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Accuracy of machine learning to predict i

the outcomes of shoulder arthroplasty:
a systematic review

Amir H. Karimi'", Joshua Langberg??, Ajith Malige®, Omar Rahman?, Joseph A. Abboud* and Michael A. Stone?

Abstract

Background Artificial intelligence (Al) uses computer systems to simulate cognitive capacities to accomplish goals
like problem-solving and decision-making. Machine learning (ML), a branch of Al, makes algorithms find connections
between preset variables, thereby producing prediction models. ML can aid shoulder surgeons in determining which
patients may be susceptible to worse outcomes and complications following shoulder arthroplasty (SA) and align
patient expectations following SA. However, limited literature is available on ML utilization in total shoulder arthro-
plasty (TSA) and reverse TSA.

Methods A systematic literature review in accordance with PRISMA guidelines was performed to identify primary
research articles evaluating MUs ability to predict SA outcomes. With duplicates removed, the initial query yielded 327
articles, and after applying inclusion and exclusion criteria, 12 articles that had at least 1 month follow-up time were
included.

Results ML can predict 30-day postoperative complications with a 90% accuracy, postoperative range of motion
with a higher-than-85% accuracy, and clinical improvement in patient-reported outcome measures above minimal
clinically important differences with a 93%-99% accuracy. ML can predict length of stay, operative time, discharge
disposition, and hospitalization costs.

Conclusion ML can accurately predict outcomes and complications following SA and healthcare utilization. Out-
comes are highly dependent on the type of algorithms used, data input, and features selected for the model.

Level of Evidence |lI

Keywords Machine learning, Shoulder arthroplasty, Artificial intelligence, Patient reported outcomes

Introduction
Artificial intelligence (AI) utilizes computer systems to
simulate cognitive capacities to accomplish goals such as

*Correspondence: problem-solving and decision-making [1, 2]. A branch of
Amir H. Karimi AI known as machine learning (ML) creates algorithms
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improved by using new data, which ultimately refines
the prediction ability of the models with little human
involvement [5, 6]. There are two types of ML: supervised
and unsupervised. Supervised ML is utilized most fre-
quently in healthcare and involves “training” or inputting
a dataset of variables, known as features, with their rele-
vant outcomes [7]. This allows the computer algorithm to
find patterns and associations between features and cer-
tain outcomes [7]. After training is completed, the algo-
rithm goes through a “testing” phase where the features
of a dataset are applied to the algorithm. The predictions
are then compared with known outcomes to determine
the algorithm’s accuracy and performance [7]. Unsuper-
vised ML is a data mining method that is used to detect
unknown patterns in data without requiring prior human
knowledge and intervention [8]. This form of machine
learning is typically used more in an exploratory manner
without yielding absolute conclusions because the output
is highly dependent on whatever parameters are input.

In various prediction problems, ML techniques have
demonstrated the ability to outperform conventional
approaches such as regression techniques [9, 10]. ML
is currently being used more commonly in the field of
orthopedic surgery for outcome prediction, diagnos-
tics, and cost-efficiency analyses [3, 11, 12]. ML has
been utilized in both total hip and knee arthroplasty to
predict patient-reported outcome measures (PROMs)
as well as hospital utilization [13-18]. However, there
is limited literature available on the utilization of ML in
shoulder arthroplasty (SA). The use of anatomic total
shoulder arthroplasty (TSA) in the United States has
continued to climb due to an aging population as well as
expanded indications for reverse total shoulder arthro-
plasty (r'TSA), as seen by a 9.4% yearly increase in proce-
dure volume [19]. Several modifiable and non-modifiable
patient characteristics, such as body mass index (BMI),
smoking status, or age, increase the risk of complica-
tions following SA [20, 21]. Additionally, several stud-
ies have shown promise in using ML to predict clinical
outcomes such as range of motion (ROM) and PROM:s.
For instance, Kumar et al., demonstrated ML could pre-
dict measures of pain, function, and ROM with an 85 to
94 percent accuracy following TSA [22]. Similarly, Saiki
et al,, reported that the random forest model algorithm
could be useful in predicting knee flexion ROM following
TKA [23]. Therefore, the use of ML can aid the shoulder
surgeon in determining which patients may be suscepti-
ble to complications or poor outcomes following shoul-
der arthroplasty and can help align patient expectations
following TSA and rTSA.

