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Purpose: This study aims to investigate the prevalence of artifacts in optical coher-
ence tomography (OCT) images with acceptable signal strength and evaluate the
performance of supervised deep learning models in improving OCT image quality
assessment.

Methods: We conducted a retrospective study on 4555 OCT images from 546
patients, with each image having an acceptable signal strength (≥6). A comprehensive
analysis of prevalent OCT artifacts was performed, and five pretrained convolutional
neural network models were trained and tested to infer images based on quality.

Results: Our results showed a high prevalence of artifacts in OCT images with
acceptable signal strength. Approximately 21% of images were labeled as nonac-
ceptable quality. The EfficientNetV2 model demonstrated superior performance
in classifying OCT image quality, achieving an area under the receiver operating charac-
teristic curve of 0.950 ± 0.007 and an area under the precision recall curve of 0.985 ±
0.002.

Conclusions: The findings highlight the limitations of relying solely on signal strength
for OCT image quality assessment and the potential of deep learning models in
accurately classifying image quality.

Translational Relevance: Application of the deep learning-based OCT image quality
assessment models may improve the OCT image data quality for both clinical
applications and research.

Introduction

Optical coherence tomography (OCT) has been
pivotal for noninvasive ophthalmic imaging over the
past decades. By leveraging the principle of optical
interferometry, OCT offers microscopic resolution,
which has played a vital role in the diagnosis and
management of various eye diseases.1 Specifically,
OCT provides high-resolution cross-sectional views of

the retina that provide critical insights into structural
changes. However, the efficacy of OCT as a diagnostic
tool is significantly influenced by image quality.2 Thus,
to ensure accurate clinical interpretation and subse-
quent therapeutic decisions, acquisition of high-quality
OCT images is vital.3

Image artifacts in OCT are common problems
that compromise the quality and interpretability of
the images. These artifacts can arise from various
sources including patient movement, optical limita-
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tions of the device and the severity of complex
ocular pathologies.4 Previous studies have shown that
19.9% to 46.3% of retinal nerve fiber layer scans
can contain artifacts.3,5–8 In particular, artifact preva-
lence rates are reported as high as 44% in Cirrus,
38% in RTVue, and 53% in Topcon 3D for eyes with
no overt retinal pathologies.6,9,10 Furthermore, signif-
icantly higher artifact rates were observed in retinal
diseases, such as uveitis, epiretinal membranes, diabetic
retinopathy, and macular degeneration.9,11 For these
retinas, artifact rates are reported as high as 72% in
Cirrus, 61% in Spectralis, 89% in RTVue, and 90%
in Topcon.6,9,10 These deviations can affect clinicians’
ability to make correct diagnoses.12 Prior research
has elaborated on various artifacts in OCT imaging,
ranging from motion artifacts to retinal layer segmen-
tation issues.3,6 These findings emphasize the need for
quality assessment of OCT images.

Many commercially available OCT manufactur-
ers provide a proprietary metric for assessing image
quality, such as signal strength or an image quality
index.13–15 However, a prevailing misconception is that
an acceptable signal strength or image quality index
equates to the absence of artifacts in image. Subse-
quently, this could result in clinical errors, because
acceptable imagesmay still contain artifacts that hinder
diagnosis. Previous research has provided different
cutoff values for signal strength, but has not examined
its impact on quantitative assessments extensively.3,16
Moreover, the frequency of artifacts in OCT images
with acceptable signal strength remains inadequately
researched and discussed.

In recent years, convolutional neural networks
(CNNs), a subset of deep learning techniques, have
emerged as a promising tool in the field of ophthalmic
imaging, because they can model complex nonlin-
ear relationships and learn task-specific features from
high-dimensional image data.17,18 Traditional methods
for evaluating image quality often rely on manual
inspection, which can be both subjective and time-
consuming. In contrast, CNNs could be trained to
identify subtle artifacts objectively and assess the
overall quality of images.19 Thus, we hypothesize
that, by processing images through multiple layers of
convolutional filters, a CNN can detect and quantify
subtle anomalies and artifacts that could compro-
mise diagnostic accuracy.19,20 To do so, we explore
the artifacts present in OCT images with accept-
able signal strength in a representative sample of
more than 4000 OCT images from healthy patients
and patients with glaucoma and train and test
CNN models to categorize images as either accept-
able or nonacceptable quality based on the artifacts
observed.

Methods

This retrospective study abided by the principles of
the Declaration of Helsinki and the Health Insurance
Portability and Accountability Act and was approved
by the Institutional Review Board of New York
University. All participants provided written consent
and were not compensated monetarily.

