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Abstract (132 words; 200 max) 

The most severe clinical and pathologic manifestations of systemic sclerosis (SSc) are the 

result of a fibrotic process characterized by the excessive and often progressive deposition of 

collagen and other connective tissue macromolecules in skin and numerous internal organs.  The 

mechanisms involved in the initiation and progression of the remarkable fibrotic process in SSc 

remain largely unknown.  Extensive recent studies have indicated that a variety of polypeptide 

growth factors play a crucial role in this process.  The most commonly implicated growth factors 

include transforming growth factor beta (TGF-β), connective tissue growth factor (CTGF), 

platelet derived growth factor (PDGF), and vascular endothelial growth factor (VEGF).  Here, 

the experimental evidence supporting the participation of various growth factors in the 

pathogenesis of the fibrotic process in SSc and the molecular mechanisms involved will be 

reviewed. 
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(6,661 words) 

The pathogenesis of Systemic Sclerosis (SSc) is complex and despite numerous studies 

that have examined several aspects of its intricate picture, the exact mechanisms involved are not 

well understood [1-4]. However, it is apparent that the most severe clinical and pathologic 

manifestations of the disease are the result of a fibrotic process characterized by the excessive 

and often progressive deposition of collagen and other connective tissue macromolecules in skin 

and numerous internal organs.  Tissue fibrosis in SSc is the result of an upregulated expression 

of genes encoding collagen and other extracellular matrix proteins in affected organs.  This is the 

most important difference that distinguishes normal fibroblasts that promote normal wound 

healing from SSc fibroblasts which display exaggerated and uncontrolled collagen and 

extracellular matrix (ECM) production resulting in pathologic organ fibrosis [5-8].   

The excessive collagen deposition in SSc is due to overproduction of this protein by an 

expanded population of activated fibroblasts.  Fibroblasts cultured in vitro from affected SSc 

skin show characteristic features distinct from those of normal fibroblasts.  SSc fibroblasts 

appear to be very active in protein synthesis as demonstrated by the presence of distended and 

enlarged rough endoplasmic reticulum, abundant cytoplasm, and numerous membrane-bound 

vesicles containing proteinaceous amorphous material that most likely represent the exportation 

of newly synthesized collagen and other  ECM macromolecules into the extracellular space.  The 

exaggerated production of collagen and ECM proteins by SSc fibroblasts is maintained for serial 

passages in vitro, suggesting that fundamental alterations in the regulation of collagen gene 

expression have occurred in these cells [9,10].   

A hallmark of the activation of fibroblasts is their conversion into myofibroblasts, a 

process in which cells acquire the expression of smooth muscle actin and develop contractile and 
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migratory properties [11].  In addition to their motile and contractile phenotype, myofibroblasts 

display highly increased biosynthetic activity for collagen and other ECM proteins. The 

transition into myofibroblasts involves a unique process of phenotypic transdifferentiation by 

which quiescent fibroblasts, epithelial cells or endothelial cells/pericytes acquire myofibroblast 

characteristics [12-14].  

The origin of the overproducer fibroblasts in SSc has not been completely elucidated and 

it is likely that several different pathways lead to the tissue expansion and accumulation of these 

cells [15]. At least three distinct mechanisms of fibroblast expansion occurring in fibrotic 

diseases have been identified. These include: (1) the activation of resident fibroblasts and the 

selection of matrix overproducer and apoptosis resistant cells [16,17] through the effects of 

cytokines and growth factors released from inflammatory cells infiltrating the affected tissue, (2) 

the recruitment of circulating fibrocytes, a unique population of bone marrow derived 

mesenchymal cell precursors characterized by the presence of both mesenchymal cell and bone 

marrow origin markers [18-20] and (3) the  transdifferentiation into myofibroblasts of either 

epithelial cells or vascular cells such as pericytes or endothelial cells, in epithelial to 

mesenchymal (EMT) or endothelial to mesenchymal transitions (EndoMT), respectively [12-14, 

21-24].   

 

Growth Factors 

The mechanisms involved in the initiation and progression of the remarkable fibrotic 

process in SSc remain largely unknown [1-4].  However, extensive recent studies have indicated 

that a variety of polypeptide growth factors play a crucial role in this process.  In the following 

sections the experimental evidence supporting the participation of various growth factors in the 



convertdoc.input.557475.l9K2M 
9:32:05 PM 

 5 

pathogenesis of the fibrotic process in SSc and the molecular mechanisms involved will be 

reviewed. 

Transforming growth factor beta (TGF-β).  TGF-β is a pleotropic growth factor that 

plays crucial roles during embryogenesis, development of the immune system, malignant cell 

transformation, vascular morphogenesis, inflammatory response, and wound healing, among 

many others [25-27]. There are three isoforms of TGF-β which in addition to their primary 

structure differ in their cellular origin, the kinetics of their expression, and their overall effects, 

which are often organ specific and context-dependent.  TGF-β1 is the most abundant isoform and 

is most frequently implicated in the pathogenesis of various fibrotic processes including those 

associated with SSc.  TGF-β1 is produced by a large variety of cells, including fibroblasts and 

macrophages, and most cells in the body have receptors for this isoform.  TGF-β is initially 

produced in a latent form in which the polypeptide is bound to a latency-associated peptide 

(LAP) and is carried to the extracellular compartment as a large complex with a carrier protein, 

latent TGF-β binding protein (LTBP). LTBP shuttles latent TGF-β to a storage compartment 

comprised of ECM proteins such as elastin fibrils and fibronectin-rich pericellular matrices [28-

29].  Release of active TGF-β from the ECM storage sites requires either proteolytic cleavage, 

which can be accomplished by numerous proteases including plasmin and certain matrix 

metalloproteinases, or by conformational changes induced by interactions with thrombospondin 

or certain integrins such as αvβ6 [30,31].   