The purpose of this systematic review was to evalu-
ate whether machine learning can be used to predict
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TSA and rTSA outcomes. Specifically, we asked: (1) Is
machine learning able to accurately predict the outcomes
and complications after SA? (2) Is machine learning able
to accurately predict healthcare utilization including dis-
charge disposition after SA?

Methods

Search strategy and criteria

The PubMed, EBSCO host, and Google Scholar elec-
tronic databases were searched to identify all studies that
evaluated the ability of ML to predict the outcomes of
SA. The following keywords were utilized in combination
with “AND” or “OR” Boolean operators: (“machine learn-
ing” OR “ML” OR “AI” OR *“Artificial intelligence” OR
“deep learning”) AND (“shoulder arthroplasty” OR “TSA”
OR “shoulder surgery” OR “shoulder replacement”).

Eligibility criteria

For inclusion in this systematic review, each study had
to meet the following criteria: (1) articles were currently
published, (2) articles reported on the accuracy of ML to
predict outcomes of SA, (3) studies were written in the
English language. Studies were excluded if they (1) were
systematic reviews, (2) were non-peer-reviewed journal
publications, case reports, case series, or letters to the
editor, (3) provided no relevant outcomes or no outcomes
data, (4) were articles that were not given full-text access,
(5) or were publications in languages other than English.

Study selection

In accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA)
guidelines, two reviewers (A.K. and J.L.) independently
assessed the eligibility of each article to be included in
our review [24]. Any differences between the investiga-
tors were handled through discussion until a consensus
was reached. The initial query yielded 327 publications,
which were then screened for appropriate studies that
aligned with the purpose of our review. After the removal
of duplicates and reading each abstract, 16 studies were
selected for further consideration. The full text of each
article was then reviewed, of which 12 fulfilled our inclu-
sion and exclusion criteria. A comprehensive exami-
nation of each study’s reference list yielded no further
papers. Figure 1 depicts the selection procedure.

Data extraction and collection

A collaborative online spreadsheet (Google Sheets),
arranged by two reviewers prior to starting, facilitated
data extraction. Two independent reviewers (A.K. and
J.L.) extracted the data through a manual full-text review
with an identical review strategy. Any disagreements
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Fig. 1 This PRISMA diagram depicts the selection process for article inclusion

among the investigators were resolved via conversation
until consensus was attained. Name of authors, year of
publication, study design, sample size, and age (mean),
the algorithm used, number of features used, and any
relevant outcome reported were extracted from the
articles.

Assessment of methodological quality

The Methodological Index for Non-randomized Stud-
ies (MINORS) tool was used by the two reviewers (A.K.
and J.L.) to independently evaluate the methodological
quality and internal and external validity of all included
studies [25]. Twelve evaluation criteria are included in
MINORS, of which the first eight are relevant to non-
comparative studies with four additional items applica-
ble to comparative studies. A score of 0 (not reported),
1 (reported but inadequate), or 2 is assigned to each item
(reported and adequate). For non-comparative studies,
the maximum score is 16, and for comparative studies,
the maximum score is 24, with higher values indicating
higher study quality.

Data synthesis

A meta-analysis was not carried out due to the hetero-
geneity of ML algorithms, the presentation of the data,
and the outcomes studied. Due to the absence of dis-
tinct data, analyses by age groups and gender were also
not possible. For each study and result, all the data were
gathered and were narratively described.

Primary and secondary study outcomes

Our primary study goal was to determine the ability of
machine learning to predict the outcomes of SA. Of the
included studies, nine studies evaluated the accuracy of
machine learning to predict SA outcomes. These studies
reported PROMs, 30-day complications, and clinical out-
comes such as shoulder ROM (with some reporting mean
absolute error [MAE]). The secondary objective was to
ascertain whether machine learning is capable of forecast-
ing healthcare utilization for SA and the number and type
of features that can be used to accurately make predictions.
Four studies evaluated either length of stay (LOS), opera-
tive time, discharge disposition, or hospitalization costs.
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Results

Included studies

The final analysis included 12 studies involving 201,649
patients with an average mean age of 65.2 +8.23 years
(Table 1) [22, 26—36]. There were 43.1% males (86,985)
and 56.9% females (114,664). All of the studies were of
retrospective design, with an average MINOR score
of 14.33+0.78. Five studies used national databases,
four of which used the American College of Surgeons
National Surgical Quality Improvement Program (ACS-
NSQIP); one used the National Inpatient Sample (NIS
database); five studies used a multicenter database, and
two studies used data from a single institution. Five
studies evaluated both rTSA and aTSA separately, while
the other six studies did not distinguish between the
two. There were 13 different ML algorithms used in the
study, including Logistic Regression, K-Nearest Neigh-
bor, Random Forest, Naive-Bayes, Decision Tree, Gra-
dient Boosting Trees, Artificial Neural Network, Linear
Regression, XGBoost, Wide and Deep, Stochastic Gra-
dient Boosting, Support Vector Machine, and Elastic-
Net Penalized Logistic Regression.

