hypothesis that ROS target motility to

control mitochondrial dynamics. Alteration of mitochondrial dis-

tribution can be detrimental for several tissues, in particular for
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neurons, where impairments of mitochondrial transport machin-

ery result in neurological deficits (Guo et al., 2005; Mattson et al.,

2008; Nguyen et al., 2014) likely as a consequence of less effi-

cient ATP supply and Ca2+ buffering in cell subdomains where

organelles are lacking. We show that ROS exert a regulatory

effect onmitochondrial motility. In both rat hippocampal neurons

and cell lines (H9c2 cells and mouse embryonic fibroblasts

[MEFs]), either external addition or intracellular generation of

ROS decreases mitochondrial motility. The mechanism is dose

dependent, reversible, and does not require permeability transi-

tion pore (PTP) opening or Dcm dissipation. In addition, this

effect can occur independent of [Ca2+]c. However, both chemical

and genetic targeting of p38a protects from the decrease

in mitochondrial movements induced by H2O2. Furthermore,

anchoring mitochondria directly to kinesins without involvement

of the physiological adaptors between the organelles and the

motor protein prevents the H2O2-induced decrease in motility,

indicating that ROS likely target the adaptor complex with the

involvement of p38a to control motility of mitochondria.

RESULTS

ROS Induce a Decrease in Mitochondrial Transport in
Neurons
To assess a possible role of ROS in the control of mitochondrial

motility in neurons, we assayed the effects of H2O2, menadione,

and O2,
� in mito-roGFP1-transfected rat hippocampal neurons

(Figures 1Ai and S1Bi). The redox cycling compound menadione

is a single electron reduced by ubiquinone in the inner mitochon-

drial membrane and subsequently reduces O2, resulting in

O2,
� and H2O2 (Eklöw et al., 1981); therefore, it was used to

aggravate endogenous ROS production. A multiplexed assay

(Gerencser and Nicholls, 2008) was applied to follow mitochon-

drial transport velocities, length, SH redox status of mito-

roGFP1, and DJM (Figure 1Aii–v). Velocities were measured

using optical flow and also visualized by kymograms (Fig-

ure S1A). To quantify motility, we averaged optical flow for all

visible neurites for each observed neuron. Importantly, this

approach allowed a low rate of imaging at 5 min intervals to mini-

mize photoillumination-induced effects and to record multiple

view fields cyclically, while velocities were calculated from a

pair of frames recorded at each time point.

Both H2O2 (50 mM) and menadione (10 mM) triggered simulta-

neous oxidation of roGFP and a decrease in the mitochondrial

motility (Figures 1A–1G; Figures S1A–S1E). Increasing H2O2 to

100 mM induced both higher oxidation and inhibition of mito-

chondrial velocity. When O2,
� (generated by 5–14 mU/mL

xanthine oxidase with 100 mM xanthine [X/XO]) was used as an

oxidant, a decrease in motility was also observed (Figures 1D

and 1I). Treatment with X/XO had a strong oxidative property

(Figure 1E) but was less effective than H2O2 in inhibiting mito-

chondrial transport. To control for cell viability, we measured

plasma membrane potential (DJp) in separate experiments by

an anionic plasma membrane potential indicator (PMPI) (Nich-

olls, 2006) and intracellular [Ca2+] by rhod2 (under our condi-

tions, rhod2 compartmentalized mostly to the cytoplasm) (Fig-

ures S1G and S1H). DJp did not depolarize in the first 2 hr of

the exposure to H2O2 (100 mM) and menadione (10 mM). [Ca2+]c
did not elevate for 90min in the presence of H2O2, while it slightly

but gradually increased with menadione.

Inhibition of Mitochondrial Motility and Mitochondrial
Elongation Induced by ROS Are Triggered
Independently
Mitochondrial fusion-fission dynamics and movements are

mutually coupled (Liu et al., 2009; Mouli et al., 2009). The motility

decrease caused by H2O2 and O2,
� was accompanied by elon-

gation of neuronal mitochondria (Figures 1Bv, 1G, and 1J), which

then underwent fragmentation, swelling, and membrane depo-

larization [DJ(m+p); a surrogate for DJm; Figures 1C, 1F, and

1G]. The elongation effect of ROS on mitochondrial morphology

we observed was reproduced for all of the oxidants used, but not

for all concentrations and with some differences in the temporal

scale (Figures 1G and 1J). Notably, cells rapidly convert O2,
� to

H2O2 by superoxide dismutases, which is then removed by cata-

lase and the glutathione system. Menadione and glutathione

depletion instead induced a prolongedmitochondrial elongation,

which was observed even after 2 hr from the addition of the drug.

Mitochondria appearing visually elongated were also luminally

continuous as indicated by spatially synchronous fluctuations

of DJm, best observable in neurons in the glutathione-depleted

conditions with 1-chloro-2,4-dintrobenzene (CDNB) or etha-

crynic acid (see below; Figure S1I). In contrast to shape changes,

the inhibitory effect on mitochondrial motility was universal and

early for H2O2, X/XO, and menadione treatments for all used

concentrations.