Canonical pathway of TGF-β signaling. Once activated, bioactive TGF-β in a dimeric 

form binds to one of several transmembrane kinase receptors (TβR) and initiates a complex 

series of intracellular reactions that transduce the signal from the cell surface to the nucleus and 

eventually to the transcriptional regulatory elements of numerous TGF-β-responsive genes. The 
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signaling events involve numerous intracellular molecules and pathways as illustrated in Fig. (1).  

The classic pathway of TGF-β signal transduction involves the Smad family of intracellular 

proteins [32-36] and is initiated by binding of dimeric TGF-β to the constitutively active 

serine/threonine TβRII which recruits TβRI and then transphosphorylates it on three to five 

serine and threonine residues in a short (30 amino acid) regulatory sequence known as the GS 

region.  TβRI is a member of a family of at least seven proteins known as activin receptor like 

kinases (ALK).  In fibroblastic cells the TβRI is ALK-5 whereas in endothelial cells it is ALK-1 

although signaling through ALK-1 has also been observed in fibroblasts (see Fig (1)). The 

phosphorylated TβRI receptor transduces the signal to the nucleus through the Smad family of 

proteins.  Smad2 or Smad3, two of the five receptor activated Smads (RSmads) then associate 

with another protein, SARA, and become phosphorylated by the activated TβRI.  

Phosphorylation allows these proteins to form a complex with the co-Smad, Smad4, which is a 

cytoplasmic shuttle protein involved in the translocation of the Smad complex across the nuclear 

membrane into the nucleus.  Once in the nucleus, Smad3/Smad4 complexes act as transcription 

factors by binding to specific DNA binding sites in the promoter regions of target genes and 

thereby activating their expression [37].  In contrast, Smad2/Smad4 complexes do not appear to 

directly bind to DNA promoter sites but instead exert their effect through their interactions with 

other transcription factors or co-activator proteins.  In addition to the ALK-5 initiated signaling, 

it has been shown that in dermal fibroblasts important fibrogenic gene programs can also be 

induced by ALK-1-mediated activation of Smad1 [38]. 

Fine tuning of TGF-β activity is achieved through a balance of positive and negative 

effector molecules [39].  Of critical importance is the inhibitory Smad, Smad7, which inhibits  

TGF-β signaling by binding to the type I receptor and thereby preventing recruitment and 
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phosphorylation of RSmads [40,41]. Smad7 also facilitates TβRI ubiquitination by the Smurf 

proteins by targeting the receptor for degradation, which leads to inhibition of RSmad activation 

[42].  Other mechanisms of fine regulation include dephosphorylation of Smads through specific 

phosphatases as well as regulation of Smad nucleocytoplasmic shuttling and nuclear trapping. 

 Non-canonical pathways of TGF-β signaling. Numerous studies have shown that 

important TGF-β functions are mediated by protein cascades that are independent of 

Smad2/Smad3 signaling and that these pathways may become activated in a cell-specific and 

context-dependent manner [43-45]. These non-Smad pathways involve a variety of other proteins 

such as, for example, the non-receptor tyrosine kinase cytoplasmic Abelson kinase (c-Abl), 

protein kinase C-δ (PKC-δ), phosphoinositol 3 kinase (PI3K), and Akt/PKB as shown in Fig. (1).  

Numerous recent studies have demonstrated the involvement of non-Smad pathways in the 

development of tissue fibrosis in SSc and have suggested that pharmacologic interventions 

directed at the blockade of one or more components of these pathways may prove to be effective 

therapeutic approaches for the disease. 

Cytoplasmic Abelson kinase (c-Abl). c-Abl is a non-receptor tyrosine kinase implicated 

in numerous intracellular transduction pathways including cell differentiation, cell division, cell 

adhesion, and stress responses.  Translocation of the genomic region containing the gene 

encoding c-Abl from chromosome 9 to chromosome 22 is responsible for the development of 

chronic myelogenous leukemia [46,47]. A recent review discussed numerous recent studies 

showing that activation of c-Abl induced by TGF-β is likely to contribute to the fibrosis and 

vasculopathy of the skin and internal organs in SSc [48].  One additional mechanism involving 

the c-Abl kinase has been implicated in the development of fibrosis in SSc. This study focused 

on the activation of Smad1 in SSc and found that that levels of phosphorylated Smad1 were 
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found to be significantly elevated in SSc skin biopsy samples and in cultured SSc fibroblasts. 

The potent tyrosine kinase inhibitor, imatinib mesylate, blocked activation of the Smad1 pathway 

in TGF-β stimulated control fibroblasts and reversed activation of this pathway in SSc 

fibroblasts. These findings demonstrated that activation of Smad1 signaling contributes to the 

persistent activation of SSc fibroblasts and that this pathway is blocked by imatinib mesylate 

[49]. The role of c-Abl as an important mediator of tissue fibrosis in SSc has been further 

supported by numerous studies in vitro in cultured fibroblasts as well as in animal models of SSc 

and fibrosis, and by numerous reports of uncontrolled clinical studies describing SSc patients 

who experienced improvement in cutaneous sclerosis in response to imatinib mesylate therapy 

[50-53]. 