Dataset

In this study, we collected optic nerve head (ONH)
scans (Cirrus HD-OCT, 200 × 200 ONH Scan, Zeiss,
Dublin, CA) from a cohort of 546 subjects (4555
scans), both with and without glaucoma. This cohort is
a subset of the clinical longitudinal glaucoma database
collected at New York University, where each scan had
an acceptable signal strength (≥6). For Zeiss images,
image quality was reported using signal strength (1 to
10). We did not use OCT images from other devices in
this study. The definition of acceptable signal strength
(≥6) applies specifically to the Zeiss Cirrus HD-OCT
images used in our analysis.

We conducted an in-depth analysis of prevalent
OCT artifacts based on en face images (each having
200 × 200 pixels). The artifacts examined included eye
movement, defocus, shadow, vignetting, and banding
owing to blinking. Becausewe only used en face images,
the most common type of eye movement, horizon-
tal saccadic movement, was captured, whereas other
types of movements along the y- and z-axes were not.
The severity of all artifact types was rated on a scale
from 1 (poor) to 5 (excellent), subjectively, without
considering any specific application. The images were
analyzed independently for the presence and severity of
artifacts by one trained grader (W.C.L.). The extent to
which artifacts affected the area of the en face images
was also factored into the assessment. A comprehen-
sive representation of these artifacts, including eye
movement, vignetting, defocus, shadow, and banding
owing to blinking, is illustrated in Figure 1. Addition-
ally, the definitions of each artifact type are presented
in Table 1.

Deep Learning

To explore the appropriate CNN architecture
for OCT image quality assessment, we compared
five types of popular pretrained CNNs, including
EfficientNetV2,21 EfficientNet-B7,22 DenseNet161,23
ResNet152,24 and AlexNet.25 Previous studies demon-
strated that ResNet152 models perform adequately for
quality assessment of OCTA images.20 We fine tuned
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Figure 1. Examples of OCT artifacts. (a) Movement involving optic disc (center movement). (b) Movement not affecting center.
(c) Vignetting together with eyemovement in the superior section. (d) Defocus. (e) No artifact. (f) Other artifact. (g) Shadows cast by vitreous
floaters not obscuring center. (h) Shadow obscuring center. (i) Banding owing to blinking.

these CNN models using en face images as input for
predicting image quality based on manual grading. En
face images were resized to three different sizes: 224
× 224, 480 × 480 (specifically for EfficientNetV2) and
600 × 600 (for EfficientNetB7), in accordance with
the requirements of the respective pretrained CNN
models. The image dataset was randomly split into
two subsets: 80% for training and 20% for testing.
To enhance the reliability of the model’s performance
assessment, we conducted five-fold cross-validation
within the training set. In this process, each fold was
sequentially used as a validation set and the remain-
ing data served as training data. The fine-tuned models
were then evaluated on the test dataset. This approach
ensures a more robust evaluation of model perfor-
mance, decreasing the likelihood of models exhibiting
inflated performance metrics specific to a particular
subset of data. To maintain data integrity, all scans

from a single patient were grouped within the same
subset.

The primary evaluation metrics were area under
the receiver operating characteristic curve (AUROC),
area under the precision recall curve (AUPRC), preci-
sion, recall, F1 score, and accuracy. The model was
implemented using PyTorch and Python, and train-
ing was conducted on a GeForce RTX 3090 GPU,
using the Adam optimizer with an initial learning rate
of 1e−4 (0.0001). To address the issue of overfitting,
we used a combination of techniques including weight
decay for regularization, dropout, data augmentation
methods (such as horizontal and vertical flips), and
early stopping.26,27 The training of CNN models was
halted once the validation loss failed to decrease over
10 epochs. We also used a weighted random sampler
during training to address class imbalance. The models
with the lowest validation losses were saved, and their
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Table 1. Definition of Artifacts

Artifact Definition

Eye movement These artifacts occur when the patient’s eye moves during the scanning process.
Thin horizontal lines lead to discontinuities or stripes on the OCT en face images in
conjunction with interruption, displacement, or doubling. They can most easily be
detected as the discontinuities at the retinal blood vessels and optic disc margin

Vignette Decrease an image’s brightness or saturation at the periphery compared with the
image center. Vignette artifacts can be due to misalignment of the scanning
beams or limitations in the scanning optics, especially for subjects with small
pupil. Vignetting may lead to a gradual decrease in signal strength towards the
edges of the image, potentially causing a drop-off in data quality

Defocus Defocus artifacts arise when the OCT system is not properly focused on the retina. A
defocused image will appear blurred and the retinal layers might not be clear

Shadow Dense or highly reflective structures within the eye block the OCT light from
reaching deeper space. These structures could include vitreous floaters and
fibrous tissues. As a result, the areas behind these structures appear darker than
the surrounding tissue

Banding owing to blinking Black bands representing missing data, often spanning the entire image, are
indicative of blink artifacts in OCT, caused by patient blinking during acquisition.
These artifacts can impede the delineation of the optic disc and cup

Other Additional artifacts not covered by the specific categories above, encompassing
various anomalies and irregularities in the en face image

performance on the independent test dataset was evalu-
ated.