Machine learning and SA outcomes

Nine of the twelve studies agreed that ML could predict
the outcomes of SA (Table 2) [22, 27, 29-31, 33-36].
Three studies reported that ML could predict 30-day
postoperative complications, with one also advocat-
ing for the ability of ML to predict any adverse event,
transfusion, extended length of stay, surgical site infec-
tion, reoperation, and readmission [27, 33, 34].

ML was also able to predict ROM at different postop-
erative time points. Kumar et al., in two different stud-
ies, reported that machine learning (Wide and Deep
and XG Boost) could predict postoperative ROM, with
a mean absolute error (MAE) between+18° to 21.8°
for active abduction, + 15° to 19.2° for forward flexion
and +10° to 12.6° for external rotation [22, 31]. Both
studies ran independent models for TSA and rTSA
cases as well, finding similar predictability between
both. Similarly, in a different study, Kumar et al. showed
that machine learning could predict postoperative min-
imal clinically important difference (MCID) internal
rotation with a 90% accuracy for anatomic TSA and an
85% accuracy for rTSA [30]. Five articles demonstrated
that ML could accurately predict PROMs [22, 29, 31,
35, 36]. Kumar et al. were able to identify patients
undergoing either TSA or rTSA that would have PROM
improvement exceeding the MCID in multiple studies
[22, 29, 31], while McLendon et al. demonstrated that
ML could predict the degree of improvement in ASES
scores by around 95% [35].
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Machine learning and healthcare utilization for SA

The four studies on LOS, operative time, discharge dispo-
sition, or hospitalization costs were in agreement regard-
ing ML ability to predict different aspects of healthcare
(Table 3) [26, 28, 33, 34]. Two studies reported that ML
could accurately predict LOS of patients, with one study
reporting accurate disposition for patients remaining
hospitalized <1 day or>3 days following SA [26]. Kar-
nuta et al. were able to predict length of stay with an
accuracy of 79.1% for acute or traumatic conditions for
their inpatient admission and 91.8% for chronic or degen-
erative conditions [28]. Lopez et al. were able to predict
operative time with 85% accuracy [34]. The authors also
used two different ML algorithms to predict non-home
discharge with an accuracy greater than 90% [33]. Using
a different algorithm, Karnuta et al. were able to predict
disposition to home with an accuracy of 70% [28]. They
also predicted total inpatient costs after SA with an accu-
racy of 70.3% for acute conditions and 76.5% for chronic
conditions [26].

Machine learning and features

Six of the articles reported on the number and type of
features required for ML to make any of the above pre-
dictions (Table 4) [29-32, 35, 36]. In three different
studies, Kumar et al. demonstrated that utilizing the
minimal-feature model (19 features) had comparable
accuracy as compared to using the full-feature model (291
features) in predicting ROM and PROMs for either TSA
or r'TSA (Table 5) [29-31]. Additionally, they discovered
that only slight improvements in MAEs were observed
for each outcome measure when the minimal model
was supplemented with information on implant size
and/or type as well as measurements of native glenoid
anatomy [29, 30]. In all of their studies, Kumar et al.
showed that the presence of radiographical information
does not provide significant predictive ability to ML
algorithms [29-31]. Follow-up duration and composite
ROM were the most important or predictive features
for the full-feature model and the minimal-feature model,
respectively [27, 29].

Polce et al. were able to accurately predict patient sat-
isfaction based on 16 features. For the support vector
machine algorithm, they found the five most predictive
variables to predict patient satisfaction were baseline
SANE score, exercise and activity, insurance status, diag-
nosis, and preoperative duration of symptoms [36]. In
two different studies, Kumar et al. reported on the best
predictors of postoperative outcomes, citing preoperative
Shoulder Pain and Disability Index (SPADI) scores, post-
operative SAS scores, ASES, UCLA, and Constant scores
overall as the most predictive [29, 32]. Finally, McLendon
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Table 5 The 19 features included in the minimal-feature model by Kamath et al.