PI3K/Akt Pathways. Critically important pathways are initiated by TGF-β activation of 

phosphoinositide 3-kinases (PI3Ks), which phosphorylate inositol-containing lipids to yield 

phosphoinositol 3 phosphate (PIP3) [54]. PIP3 then recruits the phosphoinositide-dependent 

kinase (PDK)-1 and Akt/protein kinase B (PKB), bringing these proteins into proximity at the 

plasma membrane where Akt/PKB is phosphorylated by PDK-1 [55]. Once activated, Akt leaves 

the plasma membrane to phosphorylate intracellular substrates and also translocates to the 

nucleus where it can phosphorylate and activate transcription factors. Studies in several cell 

systems, including human mesangial cells and lung and dermal fibroblasts, suggest that Akt may 

have dual profibrotic effects, increasing collagen synthesis and decreasing its degradation via 

downregulation of matrix metalloproteinase 1, and several studies have shown that specific Akt 

inhibition may have a potent antifibrotic effect [56].  Furthermore, Akt/PKB may participate in 

EMT induction through phosphorylation of GSK-3 and also increase cell proliferation and 

survival through its inhibition of apoptotic pathways.  The potential role of PI3K and Akt/PKB in 
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the pathogenesis of tissue fibrosis in SSc has been supported by studies which showed enhanced 

activation of Akt in SSc fibroblasts [57] and elevated activity of PI3K and Akt/PKB in platelets 

from patients with SSc [58]. 

Protein kinase C-δ (PKC-δ). PKC-δ is a serine- and threonine-specific protein kinase 

involved in cell signaling and in the regulation of growth, apoptosis, and differentiation of a 

variety of cell types. Several studies examined the role of PKC-δ in the pathogenesis of fibrotic 

diseases including SSc.  Fibroblasts from patients with SSc were shown to contain higher PKC-δ 

levels than normal cells and further studies demonstrated that PKC-δ was capable of inducing a 

potent stimulation of collagen gene expression.  PKC-δ inhibition with the highly specific 

inhibitor, rottlerin, or by expression of a dominant-negative PKC-δ construct reduced type I 

collagen production and abrogated TGF-β stimulation of collagen gene expression in human 

fibroblasts [59].  Other studies examined the role of PKC-δ on the repression of TGF-β activity 

and focused on the transcription factor Fli1 (Friend leukemia integration-1) [60,61]. Fli1 binds 

directly to the α2 type I human collagen gene promoter, inhibiting its transcription. Fli1 

reduction increased TGF-β-dependent profibrotic gene expression, whereas increased Fli1 

expression blocked these effects.  Study of the mechanisms responsible indicated that TGF-β 

induces phosphorylation of PKC-δ which in turn phosphorylates Fli1. This step is essential for 

Fli1 release from the collagen gene promoter with the resulting removal of its inhibitory 

influence and a consequent increase in the α2(I) collagen gene transcriptional activity. These 

observations confirmed earlier studies demonstrating that inhibition of PKC-δ by pharmacologic 

or molecular biologic techniques diminished the expression of types I and III collagens induced 

by TGF-β as well as the increased expression of these genes by cultured SSc fibroblasts [59,60]. 
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Caveolin-1 regulation of TGF-β signaling.  Another recently identified mechanism of 

regulation and fine tuning of TGF-β activity involves caveolin-1.  Caveolin-1, the most 

important member of a family of proteins found in lipid rafts, plays an important role in TGF-β 

signaling regulation owing to its participation in TβR internalization as illustrated in Fig. (2).  

TβR are internalized both by caveolin-1 associated lipid rafts and by early endosome antigen 1 

(EEA-1) non-lipid raft pathways.  It has been shown, furthermore, that non-lipid raft associated 

internalization increases TGF-β signaling, whereas, caveolin-associated internalization increases 

TβR degradation, thereby effectively decreasing or abolishing TGF-β signaling [62].  

Specifically, it was demonstrated that SARA and Smurf, upstream regulators of either TGF-β 

signaling or TβR degradation, respectively, were localized in distinct subcellular compartments. 

The complex SARA/Smad2/3 which initiates TβR-1 signaling was found to be localized in a 

non-lipid raft EEA-1 positive compartment, whereas the Smurf/Smad7 complex responsible for 

initiating proteasome degradation of TβRs was found to be localized in caveolin-1 positive lipid 

rafts. The localization of the TβRs in the EEA-1 positive compartment was responsible for 

downstream Smad activation, whereas their localization in caveolae lipid rafts caused 

recruitment of Smurf/Smad7 with subsequent receptor ubiquitination and rapid receptor 

degradation and turnover [63,64].   

This novel mechanism of regulation of TβR function and activity follows ligand 

engagement and is dependent on the fluidity of the membrane and the membrane density of the 

distinct caveolin-1 and non-caveolin compartments.  Thus, absence of one compartment or 

imbalance in the densities of the two compartments may affect the level of TGF-β pathway 

activity given the same amount of ligand binding.  Furthermore, since this process occurs at the 

level of internalization of the TβR immediately following ligand engagement, it likely represents 
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an important mechanism of regulation of TGF-β signaling.  Thus, a reduction of caveolin-1 

would result in uncontrolled activation of all TGF-β mediated pathways including those 

responsible for tissue fibrosis.  One unique feature of this regulation mechanism is that it 

provides a cogent and plausible mechanism for the perpetuation of tissue fibrosis following an 

initial triggering event.  The triggering event results in a decrease in caveolin-1 gene expression; 

this decrease then shifts TGF-β internalization through the EEA-1 pathway, leading to 

accentuation of the TGF-β-induced fibrotic effects and simultaneously causing further 

downregulation of caveolin-1 gene expression.  Thus, the current evidence indicates that 

caveolin-1 is a crucial regulator of TGF-β intracellular signaling and TβR endosomal 

degradation and, therefore, may play a key role in the pathogenesis of disorders characterized by 

exaggerated tissue fibrosis. 