To investigate the temporal relationship of the loss of motility,

shape changes, and DJm, we plotted the parameters shown in

Figures 1D, 1F, and 1G against each other pairwise (Figure 1H;

Figures S1J and S1K). In Figure 1H, the measured properties

gradually deviate from the baseline (‘‘start,’’ 100% velocity and

length) as the experiment progresses to the ‘‘end’’

(t = 120 min). H2O2 (50–100 mM) and X/XO (14 mU/mL) treat-

ments resulted in a characteristic track in the velocity-length

Figure 1. ROS Decrease Mitochondrial Transport Velocity in Neurons (See Also Figure S1)

(A–C) A hippocampal neuron expressing mito-roGFP1 loaded in the presence of tetramethylrhodamine, methyl ester (TMRM) at time point 0 (baseline, Ai), 30 min

(Bi), and 3 hr (Ci) after treatment with H2O2. Velocities of mitochondria (measured as optical flow, ii; arrows, motile mitochondria), redox state of mito-roGFP

(expressed as 438/480 fluorescence ratio, iii), and changes in DJM+P (iv) are shown. The mito-roGFP image was also segmented to measure the length of

mitochondria (v; arrows indicate fused mitochondria). The red quadrangle in (i) corresponds to (ii)–(v), and the red dashed outline in (ii)–(v) to a hand-drawn region

of the analysis.

(D–G) Time courses of velocities (D), redox state of mito-roGFP1 (E),DJM+P (F), andmitochondrial length (fiber length) (G). The indicated treatments were present

from t = 40 min. Mock-treated cells (control, gray trace) are shown.

(H) Parametric plot of velocity and mitochondrial length for the indicated treatments using data from (D) and (G).

(I and J) Mean velocities (I) and mitochondrial length (J) at the indicated time after application of the indicated treatments in mito-roGFP1-expressing rat

hippocampal neurons. *p < 0.05; **p < 0.01.
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Figure 2. H2O2 Induces Mitochondrial Motility Inhibition in H9c2 Cells

(A) Measurement of mitochondrial movements in H9c2 cells transfected with mitoYFP and pretreated with Tg in a Ca2+-free medium. Kymograms (lower) before

(60 s), 8 min after (540 s) H2O2, and 1 min (610 s) after CaCl2 additions. Cells were treated with solvent (–) or H2O2 where indicated.

(B) MitoYFP-expressing cells were loaded with fura-2 AM and pretreated as in (A). The upper row images show the site of mitochondrial movement (red: positive

change, green: negative change between sequential images) at each time point. 340 (red) and 380 nm (green) channels of fura-2 are shown (lower row).

(C) Time courses of motility decay (red) and [Ca2+]c (black) recorded simultaneously in the same cells. [Ca2+]c-inducedmotility inhibition is shown at the end of the

experiment.

(D) Time courses of motility decay after exposure to varying concentrations of H2O2. 100% inhibition was defined by CaCl2 added at the end of the experiment.

(legend continued on next page)
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diagram indicating initial motility inhibition with elongation, fol-

lowed by further deceleration of mitochondria with shortening.

Remarkably, X/XO (5 mU/mL) and myxothiazol + oligomycin

treatments (used to specifically depolarize DJm by inhibiting

complexes III and V of the oxidative phosphorylation) caused

instead partial deceleration with shortening, whereasmenadione

distinctly triggered partial deceleration with marked elongation.

Figure S1J shows that the deceleration caused by specific

DJm depolarization by myxothiazol + oligomycin was far less

in extent than the one caused by oxidants, when comparing

them at identical potentials (e.g., at �10 mV depolarization).

Notably, the myxothiazol + oligomycin-triggered shortening

was probably due to swelling rather than fission as it was earlier

shown (Gerencser and Nicholls, 2008; Yuan et al., 2007). Figures

S1J and S1K indicate that H2O2- andmenadione-induced inhibi-

tion of motility preceded DJm depolarization, when we consider

that DJp was relatively stable in this time period (Figure S1I).

Notably, H2O2-inducedDJp hyperpolarizationmaymask a small

extent of DJm depolarization, but this was not the case for

menadione. In contrast, the start of a gradual DJm+p depolariza-

tion preceded shortening of mitochondria. Altogether,

the different velocity-length temporal tracks triggered by the

different oxidants follow independent trends, supporting the

idea that the effectors modulating motility and mitochondrial

fusion-fission are distinct molecular entities.

H2O2-Induced Mitochondrial Motility Inhibition Is Dose
Dependent, Is Not Mediated by Ca2+, and Spares Other
Organelles
To find out whether the ROS sensitivity of motility was a general

cell mechanism and how it was mediated, we used H9c2 myo-

blasts because mitochondrial motility and its regulation by

Ca2+ have been studied in this model. Cells were transfected

with mitoYFP, and mitochondrial movement response to H2O2

addition was represented as kymograms in Figure S2A. The

number of movement events significantly diminished 10 min

after 200 mM H2O2 addition and drastically dropped down at

20 min (Figure S2B), reproducing what was observed in rat

hippocampal neurons.