Features Description
Age Age in years
Weight Weight in Ibs
Height Height in inches
Sex Male or female

Prior shoulder surgery
Dominant-sided surgery
Primary diagnosis
Comorbidities

Preop active abduction
Preop active FE

Preop active ER

Preop passive ER

Has the patient previously had a surgical operation on the shoulder?
Will the upcoming arthroplasty be on the patient’s dominant shoulder?
What is the patient’s primary diagnosis?

What are the patients'comorbidities?

Active arm elevation in frontal plane

Active arm elevation in sagittal plane,

Active lateral rotation of arm, with arm at side

Passive lateral rotation of arm, with arm at side

Preop IR score

Active medial rotation of arm, with arm at side; unitless:

8-point numeric scale with the following discreet assignments based on motion to vertebral
segments: 0, no motion; 1, hip; 2, buttocks; 3, sacrum; 4, L5 to L4; 5,L3to L1;6,T12toT8;and 7, T7

or higher
Preop Global function score

Patient assessment of ability to use shoulder prior to surgery via Global Shoulder Function score;

11-point score (0-10), with 10 indicating full or normal mobility

Preop VAS Patient assessment of pain experienced on daily basis prior to surgery via VAS pain score; 11-point
score (0-10), with 10 indicating extreme pain

Preop pain at worst

Patient assessment of worst pain experienced on daily basis prior to surgery; 11-point score (0-10),

with 10 indicating extreme pain

Preop pain lying on the side

Patient assessment of pain experienced when lying on affected side prior to surgery; 11-point

score (0-10), with 10 indicating extreme pain

Preoperative pain when touching back of neck

Patient assessment of pain experienced when touching back of neck prior to surgery; 11-point

score (0-10), with 10 indicating extreme pain

Preoperative pain when pushing with affected arm  Patient assessment of pain experienced when pushing with affected arm prior to surgery; 11-point
score (0-10), with 10 indicating extreme pain

Ibs pounds, VAS visual analogue scale, L Lumbar, T Thoracic, FE forward elevation, ER external rotation, IR internal rotation

et al. demonstrated that both the preoperative ASES and
morphological variables of the shoulder were required in
combination to accurately predict the improvement in
ASES scores [35].

Discussion

All 12 articles were consistent in reporting that machine
learning could accurately predict outcomes and com-
plications after SA. ML also seems to be successful at
predicting post-SA PROMs. While ASES was the most
common outcome score predicted, there was a high vari-
ability in outcomes tested and predicted among studies.
Multiple studies also focused on predicting improvement
greater than established PROM MCIDs [22, 29, 35]. This
level allows for increased standardization and clinical
conclusions from the data and should be used in future
studies as well.

Lopez et al. and Gowd et al. both validated the abil-
ity of their ML algorithms to predict complications,
while Gowd et al. also noted that their algorithm out-
performed comorbidity indices-alone models [27, 33,

34]. This is similar to results seen in both hip and knee
arthroplasty. For instance, Harris et al. demonstrated that
neural network models had good accuracy in determin-
ing the likelihood a patient would experience renal or
cardiac complications [15]. The ability of ML to predict
outcomes can help with surgical risk classification and
enable surgeons to use measures to lower complications
and improve outcomes.

In addition to outcome prediction following SA, ML
was able to predict different healthcare utilization factors
such as LOS and discharge disposition with high accu-
racy and reliability. This is a valuable tool that may help
lower healthcare-related costs. Calkins et al. reported
that outpatient SA led to a charge reduction of $25,509
to $53,202 per patient compared to inpatient SA, and
this data can be used preoperatively for patient disposi-
tion planning [37]. Additionally, disposition planning to
non-home facilities is commonly delayed, resulting in
extended hospital LOS, higher expenses, and increased
patient morbidity and mortality [38—40]. By using ML to
predict which patients would be discharged to non-home



Karimi et al. Arthroplasty (2024) 6:26

facilities, surgeons may organize ahead of time to accel-
erate the discharge process, which may lower healthcare-
related costs and potentially mitigate adverse events.