Numerous studies have supported this role of caveolin-1 in the development of tissue 

fibrosis [65-68].  For example, it was shown that caveolin-1 knockdown in vitro markedly 

increased collagen gene expression in normal human lung fibroblasts and that caveolin-1 was 

reduced in affected SSc lungs and skin [66] and in lung tissues and fibroblasts from patients with 

idiopathic pulmonary fibrosis [67,68]. Increasing caveolin-1 expression markedly improved 

bleomycin-induced pulmonary fibrosis [67]. Furthermore, restoration of caveolin function 

employing cell permeable peptides abrogated TGF-β activation of cultured human dermal 

fibroblasts, and it was suggested that restoration of caveolin function employing the active 

caveolin-1 scaffolding domain coupled to cell-permeable carrier peptides may represent a novel 

approach for treatment of fibrotic diseases including SSc [65,66].  

Roles of TGF-β in SSc-associated tissue fibrosis. Numerous studies have shown that 

alterations in TGF-β signaling are involved in the pathogenesis of diverse human diseases [69-
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72]. However, owing to its multiple and potent profibrotic effects, TGF-β has been considered 

one of the key molecules involved in the pathogenesis of a variety of fibrotic diseases as well as 

in SSc tissue fibrosis [1-4,73-77].  One of the most important effects of TGF-β1 is the 

stimulation of the synthesis of a variety of ECM macromolecules by fibroblasts and other 

mesenchymal cells as evidenced by a remarkable increase in response to TGF-β treatment of the 

production of collagens type I, III, V, and VI, fibronectin and α-smooth muscle actin (α-SMA), a 

molecular marker of activated myofibroblasts [78-83]. TGF-β1 also decreases the synthesis of 

collagen-degrading metalloproteinases and stimulates the production of protease inhibitors such 

as tissue inhibitor of metalloproteinases 1 (TIMP-1) [84,85]. Small amounts of TGF-β sensitize 

fibroblasts to its own effects and maintain them in a persistently activated state involving an 

autocrine mechanism that causes further production of TGF-β [86]. It has also been shown that 

SSc fibroblasts express increased numbers of TGF-β receptors on their surface and display 

altered ratios of these receptors, alterations that have been suggested to account for the increased 

TGF-β–induced signaling and the resulting stimulation of collagen production in these cells [87].  

Another important profibrotic effect of TGF-β is the induction of epithelial-mesenchymal 

transition [12-14,88,89] and although less extensively studied, it also appears that TGF-β might 

induce a similar transdifferentiation process in endothelial cells [22-24].  Another important 

effect of TGF-β is the potent downregulation of caveolin-1 expression resulting in a marked 

reduction of its protein levels.  As discussed above and illustrated in Fig. (2), a reduction in 

caveolin-1 would allow the uncontrolled and persistent activation of TGF-β mediated pathways.  

A large number of studies have examined various aspects of the complex TGF-β pathway 

to determine the role of this growth factor in SSc pathogenesis.  The various steps of TGF-β 

signaling including the extracellular processing and the intricate intracellular signaling pathways 



convertdoc.input.557475.l9K2M 
9:32:05 PM 

 13 

involved in the TGF-β pleotropic effects have been extensively examined in SSc fibroblasts and 

tissues.  The circulating levels of active TGF-β1 were measured in a cross-sectional study of 

diffuse or limited SSc in comparison with healthy controls. No significant differences were 

found in the levels of total serum TGF-β1. However, patients with diffuse SSc consistently 

displayed lower levels of active TGF-β1 than patients with limited SSc or normal individuals. 

The reduction in TGF-β1 correlated with recent onset and more extensive skin sclerosis, 

suggesting that active TGF-β1 may be sequestered in actively involved SSc skin [90].   

Several studies examined the spontaneous production of active and total (active plus 

latent) TGF-β1 by cells from SSc patients. One study examined the production of TGF-β from 

peripheral blood mononuclear cells (PBMC). Greater amounts of both latent and active TGF-β 

were produced by PBMC from SSc patients than those from normal subjects in autologous 

mixed lymphocyte reaction assays [91]. Another study showed that PBMC from patients with 

limited or diffuse cutaneous SSc had significantly elevated values compared to PBMC from 

normal controls. Furthermore, PBMC from patients with disease of recent onset displayed 

increased production of active or total TGF-β1 compared to patients with disease of less recent 

onset. However, although the production of active TGF-β1 by PBMC from patients with diffuse 

SSc was higher compared with PBMC form patients with limited SSc, the differences were not 

statistically significant. Analysis of leukocyte subsets showed that the spontaneous production of 

total TGF-β1 in SSc patients was significantly higher in cultured peripheral 

monocytes/macrophages, but not in T cells, B cells, or NK cells [92].  In subsequent studies, the 

production of active and total TGF-β1  levels by cultured dermal fibroblasts was measured. SSc 

fibroblasts expressed increased levels of TGF-β type I and type II receptors but the secreted 

amounts of TGF-β were similar to those secreted by normal fibroblasts [93]. 
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The initial step in activation of the TGF-β signaling pathway involves the release of the 

active polypeptide from its sequestered precursor bound in a latent state to ECM proteins.  One 

of the novel mechanisms involved in this process was recently shown to require the induction of 

conformational changes in the protein by αvβ5 integrin [31].  Therefore it was of interest to 

examine the levels of this integrin in SSc.  In one study, levels of αvβ5 expression were found to 

be significantly elevated in SSc fibroblasts compared with normal fibroblasts, and treatment of 

these cells with anti-αvβ5 antibody or β5 antisense oligonucleotide significantly blocked the 

TGF-β pathway causing reduced collagen gene promoter activity and reversal of the 

myofibroblastic features of SSc fibroblasts. These results indicated that upregulated expression 

of αvβ5 integrin contributes to the establishment of autocrine TGF-β signaling in SSc fibroblasts 

through activation of endogenous latent TGF-β1 [94].  