To check the possibility that an ROS-induced [Ca2+]c rise was

the inducer of the motility decay, we next employed Ca2+-

depleted H9c2 cells. Cells were pretreated with thapsigargin

(Tg; 2 mM), an endoplasmic reticulum (ER)/sarcoplasmic reticu-

lum (SR) Ca2+-ATPase inhibitor, in a Ca2+-free extracellular me-

dium to prevent intracellular Ca2+ mobilization and the ensuing

Ca2+ entry. In these conditions, addition of 100 mM H2O2 in-

hibited motility of mitochondria, which appeared almost all

completely immobile after 8 min (540 s of time-lapse recording)

as shown by the kymograms in Figure 2A. As expected, addition

of 4 mM CaCl2 at the end of the run (610 s) resulted in full inhibi-

tion of movements. The inhibitory effect of H2O2 on mitochon-

drial transport in Ca2+-depleted conditions was also confirmed

using the photoactivatable fluorescent protein technology (Eis-

ner et al., 2014; Liu et al., 2009; Saotome et al., 2008). Here,

the mitochondrial matrix-targeted fluorescent protein is acti-

vated in small subregions of the cell, and subsequent time-lapse

images show moving of individual mitochondria to other areas

(Figures S2C and S2D). In control cells, mitochondria with photo-

activated content appeared more and more distant from the

photoactivation areas (see images of 540 and 720 s), whereas

in cells treated with 100 mM H2O2, they remained confined to

the photoactivation areas (Figure S2C). Furthermore, when the

photoactivated fluorescence was plotted for the photoactivation

areas, the time-dependent fluorescence decay was suppressed

in H2O2-pretreated cells (Figure S2D). Thus, 100 mM H2O2

inhibited mitochondrial transport in Ca2+-depleted conditions.

To confirm that no [Ca2+]c change was caused by H2O2, we

also loaded cells with fura-2-acetoxymethyl ester (fura-2 AM).

Moving mitochondria are shown in the mitoYFP image as red

and green pixels in which fluorescence between sequential im-

ages (12 s interval) was changing over an empirically determined

threshold (Saotome et al., 2008; Yi et al., 2004). The number of

red and green pixels progressively decreased by H2O2

(100 mM) without any change in [Ca2+]c (Figures 2B and 2C). As

expected, CaCl2 (4 mM) addition caused a [Ca2+]c increase

and further decreased motility. Thus, H2O2-induced mitochon-

drial motility inhibition is independent of a change in [Ca2+]c. It

was also present even at lower concentrations of H2O2, with

the minimum effective concentration being 25 mM and a dose-

dependent trend (200 mM; 68% ± 0.8%, 100 mM; 60% ± 1.3%,

50 mM; 41% ± 1.8%, 25 mM; 30% ± 1.7%, 12.5 mM; 3.6% ±

2%; n = 8–10) (Figures 2D and 2E).

Because ROS exposure can cause broad changes in the cells,

we tested whether H2O2 also affected the transport of peroxi-

somes visualized by SKL-DsRed (Figure 2F). As for mitochon-

drial motility, SKL-DsRed-transfected H9c2 were Ca2+ prede-

pleted, and the time lapse was recorded in Ca2+-free

extracellular medium. H2O2 (100 mM) addition did not affect

movements of peroxisomes as shown by kymograms at time

point 540 s and by traces of motility decay in Figure 2G. As for

mitochondria, addition of 4 mM CaCl2 caused rapid decrease

of peroxisomal motility. Thus, H2O2 targeted mitochondrial

motility without causing a broad organellar transport change.

H2O2 can cause membrane damage that leads to cell death.

To test whether this happened during the time course of our

measurements, we used propidium iodide (PI) exclusion. In

H9c2 cells (or MEFs used in some experiments later on), addition

of H2O2 (100 mM) failed to allow PI entry (Figures S2E and S2F).

By contrast, digitonin, a detergent added at the end of the run,

caused rapid intracellular accumulation of the dye.

Collectively, these results indicate that H2O2-induced target-

ing of mitochondrial motility is a general cell mechanism and it

specifically impairs mitochondria movements, leaving peroxi-

somal motility or cell membrane integrity unaffected at least for

the H2O2 doses used here. The H2O2-induced motility decay

takes place independently from [Ca2+]c change and shows a

(E) Motility inhibition at 8 min after application of H2O2.

(F) Measurement of peroxisomal movements in H9c2 cells transfected with SKL-DsRed and pretreated as in (A). Kymograms (lower) before (60 s) and 8 min after

(540 s) H2O2 addition to H9c2 cells.

(G) Time courses of peroxisomal motility decay (red) and [Ca2+]c (black) recorded simultaneously in the same cells.

Cell Reports 21, 1667–1680, November 7, 2017 1671



dose-response relationship with the lowest effective concentra-

tion of 25 mM.

Endogenous ROS Induce a Decrease in Mitochondrial
Motility
Next, effects of endogenously produced ROS were studied first

by dampening the antioxidant defense. In hippocampal neurons,

glutathione depletion by ethacrynic acid (Vesce et al., 2005),

CDNB (Figure 1I), or monochlorobimane (MCB; Figure S1F)

reduced mitochondrial motility similarly to oxidants. These find-

ings were recapitulated in mitoYFP-expressing H9c2 cells. MCB

becomes fluorescent when it conjugates with glutathione (GSH)

in the cells (MCB F/F0; 26.0 ± 0.7 versus 1.2 ± 0.0 of control;

p < 0.01; Figure 3A); however, because GSH is major natural

scavenger of H2O2, the formation of intracellular MCB-GSH

rapidly depletes GSH, resulting in an increase in intracellular

ROS (Vesce et al., 2005). Upon MCB-GSH conjugation, a signif-

icant motility inhibition was observed (72.5% ± 0.9% versus

A

B

C D E

Figure 3. Mitochondrial Motility Is Inhibited

by Intracellularly Formed ROS and Is Revers-

ible

(A and B) Simultaneous measurement of GSH

conjugation by MCB (A) and motility (mean traces)

(B). MitoYFP-expressing H9c2 cells were pre-

treated with Tg in a Ca2+-free extra-cellular medium

(ECM); thenMCBwas applied. Summarized data at

the time point of 15min after MCB are shown on the

right. *p < 0.01.