Although ML in clinical use is promising, the accuracy
of prediction is highly sensitive to the algorithm used and
the number and type of features chosen as input values.
Kumar et al. were able to demonstrate accurate PROMs
following SA using as little as 19 features [29-31]. The
authors found that the SAS score, which is a composite
of ASES sub-questions, was one of the most accurate fea-
tures. Unfortunately, there is no consensus on the type or
amount of features that most accurately predict outcomes
among a wide variety of patients. There were 13 different
algorithms used across studies, all of them showing rela-
tively strong predictive ability. While increasing features
logically seems to add granularity and detail to predic-
tive algorithms, it also adds an element of complexity that
may not be easily reproducible or clinically significant.
As more algorithms are created and validated, the most
efficient and generalizable algorithm will hopefully be
elucidated. However, currently, there does not seem to be
a specific algorithm that is significantly superior to other
types of algorithms. In our study, seven articles utilized
multiple algorithms for their studies and demonstrated
similar accuracy between the algorithms used.

In addition, only four studies ran independent models
for TSA and rTSA cases [22, 29-31]. Karnuta et al. was
the only other study that separated TSA and rTSA cases
[28]. The other studies either pool all cases together or
do not differentiate which types of shoulder replacements
they use. Furthermore, there is some inconsistency
among the included articles about how shoulder arthro-
plasty is referred to (TSA denoting all shoulder arthro-
plasties versus denoting only anatomic total shoulder
arthroplasties). Having a clear delineation of which pro-
cedures are being included as well as separate models for
TSA and rTSA cases is important for all future ML stud-
ies to do. The two procedures, including technical factors
as well as patient selection, are very different. Factors that
lead to successful outcomes are also very different in both
procedures, highlighting the need for independent mod-
eling. Even though the limited available studies had simi-
lar predictability for all modeled outcomes for both TSA
and rTSA models, this needs to be further studied (and
statistically compared, which was not done in our review)
to definitively determine whether one model can accu-
rately predict both types of procedures as one cohort.

Finally, many studies only tested their algorithms at one
center with one patient population. Testing their algo-
rithms among multiple centers and patient populations
strengthens the algorithm’s ability to accurately predict
outcomes in a wider variety of populations, increasing
its generalizability to all patient types. Furthermore, all
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12 studies were internally validated. It is also important
to externally validate these algorithms, given the propen-
sity for ML algorithms to over-fit data that it has been
exposed to and under-fit data it has not yet been exposed
to. External validations will help increase trust and adop-
tion of these new tools. However, these points highlight
the importance of further testing of ML algorithms to not
only determine a universal algorithm that is used consist-
ently across the country but also to determine the set of
features that allows for accurate predictions using differ-
ing algorithms. In a systematic review of the availability
of externally validated ML models with orthopedic out-
comes, Groot et al. reported that only 10/50 of the ML
models predicting orthopedic surgical outcomes were
externally validated, but those that had good discrimina-
tion ability [41]. Despite the crucial need to evaluate pre-
diction models on new datasets, this is seldom done due
to data protection by institutions and journal preferences
for publishing developmental studies. Algorithms with
poor external validation performance may face publica-
tion bias.

Limitations

Our analysis has several limitations. Firstly, all the
included studies in our analysis had a retrospective
design, which limits the capability to accurately deter-
mine the ability of machine learning to predict outcomes
of SA prospectively. Secondly, there was heterogeneity
across the studies regarding the type of algorithms used
and the number of features used to train the algorithm,
and the outcomes they studied. However, this may allow
for improved generalizability of our results as there are
frequently incomplete patient data depending on the
algorithm used. Thirdly, five of the studies included were
by Kumar et al., which limits the generalizability of the
study. However, they used a multicenter database, which
contained a large composite of patient information from
multiple institutions, thus increasing the generalizabil-
ity of the study. Despite these limitations, our system-
atic review provides the first summary of the available
literature on the ability of machine learning to predict
the outcomes of shoulder arthroplasty and healthcare
utilization.

Conclusion

Our systematic review found that machine learning could
accurately predict both ROM and PROMs, complica-
tions, and healthcare utilization of patients undergoing
TSA and rTSA. These findings encourage continued
efforts to utilize both machine learning and other tech-
nology to improve patient outcomes of shoulder arthro-
plasty. Efforts should focus on determining which
patients are at risk of poor outcomes following shoulder
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arthroplasty and potential ways to mitigate these risks
preoperatively and provide the patient with appropri-
ate preoperative counseling to enhance shared decision-
making. With multiple machine learning algorithms
being utilized in the current literature, future studies
should establish a consistent algorithm to ensure patients
who are at an increased risk for complication are reliably
identified to receive optimal treatment.
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