Following release of active TGF-β from its ECM storage sites, a dimeric form of the 

polypeptide engages the corresponding cellular membrane receptor.  Studies of the expression 

levels of TGF-β receptors in SSc skin biopsies using in situ hybridization and 

immunohistochemical analysis showed that the expression levels of both TβRI and TβRII were 

elevated in the dermal fibroblasts of SSc skin sections in comparison to normal skin sections, and 

the numbers of fibroblasts expressing these TβR were increased in the SSc skin sections 

compared to normal controls. These results suggested that an autocrine TGF-β signaling due to 

the overexpression of TβRI and TβRII in dermal fibroblasts is involved in the pathogenesis of 

dermal fibrosis in patients with SSc [95].  

In fibroblasts, TGF-β signaling occurs primarily through the ALK-5 type I TβR receptor 

which triggers the canonical Smad signaling pathway. Accordingly, numerous studies have 

examined these early steps of the TGF-β signaling cascade.  In one study, the effects of 
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SB431542, a small-molecule inhibitor of ALK-5, were examined in cultured fibroblasts and it 

was shown that SB431542 abrogated TGF-β-induced phosphorylation and nuclear transport of 

endogenous Smad2/3 and Smad4 and it inhibited TGF-β-induced stimulation of collagen, 

fibronectin, and connective tissue growth factor gene expression.  The ALK-5 inhibitor also 

abolished TGF-β  autoinduction and myofibroblast transdifferentiation [96].  In a related study, 

the effect of the ALK-5 inhibitor SD208 on the expression of key biochemical markers of the  

fibrotic phenotype was compared in SSc fibroblasts and in normal fibroblasts. Inhibition of 

ALK-5 reduced the expression of a cohort of fibrotic markers by SSc dermal fibroblasts, 

including type I collagen and β1 integrin, and attenuated the elevated adhesive and contractile 

properties of SSc fibroblasts indicating that some of the key profibrotic features of SSc 

fibroblasts are dependent upon ALK-5 activity [97].  

A large number of studies exploring the intracellular steps of TGF-β signal transduction 

in SSc cells have been reported.  In particular, the role of Smad proteins in the pathogenesis of 

tissue fibrosis in SSc has been studied extensively and it has become apparent that the complex 

pathway involving intracellular Smad proteins is of crucial importance in the regulation of the 

fibrotic response in SSc [36,98-100].  One study examined the expression levels of Smad2, 

Smad3 and Smad4, as well as Smad3 phosphorylation in parallel with an assessment of the 

transcriptional activity of collagen genes in SSc cultured fibroblasts. Increased Smad3 

phosphorylation and increased collagen gene transcriptional activity were found in SSc 

fibroblasts compared with normal fibroblasts. The induced overexpression of Smad3 caused a 

potent increase in collagen gene promoter activity in normal fibroblasts. These results 

demonstrated an important role of the Smad3 activation of the canonical TGF-β signaling 

pathway in the stimulation of collagen gene transcriptional activity in SSc fibroblasts [101].  
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To further characterize the mechanism of regulation of collagen gene expression in SSc 

and healthy skin fibroblasts the roles in TGF-β signaling of the p38 mitogen-activated protein 

kinase (MAPK) which is an important regulator of stress responses and apoptosis, and of the co-

activator histone acetyl transferase p300, which regulates cell differentiation, were examined. In 

the studies of p38, treatment of dermal fibroblasts with TGF-β resulted in a prolonged activation 

of this kinase. Furthermore, a specific inhibitor of p38 suppressed TGF-β stimulation of collagen 

type I mRNA and the α2(I) collagen promoter activity, whereas ectopic expression of p38α 

enhanced the promoter activity of the collagen gene and potentiated TGF-β stimulation of this 

promoter. However, both cell types exhibited similar total levels of p38 MAPK and similar 

kinetics of p38 activation in response to TGF-β suggesting that the p38 MAPK pathway is not 

dysregulated in SSc fibroblasts [102].  In the studies with p300 it was shown that TGF-β induced 

an increase in p300 levels in normal fibroblasts and that forced expression of p300 dramatically 

enhanced the magnitude of TGF-β responses. Furthermore, TGF-β  lost its ability to induce 

Smad-dependent transcription in p300-depleted fibroblasts. These responses could be fully 

rescued with ectopic p300. Levels of p300 were higher in  cultured fibroblasts derived from SSc 

patients than in fibroblasts from matched normal controls. These results established conclusively 

that p300 is an essential component of the cellular TGF-β signal transduction pathways 

mediating stimulation of collagen synthesis in fibroblasts and may, therefore, be an important 

contributor to the progression of skin fibrosis in SSc and may represent a novel therapeutic target 

[103].  

TGF-β microarray/Analysis of global gene expression and SSc pathogenesis. The 

recent development of high throughput genomic profiling technologies such as cDNA 

microarrays, combined with advanced computational approaches, allow the identification and 
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characterization of high-resolution expression profiles of numerous disease states, the detailed 

analysis of molecular networks that underlie specific disease phenotypes and the discovery of 

novel targets for therapeutic intervention.   

Global gene expression studies have advanced substantially current understanding of SSc 

pathogenesis and will very likely provide molecular signatures that may allow the identification 

of SSc patients who may respond and benefit from specific therapies.  One such study employed 

genome-wide gene expression microarrays to identify the pattern of TGF-β-responsive genes in 

SSc fibroblasts. The TGF-β-responsive signature comprising 674 uniquely expressed genes was 

present in about 60% of diffuse SSc skin biopsies, but was not found in limited SSc, morphea, or 

healthy control biopsies. The clinical subset of the TGF-β-responsive signature patients showed 

more severe skin involvement and a higher likelihood of scleroderma lung disease and is more 

likely to derive clinical benefit form anti-TGF-β therapeutic approaches [104].  