Statistical Analysis

We conducted various statistical analyses to evalu-
ate the differences between groups and assess the
performance of our models. To compare the mean
ages between patients with acceptable and nonaccept-
able quality images, Welch’s t-test was used. This test
was selected for its robustness in handling unequal
variances and sample sizes. For assessing the distribu-
tion of nonacceptable quality images between patients
diagnosed with glaucoma and those without, the χ2

test was used. Additionally, the Wilcoxon signed-rank
test, a nonparametric method, was used to compare
the performance metrics (AUROC) of different CNN
models to identify statistically significant differences.

Results

Participants of Cohort and Differences
Between Acceptable and Nonacceptable
Quality Images

The dataset used in this study comprised 4555 OCT
scans from 546 patients. Of these patients, 80.9% were
identified as healthy and 19.1% were associated with

Table 2. Demographics and Ocular Characteristics of
the Dataset

Mean ± Standard
Deviation

No. of subjects 546
No. of images 4,555
Age at the time of
baseline visit (years)

68.54 ± 14.44

No. of OCT visits
per subject

3.28 ± 2.73

Peripapillary retinal
nerve fiber layer
thickness (μm)

73.43 ± 17.11

Visual field mean
deviation (dB)

-5.45 ± 7.44

glaucoma diagnoses. Also, the mean age at the time
of examination was 68.5 ± 14.4 years, with 39.8%
representing males (Table 2). A significant variation
was observed in the distribution of patient ages in
relation to the OCT image quality (P < 0.001, Welch’s
t-test). Specifically, the mean ± standard deviation age
for patients with acceptable quality images was 67.3
± 15.1 years, in contrast with 72.5 ± 11.9 years for
those with nonacceptable quality images. Addition-
ally, a higher percentage of nonacceptable quality
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Table 3. Prevalence of Artifacts andGrade ScoreDistri-
bution in OCT Scans

Frequency Percentage

Artifact
Shadow 3,678 80.8
Shadow obscuring center

image
1059 23.3

Eye movement 1873 41.1
Eye movement obscuring

center image
556 12.2

Defocus 288 5
Vignette 343 7.5
Banding owing to blinking 137 3

Grade score distribution
Poor quality (1) 323 7.1
Relatively poor quality (2) 618 13.6
Marginal quality (3) 1653 36.3
Relatively good quality (4) 1165 25.6
Good quality (5) 796 17.5

images (21.5%) was observed in patients diagnosed
with glaucoma comparedwith those without glaucoma
(18.7%), although this difference was not statistically
significant (P = 0.168, χ2 test).

Image Overview and Artifact Prevalence

Of the 4555 OCT images collected, 9.4% (n = 428)
were artifact free. The prevalence of individual artifacts
was as follows: shadow occurred in 80.8% (n = 3678),
with 23.3% (1,059) obscured the center of the image;
eye movement occurred in 41.1% (n = 1873), with
12.2% (556) obscuring the center; defocus was observed
in 5% (n = 228); vignette in 7.5% (n = 343); banding
owing to blinking in 3% (n = 137); and other artifacts
in 1.3% (n = 60) of the images. Note that multiple
artifacts are often observed on the same OCT scans.
Specifically, 42.6% (n = 1942) of the images had more
than one type of artifact. This result highlights the
complexity and prevalence of artifacts in OCT images.

Table 3 presents the distribution of all artifacts
across all images. The most common label for images

was marginal quality (grade score = 3), which was
applied 1653 times (36.2%). A total of 21% (n = 941)
were labeled as either poor or relatively poor quality.
In the following analysis, images categorized as poor or
relatively poor quality were grouped together as nonac-
ceptable images quality (21%), and the rest were consid-
ered acceptable quality images (79%).