(C) MitoYFP-expressing H9c2 cells were loaded

with MitoTrackerRed-CMTRos (MTR) and then

pretreated as in (A). Confocal images (upper panel)

and respective kymograms (lower) for cells

untreated or treated with mCsA (right) are shown.

Photoillumination was applied to the boxed area to

induce intracellular ROS formation. Time courses of

motility for control (black) and photoilluminated

(red) are shown normalized to the baseline.

(D) Mitochondrial motility shown as change in the

number of recorded events, corresponding to (C).

*p < 0.02 versus control.

(E) Numbers of immobile mitochondria at the pho-

toilluminated, adjacent, and far areas of the cell.

MitoYFP-expressing H9c2 cells were loaded and

preincubated as in (C). Immobile mitochondria

were counted 5 min after photoillumination in the

absence (white bars) and presence of MnTE-2-PyP

(black bars). *p < 0.05 versus 5 min.

15.4% ± 0.9% of control; n = 7; p < 0.01;

Figure 3B). Thus, an intracellular ROS

source could reproduce the inhibitory

effect on motility observed by externally

administering H2O2.

To test whether mitochondrial motility

was affected even when intracellular

ROS were restricted to a small area of

the cell, we loaded mitoYFP-expressing

H9c2 cells withMitoTracker Red-CMXRos

(MTR) and used photoillumination to

generate localized intracellular ROS eleva-

tion (Figure 3C). Kymograms and plots of motility show a rapid

and drastic effect onmotility in the area of photoillumination (Fig-

ure 3D). To test whether photoillumination per se was exerting an

inhibitory effect on motility, we counted the number of immobile

mitochondria also in the adjacent area of the cell (Figure 3E). In

the photoilluminated area, the number of immobile mitochondria

was increased to 86.7%. In the area adjacent to the site of ROS

generation, inhibitory effect was still present, even if with a lesser

extent (34.8%). As a control, immobile mitochondria were

counted in an area far away from the photoilluminated one,

and no inhibition of mitochondrial motility was observed (Fig-

ure 3E). To further validate the role of ROS in photoillumina-

tion-induced motility inhibition, we pre-incubated cells with a

scavenger, Mn(III) tetrakis (N-ethylpyridinium-2-yl) porphyrin

(MnTE-2-PyP) (Figure 3E). Notably, MnTE-2-PyP is a superoxide

dismutasemimetic and thus converts O2,
� to H2O2. H2O2 is then

more efficiently eliminated by the GSH-dependent mechanisms

than O2,
� (Jezek and Hlavatá, 2005). The superoxide dismutase
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Figure 4. Mitochondrial Motility Inhibition by H2O2 Is p38a Mediated (See Also Figure S4)

(A and B) MitoYFP-expressing H9c2 cells were pretreated with Tg in a Ca2+-free ECM; then H2O2 was applied in the presence (A) or absence of CsA (B). Motility is

shown at 5 and 20 min exposure of H2O2 (white bars). H2O2 was eliminated by replacing it for catalase (black bars) at 5 min; then the recovery of motility was

monitored. *p < 0.01 versus 5 min, **p < 0.01 versus catalase (+) 20 min.

(C) Graphic representation of ROS-mediated activation of MEK kinases JNK and p38.

(D) Motility decay (calculated as D between H2O2-treated and untreated cells) at the time point of 3 min after H2O2 addition to H9c2 cells. Where indicated, cells

were pretreated with SP600125 or SB202190 for 20 min. Unexpectedly, these inhibitors alone caused some decrease in motility (46% ± 2% for SP600125 and

29% ± 3% for SB202190 versus 5% ± 1% untreated cells), indicating that the treated cells became frail and sensitive to imaging conditions. Nevertheless, H2O2

(legend continued on next page)
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mimetic resulted in attenuation of the photoillumination-induced

motility inhibition, with a decrease in the number of immobile

mitochondria of almost half of non-treated cells in the photoillu-

minated area and also in the adjacent area (from 34.5% to 5.1%).

Thus, when ROS is produced in a cellular subregion, the motility

inhibition is also spatially confined, suggesting that ROS can

serve as a local factor in the control of motility.

Neither Mitochondrial PTP Opening nor DJm Loss Is
Required for H2O2-Induced Mitochondrial Motility
Inhibition
In mammalian cells, directional mitochondrial movements usu-

ally take place along microtubules. We therefore investigated

whether ROS affected the spatial organization of mitochondria

relative to microtubules. In Figure S3A, the confocal images of

mitoDsRed and tubulin GFP co-transfected cells revealed that

H2O2 did not evoke any change in the spatial relationship

between mitochondria and microtubules (Figure S3A).

A main mitochondrial target of oxidative stress is the PTP, the

opening of which commonly causes mitochondrial dysfunction

(Rasola and Bernardi, 2011). Therefore, next it was investigated

whether PTP is involved in the ROS-induced motility inhibition.