 Connective tissue growth factor (CTGF). CTGF, also known as CCN2, is another 

pleotropic growth factor that has recently emerged as an important mediator of normal and 

pathological tissue fibrotic responses [105-107] and has been suggested to play a crucial role in 

SSc tissue fibrosis [108-110]. CTGF was originally identified in human umbilical vein 

endothelial cells, and previous  studies revealed that human skin fibroblasts produce CTGF 

following stimulation with TGF-β [105]. In addition to a potent profibrotic effect, CTGF 

participates in angiogenesis, axial development of the musculoskeletal system, structural 

organization of connective tissues, and embryo implantation. TGF-β stimulates CTGF synthesis 

in fibroblasts, vascular smooth muscle cells and endothelial cells, and numerous studies have 

shown that it represents a downstream mediator of TGF-β fibrogenic effects.  Indeed, the CTGF 

produced by these cells in response to TGF-β stimulation in turn stimulates the synthesis of such 
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ECM components as type I collagen and fibronectin in dermal and lung fibroblasts and very 

likely also in endothelial cells. These observations prompted a large number of studies 

examining the role of CTGF in the pathogenesis of SSc [108-110].  A study to determine the 

clinical correlation of CTGF serum levels in patients with SSc showed that SSc patients with 

elevated CTGF had disease of more recent onset and of greater severity, including the more 

frequent development of pulmonary fibrosis with decreased DLCO and decreased vital capacity. 

Thus, serum CTGF levels were increased in patients with more severe SSc and correlated with 

the extent of skin sclerosis and the severity of pulmonary fibrosis  [111].  Another study assessed 

CTGF expression in SSc tissues and found strong CTGF signals in fibroblasts of affected skin 

from patients with SSc, whereas there was no expression in the skin from normal controls [112].  

CTGF has also been found to be overexpressed in lung fibroblasts isolated from SSc patients. A 

recent study examined CTGF induced changes in the lung fibroblast proteome and identified 

novel CTGF-responsive molecules that may play important roles in pulmonary fibrosis.  One of 

these novel CTGF-induced proteins, IQ motif containing GTPase activating protein (IQGAP) 1, 

was found to be elevated in lung fibroblasts isolated from SSc patients with pulmonary fibrosis. 

Depletion of IQGAP1 expression by small interfering RNA inhibited CTGF-induced cellular 

migration. These findings further implicate the importance of CTGF in lung tissue repair and 

fibrosis [113]. 

Platelet-derived growth factor (PDGF). Members of the PDGF family, which is 

comprised of four different polypeptides (PDGF-A, B, C, and D) that form disulfide-bonded 

dimers (PDGF-AA, BB, CC, DD, and AB), play an important role during embryonic 

development and contribute to the maintenance of connective tissue in adults. PDGF are potent 

mitogens and chemoattractants for a variety of inflammatory and mesenchymal cells, in 
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particular, for vascular smooth muscle cells [114]. PDGF effects are mediated by a complex 

cascade initiated by activation of two distinct receptor tyrosine kinases (PDGFRα and β) that 

drive a potent mitogenic stimulation of vascular smooth muscle cells and dermal fibroblasts 

[115].  Dysregulation of PDGF signaling has been linked to numerous disorders including 

atherosclerosis and pulmonary hypertension [116,117]. PDGF has also been implicated in the 

pathogenesis of numerous fibroproliferative diseases, including SSc [118-119].  Elevated 

expression of PDGF and its receptors has been found in SSc skin and lung tissues and there is 

evidence that TGF-β stimulates the expression of PDGFRα in SSc cells and increases their 

response to PDGF, suggesting that cross-talk between TGF-β and PDGF pathways may regulate 

chronic fibrosis in SSc [120].  

To examine the role of PDGF and TGF-β in the pathogenesis of SSc-associated 

pulmonary fibrosis, PDGF and TGF-β levels were determined in bronchoalveolar lavage (BAL) 

fluid from patients with SSc and healthy controls. BAL fluid from SSc patients was found to 

contain significantly elevated levels of PDGF-AA, PDGF-BB, and TGF-β1 [121]. SSc lung 

myofibroblasts pretreated with TGF-β 1 exhibited an enhanced mitogenic effect upon stimulation 

by PDGF, caused in part by the induction of the PDGFα receptor. These studies support a role 

for PDGF and TGF-β 1 in the pathogenesis of SSc lung disease.  The potent smooth muscle cell 

mitogenic effects of PDGF have been implicated in the severe fibroproliferative changes in the 

pulmonary vasculature occurring during the development of primary pulmonary hypertension 

[122] and it has been suggested that highly selective tyrosine kinase inhibitors such as imatinib 

and dasatinib that are capable of abrogating the activation of PDGF receptor tyrosine kinase may 

be effective therapies for primary pulmonary hypertension and provides support for their use in 

the treatment  of SSc [119,122-124].  



convertdoc.input.557475.l9K2M 
9:32:05 PM 

 20 

Of substantial interest has been the recent description of the occurrence in the sera of SSc 

patients of functional anti-PDGF receptor-specific autoantibodies capable of activating and 

initiating PDGF signaling [125].  In this study, stimulatory antibodies to the PDGFR that were 

capable of activating collagen-gene expression and inducing the production of  reactive oxygen 

radicals (ROS) in mouse-embryo fibroblasts were found in all the SSc patients studied. The 

antibodies recognized native PDGFR, inducing tyrosine phosphorylation and ROS accumulation 

and stimulation of type I collagen-gene expression as well as myofibroblast phenotype 

conversion in normal human primary fibroblasts.  These results suggested that functional anti-