Performance of Classification Models

Table 4 presents all evaluation metrics, includ-
ing precision, recall, accuracy, F1 score, AUPRC,
and AUROC, for each model. Given the imbalanced
dataset, we present both AUPRC and AUROC to
reflect model performance. The results demonstrated
that the EfficientNetV2 model (AUPRC = 0.985 ±
0.002; AUROC = 0.950 ± 0.007) outperformed the
other models, followed by EfficientNetB7 (AUPRC =
0.983 ± 0.002; AUROC = 0.942 ± 0.008), DenseNet
(AUPRC = 0.977 ± 0.004; AUROC = 0.926 ±
0.010), ResNet (AUPRC = 0.973 ± 0.004; AUROC
= 0.915 ± 0.008), and AlexNet (AUPRC = 0.915 ±
0.008; AUROC = 0.772 ± 0.009). The best-performing
model achieved an AUROC value of 0.962 and an
AUPRC of 0.990. The optimal predicted accuracy
for the EfficientNetV2 model was 0.91, attained by
adjusting the threshold for image acceptance or rejec-
tion. Notably, the performance of EfficientNetB7
was close to that of the EfficientNetV2 with no
statistically significant difference (AUROC; P = 0.2;
Wilcoxon signed-rank test). In contrast, other models
(ResNet, DenseNet, and AlexNet) showed statistically
significant differences with the Wilcoxon signed-rank
test. Figure 2 displays the Receiver Operating Charac-
teristic (ROC) curves and the precision recall curves
for the EfficientNetV2 model, trained using five-fold
cross-validation.

Discussion

In this study, we explored the prevalence of artifacts
in OCT images with acceptable signal strength and
developed supervised deep learning models to enhance
image quality assessment. We found similar patterns

Table 4. Model Performance on Test Dataset

Precision Recall Accuracy F1 Score AUPRC AUROC

EfficientNetV2 0.956 ± 0.012 0.898 ± 0.025 0.897 ± 0.012 0.926 ± 0.009 0.985 ± 0.002 0.950 ± 0.007
EfficientNetB7 0.952 ± 0.008 0.891 ± 0.012 0.887 ± 0.008 0.920 ± 0.005 0.983 ± 0.002 0.942 ± 0.008
DenseNet161 0.804 ± 0.013 0.999 ± 0.001 0.807 ± 0.016 0.891 ± 0.008 0.977 ± 0.004 0.926 ± 0.010
ResNet152 0.940 ± 0.004 0.879 ± 0.025 0.861 ± 0.017 0.908 ± 0.013 0.973 ± 0.004 0.915 ± 0.010
AlexNet 0.873 ± 0.010 0.814 ± 0.056 0.760 ± 0.030 0.841 ± 0.027 0.915 ± 0.008 0.772 ± 0.009
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Figure 2. Receiver operating characteristic (ROC) and precision recall curve (PRC) for the EfficientNetV2 model based on five-fold cross-
validation. The model demonstrates high performance with an AUROC of 0.985 ± 0.002 and an AUPRC of 0.950 ± 0.007. These results
highlight the model’s robustness and accuracy in assessing image quality.

to previous studies: a significant correlation between
aging and the severity of glaucoma and poorer image
quality.28–30 The two key findings of our study were
(1) a high prevalence of artifacts was observed in OCT
images with acceptable signal strength and (2) super-
vised deep learning models can infer the quality of
OCT images accurately, with the fine-tuned Efficient-
NetV2 demonstrating the highest performance among
the five CNN models tested. These findings under-
score a critical challenge in the utilization of OCT
for diagnosing ocular diseases: the high prevalence
of artifacts in images, which are difficult to detect
by conventional signal strength metrics. By demon-
strating the efficacy of CNN models in identifying
subtle anomalies and artifacts, our research not only
highlights the limitations of traditional quality metrics
but also showcases the potential of deep learning
technologies to address this issue. The optimized CNN
models demonstrated an accurate ability to classify the
en face OCT images into acceptable quality and nonac-
ceptable quality categories.

Previous studies have established the significant
impact of image quality on data interpretation,
accurate clinical judgement and providing optimized
patient care.2,16,31 Moreover, the incidence of image
artifacts is known to increase in the presence of ocular
diseases such as glaucoma and age-related macular
degeneration.6,11 Owing to the importance of OCT
image quality, each manufacturer provides its propri-
etary image quality index; however, this does not
exclude the presence of various image artifacts. We
have demonstrated that high signal strength alone
is not sufficient to eliminate images with artifacts.
This finding is potentially attributable to the fact that

signal strength is calculated based on global signal
characteristics, such as the signal-to-noise ratio and
contrast-to-noise ratio and does not examine images
locally.