Pre-incubation with the selective PTP inhibitor Me-Val-CSA

(mCsA; 5 mM) did not suppress the ROS-dependent mitochon-

drial motility inhibition (Figures 3C, right panel, and 3D). The

broad PTP/calcineurin inhibitor cyclosporine A (CsA) was also

applied to Ca2+-depleted cells, and the H2O2-induced motility

decay was evaluated (Figures S3B and S3C). CsA did not alter

the H2O2-induced motility inhibition (64.8% ± 1.3% H2O2 alone

versus 60.9% ± 1.3% of H2O2+CsA; n = 37; Figure 3E), confirm-

ing that PTP opening was not involved in the phenomenon.

In hippocampal neurons, H2O2 and menadione inhibited

motility before loss of DJm, and in a greater extent than specific

discharging of DJm did. To further test the relationship between

H2O2-induced motility inhibition and depolarization, we

measured DJm in Ca2+-depleted H9c2 cells. H2O2 did not alter

DJm, at least when the motility inhibition became apparent (Fig-

ure S3D). In FCCP- and oligomycin-treated cells, dissipation of

DJm was gradually followed by the loss of motility, reflecting

the slower kinetic of cytoplasmic ATP depletion (Yi et al., 2004)

(Figure S3E). However, even during the uncoupler-induced

depolarization, H2O2 caused further inhibition in motility (79.4%

± 1.3% versus 62.4% ± 1.2% of control; n = 21; p < 0.01; lower

plot in Figure S3E), supporting that H2O2 suppressed motility

independent of DJm loss.

H2O2-Induced Mitochondrial Motility Inhibition Is a
Reversible Process
Mitigation of endogenous H2O2 was increasing mitochondrial

motility in neurons where N-acetyl-cysteine was applied, result-

ing in increased mitochondrial velocities after 40 min (Figure 1I).

To further assess the effects of antioxidants on H2O2-induced

mitochondrial motility inhibition in H9c2 cells, we incubated the

Ca2+-depleted cells with H2O2, and after the mitochondrial

motility inhibition was documented (5 min), the extracellular

H2O2 was eliminated by catalase (2,500 IU) and motility was

reassessed at 20 min. As shown in Figure 4A, catalase treatment

reversed H2O2-induced motility decrease (96.4% ± 5.5% of

motility in treated versus 78.4% ± 4.4% in untreated). Again,

treatment with CsA has no effect on the motility inhibition and

its reversibility (Figure 4B), arguing against a role of PTP activa-

tion in the process.

p38a Is Required for the H2O2-Induced Mitochondrial
Motility Inhibition
H2O2 was reported to induce many changes in protein phos-

phorylation and activation of signaling factors mediating phos-

phoregulation like protein kinase C (Shibukawa et al., 2003),

protein phosphatase 2A (PP2A) (Rao and Clayton, 2002), and

mitogen-activated protein kinases (MAPKs) superfamily through

activation of ASK1 MAP3 kinase (Figure 4C) (Ichijo et al., 1997;

Saitoh et al., 1998). To evaluate whether any of these pathways

were involved here, we screened kinase and phosphatase in-

hibitors for motility regulation in the presence of H2O2. Neither

okadaic acid (PP1 and PP2A inhibitor) nor staurosporine (PKC

inhibitor) was able to influence on motility inhibition by H2O2.

To selectively inhibit JNK or p38 MAPK kinases, we used

SP600125 or SB202190 in a Ca2+-free condition. H2O2 was

able to decrease motility in both kinase inhibitor untreated

and SP600125-treated cells, but it was ineffective when

SB202190 was used (Figure 4D), suggesting an involvement

of p38.

Four isoforms of p38 exist in mammals (a, b, d, and g). In the

heart, all four isoforms are present (Dingar et al., 2010). However,

in the brain and many other tissues, only p38a and p38b are

expressed (Jiang et al., 1996; Stein et al., 1997). Interestingly,

p38 phosphorylation has recently been implied in the regulation

of ER-mitochondria associations andmotility (Li et al., 2015), and

activation of p38a inhibits anterograde fast axonal transport

upon expression of a pathogenic mutation of superoxide dismut-

ase 1 (SOD1) (Morfini et al., 2013). To test whether isoform a

could play a role in motility regulation, we transfected H9c2

with a dominant-negative mutant of p38a (p38aDN), in which

Thr180 and Tyr182 residues were mutated to prevent phosphor-

ylation and activation of the MAPK. Dominant-negative interfer-

ence with p38a also rendered mitochondrial motility gradually

declining in our recording conditions (21% ± 3% of motility

decay; Figure S2A). H2O2 suppressed the remaining motility to

a smaller extent in p38aDN-expressing cells than in cells trans-

fected with empty vector (EV; Figure 4E).

was able to decrease motility in both kinase inhibitor untreated and SP600125-treated cells, but it was ineffective when SB202190 was used (% of motility decay

of 25 ± 4, 29 ± 4 and 4 ± 3, respectively). *p < 0.002.

(E) Motility decay (calculated as in D) at 8min after H2O2 addition (black bar) to H9c2 cells transfected with empty vector (EV) or dominant-negativemutant of p38a

(p38aDN) as indicated. *p < 0.002.

(F) Measurement of mitochondrial movements in wild-type (WT) and p38a knockout (p38a�/�) MEFs transfected with mitoYFP. Kymograms (lower) before (60 s)

and 8 min after (540 s) H2O2 addition.