PDGF antibodies have a causal role in the pathogenesis of SSc [126].  Given the potential 

importance and significance of these results, several subsequent studies were performed to 

confirm the presence of functional anti-PDGFR antibodies in patients with SSc. In one study, 

immunoglobulins (IgGs) from 37 patients with SSc were purified and PDGFR activation tested 

using 4 different bioassays. Purified IgG samples from patients with SSc were positive when 

tested for antinuclear autoantibodies, but failed to specifically activate PDGFRα or PDGFRβ in 

any of the tests [127].  Another study employed an electrochemiluminescence binding assay for 

detection of serum autoantibodies to PDGFRα, PDGFRβ, epidermal growth factor receptor 

(EGFR), and colony-stimulating factor receptor 1 (CSFR1), and the level of receptor 

phosphorylation induced by pure Ig was determined by enzyme-linked immunoassay, Western 

blot, and functional agonist activity mitogenic assay. Although approximately one-third of sera 

samples from SSc patients contained detectable autoantibodies to PDGFR, these antibodies were 

not specific to SSc, since they were also detected in a similar percentage of samples from normal 

subjects.  Furthermore, PDGFRα agonist activity was not demonstrated when purified IgG from 

these sera was tested in cell-based assays [128].  A third study to evaluate the presence of anti-
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PDGFRα antibodies in patients with SSc found non-significant differences between patients with 

SSc and controls and there was no correlation between the presence or titers of anti-PDGFRα 

antibodies and the clinical and serological features of SSc. Furthermore, serum samples from 

patients with SSc and healthy people recognized the same band corresponding to PDGFRα by 

immunoblot [129].   Thus, the current evidence is not conclusive and there is substantial 

controversy and uncertainty about the presence of functional PDGFRα activating antibodies in 

the sera of SSc patients. 

Fibroblast growth factors (FGF). FGF comprise a large family of growth factors which 

play a crucial role during embryonic development, participating in numerous differentiation 

processes including mesoderm induction and mesenchymal-epithelial signaling [130,131]. FGF 

are potent mitogenic factors that have numerous functions in adult organisms such as 

angiogenesis and wound healing [132]. FGF are secreted glycoproteins produced by a variety of 

cells which, following secretion, are stored in the extracellular compartment by binding to 

heparan sulfate proteoglycans.  FGF signaling occurs through 4 distinct transmembrane receptor 

kinases and complex cascades of intracellular reactions that lead to activation or repression of the 

expression of numerous target genes [133].  Numerous studies have demonstrated the potent 

fibroblast mitogenic effects of FGF during inflammatory and fibrotic responses.  However, the 

marked increase in cellular proliferation is accompanied by a reduction in expression of collagen 

and other ECM molecules. Thus, the role of FGF in the pathogenesis of SSc tissue fibrosis is not 

fully understood. 

One recent study examined basic FGF (bFGF) expression in skin biopsies from SSc 

patients and found increased expression in the epidermis and dermis as compared to normal 

tissues. However, there was no correlation of the levels of expression with the duration of 
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disease or the extent of skin involvement, although some of the results suggested that bFGF may 

act in an autocrine or paracrine manner in fibrogenesis [134].   In contrast, another study showed 

that bFGF is a potent inhibitor of basal and TGF-β stimulated collagen expression in human 

fibroblasts, and that this effect was no different in SSc than in healthy fibroblasts [135].  

Therefore, the role of FGF in the initiation of progression of the fibrotic process in SSc has not 

been completely elucidated and additional studies will be required to conclusively determine the 

contribution of this potent growth factor to the pathogenesis of fibrosis in SSc. 

Vascular endothelial growth factor (VEGF). VEGF is an endothelial cell specific 

growth factor with multiple functions including stimulation of endothelial cell proliferation and 

differentiation, modulation of endothelial permeability, and potent effects on vascular 

remodeling [136].  Expression of VEGF is markedly induced by hypoxia and is regulated by 

hypoxia-inducible factor 1α.  A recent study suggested that tissue hypoxia in affected skin and 

other organs of patients with SSc may result in alterations in VEGF regulation and therefore may 

play an important role in the altered angiogenesis which is a characteristic feature in SSc [137].  

Measurement of serum levels of VEGF in patients with SSc and healthy controls showed 

that serum VEGF levels were significantly higher in SSc patients and correlated well with the 

extent of skin sclerosis. Serum VEGF levels were also inversely correlated with nailfold 

capillary density, suggesting that high VEGF levels may participate in the capillary damage in 

SSc [138]. In another study, serum levels of VEGF were measured in patients with various 

connective tissue diseases. Patients with diffuse SSc showed elevated VEGF levels in 

comparison with normal controls. An elevated serum VEGF level was correlated with the 

frequency of lung fibrosis and reduced vital capacity in the patients with SSc [139].  However, 

although serum VEGF levels were found to be consistently elevated in SSc patients, the source 



convertdoc.input.557475.l9K2M 
9:32:05 PM 

 23 

of circulating VEGF was not known.  In one study the role of platelets as a source of VEGF and 

other angiogenic mediators of SSc was examined. The results showed that platelets from SSc 

patients, in contrast to controls, secreted large amounts of VEGF and suggested that these cells 

may play an important role in the altered angiogenesis associated with the disease through the 

secretion of high levels of VEGF [140]. Given the potent proangiogenic effects of VEGF, the 

role of this growth factor in the pathogenesis of SSc associated fibroproliferative alterations such 

as pulmonary artery hypertension (PAH) has been the subject of intense investigation. An 

evaluation of the relationships between pulmonary artery pressure, clinical and functional 

manifestations of SSc and serum  VEGF levels showed that serum VEGF levels were increased 

in SSc patients with PAH and suggested a possible role of VEGF in the pathogenesis of PAH in 

SSc [141].  