In this study, we found a high prevalence of
artifacts among OCT images with acceptable signal
strength (≥6)—only 9.4% of images were artifact free.
Shadowing artifacts were the most common, many of
which obscured the optic disk, which could affect the
diagnosis potentially. Obscured center portions of the
images are critical in many other diseases, including
diabetic retinopathy and age-related macular degener-
ation, because the region of interest is scanned usually
as the center location. Additionally, eye movement
artifacts occurred in nearly one-half of images, which
is especially detrimental for quantitative analysis of
thickness measurements, such as retinal nerve fiber
layer and ganglion cell layer thickness. These artifacts
can lead to both false positives and false negatives
in disease assessment. Therefore, the prevalence of
artifacts emphasizes the need for clinicians to be aware
of these potential pitfalls and to corroborate OCT
findings with other clinical assessments.

The findings from this study underscore the impor-
tance of selecting an appropriate neural network
architecture tailored to the specific characteristics of
the dataset. For retinal OCT images, rich in fine-
grained and clinically significant features, an archi-
tecture like EfficientNetV2 and EfficientNetB7, adept
at efficiently extracting and processing these features,
significantly enhances image quality assessment. With
the compound scaling method, the EfficientNet model
achieved greater accuracy with fewer parameters
compared with models like ResNet or DenseNet.32
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The EfficientNet models inherently include advanced
techniques such as squeeze-and-excitation blocks and
swish activation, which were implemented as part of
the pretrained models used in our study. These compo-
nents allow the EfficientNet model to learn to focus
on important details in the OCT images to allow
for better representation of the complex and highly
nuanced details, ultimately providing better features for
the final classification.22 In contrast, architectures like
ResNet and DenseNet, although powerful, may not
provide the same level of feature discrimination, poten-
tially leading to lower performance on highly special-
ized tasks. In our study, EfficientNetV2 and Efficient-
NetB7 demonstrated the highest performance, with
AUROC values of 0.950 and 0.942, respectively, and
AUPRC values of 0.985 and 0.983, respectively. The
superior performance of thesemodels can be attributed
to their advanced architectural features that enhance
their ability to focus on important image details and
improve feature representation. Overall, the Efficient-
Net models demonstrated remarkable accuracy in
classifying OCT image quality, which can improve
the OCT image data quality for both clinical applica-
tions and research. This advancement aligns with the
growing trend of incorporating artificial intelligence
(AI) in medical imaging, which promises to improve
diagnostic accuracy, decrease human burnout, and
potentially streamline clinical workflows.

The primary objective of our study was to
detect artifacts on en face images, which were not
always apparent in cross-sectional B-scans and
can affect quantitative measurements significantly.
These artifacts, such as motion artifacts, can lead
to inaccurate assessments and potentially impact
clinical decisions. The detection of these artifacts is
crucial for ensuring the reliability of quantitative OCT
measurements. In contrast, if there are any artifacts on
cross-sectional images, they are obvious to clinicians
in most cases. That was the motivation for us to focus
on en face images.

Furthermore, several limitations need to be noted.
First, images were taken on only one OCT machine,
and only en face images were included, which may
limit the generalizability of our findings to other
OCT devices with different imaging characteristics
and artifact profiles. Also, with en face images, eye
movement occurring along y- and z-axes cannot be
caught. Second, the dataset was collected from a single
institution, which might limit the model’s applicabil-
ity and generalizability across different populations.
Future studies will ideally include data from multi-
ple institutions. Third, grading is based on subjective
assessment and was tailored to the general use of OCT
images rather than any specific application. Conse-

quently, the criteria for determining image quality may
need to be adjusted to suit diverse operational needs.
Last, our study focused primarily on OCT images from
healthy subjects and patients with glaucoma. There-
fore, the prevalence and impact of artifacts in condi-
tions other than glaucoma remain unexplored. Other
retinal diseases may alter the appearance of en face
images significantly, which may lead to false positives
in detecting artifacts. Future studies should aim to
develop methods to mitigate the impacts of artifacts.
This work might include strategies for reconstruct-
ing areas obscured by shadowing or correcting images
affected by motion artifacts.

In conclusion, our study found a high prevalence of
artifacts in OCT images. In fact, a significant percent-
age of those deemed to have acceptable signal strength
contained artifacts that could impact clinical interpre-
tation. These finding underscore the importance for
clinicians to be aware of these potential risks and the
need for more advanced methods in image quality
assessment. We have demonstrated that deep learning
models may be a viable option for evaluating OCT
image quality, which could automate a portion of clini-
cal workflows and subsequently improve diagnostic
accuracy.
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