(G) Motility decay at 8 min after H2O2 addition (black bar) to mitoYFP-expressing MEFs as in (F). Motility was calculated as in (D). *p < 0.006.
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Mitochondrial motility was then assessed in MEFs lacking

p38a (p38a�/�). MEFs in general showed more resistance to

H2O2-induced motility inhibition than hippocampal neurons or

H9c2 cells: to achieve a motility decay of 52.2% ± 7.3% at

time point of 8 min, we increased the H2O2 concentration from

100 to 200 mM. Addition of the same dose of H2O2 to p38a�/�

MEFs did not cause a decrease of localizedmitochondrial move-

ments (Figure 4F) or general mitochondrial motility inhibition (Fig-

ure 4G), confirming that p38a is required for the H2O2-induced

motility arrest.

The Motor Adaptor Complex Is Essential for Mediating
the H2O2-Induced Mitochondrial Motility Decay
Mitochondrial movements along microtubules and microfila-

ments are achieved through an adaptor complex (containing

Miro1/2 and Trak1/2) and motor proteins (kinesins, dyneins,

and myosins). Because the spatial relationship between mito-

chondria and microtubules is not affected by H2O2 (Figure 2G),

we reasoned that the activity of one of these two components

could be the target of p38 for achieving ROS-induced inhibition

of motility. Kinesin KIF5C has been already described as a target

of p38 (Morfini et al., 2013): phosphorylation of its serine residue

in position 176 regulates cargo transport by promoting disen-

gagement of the motor from microtubule tracks (Padzik et al.,

2016). Kif5B, one of the kinesins responsible for movements of

mitochondria (Tanaka et al., 1998), together with Kif1B and

KLP (Nangaku et al., 1994; Tanaka et al., 2011), belongs to the

same kinesin family as Kif5C (Kanai et al., 2000). Serine 176 is

conserved between KIF5C and KIF5B, and is also found in

KIF1B (Figure S4C). We therefore created a phospho-resistant

mutant of KIF5B by mutagenizing residue 176 to alanine

(KIF5BS176A) and used it to transfect H9c2 cells (Figure S4D).

After exposure to H2O2, H9c2 expressing the phospho-resistant

mutant of KIF5B exhibited approximately the same percentage

of motility decay documented in control cells (55.7% ± 2%

for KIF5BS176A and 60.3% ± 2% for EV-transfected cells;

Figure S4E). Therefore, expression of phospho-resistant

KIF5BS176A was unable to prevent mitochondrial motility inhibi-

tion exerted by H2O2.

This kinesin in combination with the FRB-FKBP drug-induc-

ible heterodimer was then employed to determine the involve-

ment of Miro/Trak protein complex in the effect exerted by

H2O2. HA-KIF5B (1-807)-FRB, the truncated KIF5B lacking its

tail domain, which is known to be constitutively active without

interference of regulatory pathways (Kapitein et al., 2010), was

fused to FRB and was co-expressed with TOM20-mCherry-

FKBP (Chung et al., 2016). Addition of rapalog causes hetero-

dimerization between adjacent FRB and FKBP domains to

directly connect kinesin motor proteins to mitochondria. The

rearrangement of mitochondrial distribution upon rapalog addi-

tion is shown in Figure 5A: mitochondria initially accumulated

around the nucleus (150 s) aligned with the microtubular tracks

(240 s; see also Figure S4F), where Kif5B is probably anchored,

and then move to the peripheral tips of the cell, where they

form aggregates (600 s, arrowheads, lower right panel). Cells

untreated with rapalog did not show any change in the

mitochondrial distribution during the same time (Figure 5A, up-

per panel).

To assess whether the rapalog-induced anchoring to Kif5B

was affecting motility, we quantified the amount of moving

mitochondria (represented as red and green pixels, Figure 5B).

Expression of the anchor components, in the absence of rapa-

log, did not substantially change it (Figure 5B, first row). In the

same condition, H2O2 caused a decrease in mitochondrial

motility (second row). However, whenmitochondria were directly

anchored to KIF5B, H2O2 was unable to induce a decrease in the

motility (Figures 5B, last two rows, 5C, and 5D). Mean traces of

the motility decay for the conditions described above are

shown in Figure 5C. These data suggest that H2O2 targets the

motor adaptor complex via p38a to suppress mitochondrial

movements.

DISCUSSION

This work provides evidence for the control of mitochondrial

motility by ROS, through a p38a-dependent pathway and the

adaptor complex that anchors mitochondria to the microtubular

motor proteins. Both external and internal sources of ROS cause

a decrease in mitochondrial motility in rat hippocampal neurons

and H9c2 cells. This is attained by small amounts of ROS like

25 mM H2O2 and is rapidly reversible. ROS can stop mitochon-

drial movements independent of [Ca2+]c, a well-known

mitochondrial motility regulator, and of Dcm. Furthermore,

ROS-induced mitochondrial dysfunction or PTP opening is not

involved in H2O2-induced motility decay. Based on genetic and

pharmacological evidence, ROS inhibition of mitochondrial

motility requires a p38a pathway and seems to target specifically

the adaptor complex that links mitochondria to the microtubular

motor proteins.