It has been proposed that the disturbed vessel morphology with enlarged capillaries and 

an overall reduction in capillary density frequently present in SSc may represent an insufficient 

angiogenic response and that these abnormalities may be due to reduced VEGF expression. 

However, in refutation of this hypothesis was the observation that the expression of both VEGF 

and its receptors VEGFR-1 and VEGFR-2 were upregulated in SSc skin. Upregulation of VEGF 

was likely mediated by an altered expression pattern of various cytokines [142]. Thus, these 

results do not support the notion that alterations in VEGF signaling are responsible for the 

occurrence of capillary abnormalities in SSc. 

Insulin-like growth factor (IGF) and insulin-like growth factor binding proteins 

(IGFBP).  IGFs comprise a family of regulatory polypeptides with high sequence similarity to 

insulin that are involved in numerous physiologic states including growth and development, 

cellular proliferation and apoptosis, and aging [143,144].  IGFs are part of a complex protein 
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network comprising two distinct IGF molecular species (IGF-1 and IGF-2), two cell surface 

receptors (IGFR1 and IGFR2), and six specific binding proteins (IGFBP1-6). The IGFBPs 

modulate the function of IGFs by sequestering them with high affinity within the extracellular 

matrix [145].  Several studies have examined the role of IGFs and IGFBPs in fibrotic conditions 

including pulmonary fibrosis and SSc.  Stimulation of fibroblast proliferation induced by 

bronchoalveolar lavage from patients with SSc associated pulmonary fibrosis was found to be 

caused largely by IGF-1 as demonstrated by inhibition with specific antibodies [146].  

Supporting the profibrotic role of IGFBP, elevated levels of IGFBP-3 and -5 were found in 

pulmonary fibrosis [147].  Furthermore, measurements of serum IGF-1 and IGFBP-3 levels in 

patients with SSc were found to be significantly elevated compared with patients with systemic 

lupus erythematosus or healthy controls. IGF-1 levels correlated with the extent of skin 

involvement and the presence of pulmonary fibrosis.  Furthermore, IGF-1 mRNA was 

upregulated in the affected skin of patients with SSc. These results collectively suggested that 

IGF-1 and IGFBP-3 are involved in the development of fibrosis in SSc [148].  

In another study, IGF-2 expression was examined in explanted lung tissues from control 

and SSc patients to determine its role in the pathogenesis of SSc associated pulmonary fibrosis. 

Immunostaining revealed increased IGF-2 expression in fibroblastic foci of SSc lungs and 

cultured primary SSc lung fibroblasts had a fourfold increase in IGF-2 mRNA and a twofold 

increase in IGF-2 protein compared with normal lung fibroblasts. IGF-2 induced a dose- and 

time-dependent increase in collagen type I and fibronectin production and triggered the 

activation of several important kinase pathways including the PI3K signaling cascade. These 

results provided strong support and novel insights into the role of IGF-2 in the pathogenesis of 

SSc-associated pulmonary fibrosis [149].  
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Concluding Remarks 

Remarkable recent progress in the understanding of the molecular events involved in the 

development of SSc tissue fibrosis has allowed the identification of key molecules, key cellular 

mechanisms, and key intracellular signaling cascades that mediate the initiation and progression 

of fibrosis in this disorder.  Results of these studies have provided novel approaches for the 

treatment and correction of the molecular alterations involved in the fibrotic component of SSc, 

among which the most promising appear to include modifiers  of TGF-β1 activation and 

signaling, tyrosine kinase inhibitors, and inhibitors of other growth factors involved in the 

fibrotic process [48,51,150].  Many of these approaches have already been confirmed by 

extensive clinical and preclinical evidence and it is likely that they will be available for clinical 

use in the near future.  Furthermore, it is expected that given the strong molecular rationale for 

their use these novel therapies will be highly effective in controlling and reversing the severe 

clinical manifestations of the fibrotic process in SSc.   
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1. Figure Legends 

 

Figure 1. Transforming growth factor beta (TGF-β) signaling pathways critical for the 

fibrotic response.  Illustrated are several profibrotic pathways initiated by TGF-β binding in 

fibroblastic cells. Following TGF-β binding, the TβRII receptor recruits either ALK-1 or ALK-5 

type I receptor (TβRI) and activates it by phosphorylation.  ALK-5 then specifically 

phosphorylates receptor-regulated Smad-2 and Smad-3 whereas ALK-1 phosphorylates Smad-1. 

 The receptor Smads, Smad2 or Smad3, then complex with Co-Smad-4 resulting in their 

transport to the nucleus where they regulate transcription of critical genes, here represented by 

CTGF, α1(I) , and α2(I) collagen.  Also illustrated are three non-Smad pathways (c-Abl , PKC-δ 

and Akt/PKB).  One of the two PI3K pathways activates c-Abl, whereas the other activates 

Akt/PKB, an important mediator participating in myofibroblast differentiation through EMT as 

well as through increasing cellular proliferation and survival via its inhibitory effects on cellular 

apoptosis.  

 

Figure 2.  Model for involvement of caveolae in TGF-β signal transduction and 

downregulation. Following ligand binding and receptor activation, activated TGF-β receptors 

can be internalized through two distinct endocytic pathways.  The non-lipid raft pathway (green) 

results in increased TGF-β signal transduction, leading to tissue fibrosis and at the same time to 

transcriptional downregulation of caveolin-1 (cav-1) gene expression. The decrease in caveolin-1 

expression generates a vicious cycle that both increases and perpetuates tissue fibrosis.  In 

contrast, the caveolin-1 positive lipid raft compartment (red), drives TGF-β receptor proteasomal 

degradation, leading to abrogation of the fibrotic response. Reproduced from Reference 51.  
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