Due to their polarized and complex functional and structural

organization, neurons need to distribute mitochondria in neu-

rites, to reach areas where their metabolic activity is required

(like synapses) and to easily drive their engulfment and elimina-

tion and replacement when they become dysfunctional during

cellular stress. ROS function as intracellular messengers in

long-term potentiation but also represent a source of synaptic

stress, when their elevation is sustained. We here showed that

oxidative stress (H2O2, O2,
�, menadione, and GSH depletion)

rapidly suppresses mitochondrial velocity in rat hippocampal

neurons in a dose-dependent manner. Importantly, inhibition of

motility was distinguished from ROS-induced mitochondrial

elongation and fragmentation, which are evoked by prolonged/

massive ROS exposure. We have studied the mechanism of

the motility inhibition (see below) and speculate that a separate

ROS-activated pathway engages the mitochondrial fusion-

fission proteins likely by posttranslational modification, but

establishing this point requires further studies.

To investigate the mechanisms underlying the ROS-induced

mitochondrial motility inhibition, we switched to H9c2 cells that

we had extensively used in previous works to dissect mitochon-

drial dynamics. ROS likely target functionally relevant SH groups

in proteins, but the number of candidate proteins is high. We

considered three potential mechanisms to decrease mitochon-

dria motility in response to ROS. First, ROS could induce a rise

in [Ca2+]c through sensitization to threshold concentrations of

inositol-1,4,5-trisphosphate (IP3)-linked agonists (Booth et al.,
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Figure 5. The Adaptor Complex Is Essential for Mediating the H2O2-Induced Mitochondrial Motility Decay

(A) Confocal images of H9c2 cells expressing TOM20-mCherry-FKBP andHA-KIF5B (1-807)-FRB show the distribution of mitochondria (at 0, 150, 240, and 600 s)

with (lower) or without (w/o) (upper) rapalog treatment. Note the rapalog-induced marked conglomeration of mitochondria at the distal tips of the cell at 600 s

(arrowheads).

(B) Confocal images showmotility in of H9c2 cells overexpressing mito-kinesin linker at times 0 and 540 s. Where indicated, rapalog and/or H2O2 was applied at

60 s.

(C) Mean traces of motility decay with (solid lines) or w/o (dotted lines) H2O2 addition in the presence (red) or absence (black) of rapalog. Treatments were applied

at 60 s. Schematic representations of adaptor motor complex and the mito-kinesin linker before and after rapalog-induced heterodimerization are shown.

(D) Motility decay 8 min (540 s) after H2O2 (black bar) and rapalog addition. Experiments were as in (C). *p < 0.001.
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2016) and through modulation of ER or plasma membrane Ca2+

transport mechanisms (Bootman et al., 1997; Csordás and Haj-

nóczky, 2009; Prosser et al., 2011). However, we here showed

that Ca2+ pre-depleted cells also underwent motility decay

upon addition of H2O2 without any rise in [Ca2+]c. Thus, in our

case, ROS can inhibit motility independently of [Ca2+]c.

Conversely, Ca2+-induced motility arrest could involve ROS.

Ca2+ can increase ROS generation by enhancing tricarboxylic

acid cycle and making the mitochondrial redox centers more

reduced (Brand, 2016; Hansford and Zorov, 1998; McCormack

and Denton, 1993) and by opening the PTP (Vercesi et al.,

1997). However, we have shown that Ca2+ does not have to enter

mitochondria to control motility (Yi et al., 2004). Ca2+ could also

act on extramitochondrial enzymes like NADPH oxidase, cyto-

chrome P450, xanthine oxidase, cyclooxygenase, and lipoxyge-

nase to enhance ROS (Kevin et al., 2003; Sauer et al., 2001), or

on mitochondria externally, by activating reductive equivalent

shuttles (Orr et al., 2012). However, the mitochondrial motility in-

hibition closely follows the [Ca2+]c rise and is dependent on the

EF-hands of Miro, indicating a fairly direct interaction of Ca2+

with the adaptor/motor complex (MacAskill et al., 2009b; Sao-

tome et al., 2008; Wang and Schwarz, 2009; Yi et al., 2004).

Thus, Ca2+ and ROS seem to have privileged mechanisms to

target mitochondrial motility, but they can also engage each

other to regulate motility.

The next potential candidates to mediate ROS-induced mito-

chondrial motility inhibition were PTP opening and loss of the

mitochondrial membrane potential, because they have been

shown to be outcomes of oxidative stress (De Vos et al., 2007;

Rasola and Bernardi, 2011). But neither PTP inhibition nor pre-

dissipation of the membrane potential prevented the H2O2-

induced motility inhibition.

Lastly, we considered that many effects of ROS are relayed to

changes in protein phosphorylation, and we employed first a

pharmacological approach to test the possible involvement of

protein kinases and phosphatases. From the drugs tested, only

SB202190, an inhibitor of p38, attenuated the motility decay

caused by H2O2. However, SB202190 has been reported to

stimulate ruthenium red-sensitive mitochondrial Ca2+ uptake in

both p38-dependent and -independent manners (Montero

et al., 2002; Szanda et al., 2008). Therefore, we used two inde-

pendent genetic models to verify whether p38a was involved in

the process of H2O2-induced mitochondrial motility inhibition:

(1) H9c2 cells were transfected with p38aDN, and (2) MEFs abla-

ted of p38awere challengedwith H2O2. Both sets of experiments

demonstrated that p38a is required for theH2O2-inducedmotility

decrease. In a previous work, SB202190-induced motility inhibi-

tion was ascribed to an increased mitochondrial Ca2+ uptake

(Chang et al., 2011). However, we documented the H2O2-

induced motility decrease in Tg-pretreated cells incubated in

the absence of extracellular Ca2+, where no mitochondrial Ca2+

uptake could occur. In addition, H2O2 was unable to induce

inhibition when p38 was targeted, suggesting that p38 activation

in response to ROSmight mediate the inhibition of the organellar

movements.

When mitochondria were forced to directly associate to a

motor protein through a drug-induced FRB-FKBP tether, the ef-

fect of H2O2 on motility was prevented, suggesting that ROS

target the adaptor complex. Phosphorylation of mitochondrial

and cytosolic substrates has been recently proposed as the

mechanism that drives redistribution of mitochondria during

mitosis (Chung et al., 2016). In that study, phosphorylation drives

detachment ofmitochondria + adaptor frommotor protein. How-

ever, we did not document a change in the association of mito-

chondria to microtubules upon ROS elevation. This observation

is also an argument against switching of mitochondria to micro-

filaments or intermediate filaments, which also support mito-

chondrial positioning (Kuznetsov et al., 1992; Nekrasova et al.,

2011; Pathak et al., 2010; Schwarz and Leube, 2016). Alternative

explanations are that the adaptor might respond to ROS and

p38a activation by relaying an inhibitory signal to the motor pro-

teins or by binding to less active motor proteins.

Mitochondrial motility inhibition is induced by physiologically

relevant doses of H2O2 and is rapidly reversed by removal of

H2O2. This supports the idea that ROS might work as a physio-

logical regulator of mitochondrial distribution, temporally

decelerating the organelles when and where it is required. This

process may enable to recruit additional mitochondria at the

site of ROS elevation, and serve both ROS scavenging and prop-

agation of ROS production, which may have relevance in patho-

physiological conditions. Finally, in line with recent findings on

ROS/Ca2+ communication at mitochondria-ER contact sites

(Booth et al., 2016) and on the involvement of mitochondrial res-

piratory complex I- and III-originated ROS in ER-stress-induced

caspase activation (Brand et al., 2016), a Ca2+-induced rise in

mitochondrial ROS could serve as a signal to stop mitochondria

in proximity to ER to establish new contact sites to serve as

signaling modulators. Thus, our findings offer some clues rele-

vant for mitochondrial quality control and for both cell survival

and death signaling.

In the final phase of the writing of this manuscript, a paper

came out on oxidative stress (paraquat and H2O2)-induced

motility inhibition in fly neurons (Liao et al., 2017). Thus, ROS

control motility both in fly and in mammalian cells, although in

fly, the ROS effect seems to be mediated via [Ca2+]c elevation,

whereas in mammalian cells, ROS can engage robust motility in-

hibition even independent of Ca2+. Liao et al. (2017) speculated

that elevated [Ca2+]c acts through Miro1, a mitochondrial anchor

for motors, and we provided experimental evidence that the

motor adaptor complex is needed for the inhibitory effect of

ROS. Interestingly, in fly, JNK was also implicated in the motility

inhibition, whereas inmammalian cells, p38a is required and JNK

is dispensable. p38a is present in fly but was not investigated by

Liao et al. (2017). From the two studies, an evolutionarily

conserved ROS phenotype emerges in motility that uses spe-

cies-specific underlying mechanisms to target the mitochondrial

motor adaptor complex.

EXPERIMENTAL PROCEDURES

Detailed protocols are available in the Supplemental Experimental

Procedures.

Cell Culture, Loading, and Transfection

Primary hippocampal neurons, H9c2 myoblast cells, and MEF cells were pre-

pared, transfected, and treated as in Gerencser and Nicholls (2008), Nguyen

et al. (2014), and Yi et al., (2004). All procedures involving rats were carried
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out according to the local animal care and use committee (Egyetemi Allatkiser-

leti Bizottsag) guidelines.

Fluorescence and Confocal Imaging

Time-lapse fluorescence microscopy of hippocampal neurons was performed

on an Olympus IX81, while measurements [Ca2+]c and/or mitochondrial

motility in H9c2 and MEFs were carried out on an Olympus IX70 with UAPO

403 oil 1.3 NA lens. Confocal imaging was performed using a Radiance

2100 (Bio-Rad).

Evaluation of Mitochondrial Motility

Mitochondrial velocities were measured as optical flow (Gerencser and Nich-

olls, 2008), whereas motility in H9c2 cells and MEFs was evaluated as

described previously (Saotome et al., 2008; Yi et al., 2004).

Statistical Analysis

All experiments were performed with at least three different preparations. Data

are presented mean ± SEM, and significance of difference was calculated by

t test unless otherwise indicated. Formeasurements of mitochondrial velocities

in neurons, nine cells were pooled from each preparation, and the results were

tested using ANOVA (Dunnett’s post hoc test, treatment versus control, inde-

pendently for the two time points). For measurements of DJp in neurons,

data are % of baseline fluorescence (n = 81, 107, and 70 cells for control,

H2O2, and menadione, respectively). For measurements of mitochondrial

motility in H9c2 cells and MEFs for each condition, 7–10 cells/preparation

were evaluated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at https://doi.org/

10.1016/j.celrep.2017.10.060.
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Eisner, V., Lenaers, G., and Hajnóczky, G. (2014). Mitochondrial fusion is

frequent in skeletal muscle and supports excitation-contraction coupling.

J. Cell Biol. 205, 179–195.
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