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Novel Influences of IL-10 on CNS
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Analyses of Cytokine Networks and
Microglial Morphology
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Rajanikanth Vadigepalli 1*

1Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy and Cell

Biology, Thomas Jefferson University, Philadelphia, PA, United States, 2Center for Research in Neuroscience, The Research
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Coordinated interactions between cytokine signaling and morphological dynamics of

microglial cells regulate neuroinflammation in CNS injury and disease. We found that pro-

inflammatory cytokine gene expression in vivo showed a pronounced recovery following

systemic LPS. We performed a novel multivariate analysis of microglial morphology

and identified changes in specific morphological properties of microglia that matched

the expression dynamics of pro-inflammatory cytokine TNFα. The adaptive recovery

kinetics of TNFα expression and microglial soma size showed comparable profiles

and dependence on anti-inflammatory cytokine IL-10 expression. The recovery of

cytokine variations and microglial morphology responses to inflammation were negatively

regulated by IL-10. Our novel morphological analysis of microglia is able to detect subtle

changes and can be used widely. We implemented in silico simulations of cytokine

network dynamics which showed—counter-intuitively, but in line with our experimental

observations—that negative feedback from IL-10 was sufficient to impede the adaptive

recovery of TNFα-mediated inflammation. Our integrative approach is a powerful tool

to study changes in specific components of microglial morphology for insights into

their functional states, in relation to cytokine network dynamics, during CNS injury and

disease.

Keywords: CNS inflammation, microglia morphology, TNFα, IL-10, cytokine adaptation

INTRODUCTION

The interplay between pro and anti-inflammatory cytokines in the central nervous
system (CNS) determines the outcome of inflammation after CNS injury and in disease
(DiSabato et al., 2016). Neuroinflammation is regulated by cytokines that interact
through complex signaling networks (Benveniste, 1992; Codarri et al., 2010; Crotti
and Ransohoff, 2016), and functions related to morphological properties of microglia
(Kettenmann et al., 2013). While microglia-mediated neuroinflammation is a signature
of infection, neurotrauma, and many neurological, neurodegenerative, and psychiatric
diseases (David et al., 2015; Witcher et al., 2015; Hong et al., 2016; Vasek et al., 2016),
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microglia have homeostatic roles which are important for
neural development and synaptic function (Tremblay et al.,
2010; Schafer et al., 2012; Sipe et al., 2016). The complexity
of the neuroinflammatory response is such that it can be
both detrimental and beneficial to CNS injury and recovery,
depending on the timing of inflammation and context of
the injury (Sierra et al., 2013; David et al., 2015; Gadani
et al., 2015). The pro-inflammatory cytokine TNFα and the
anti-inflammatory cytokine interleukin-10 (IL-10) are known
to play key roles in the balance of inflammation and are
mediators in many CNS injuries and diseases (Ishii et al.,
2013; Montgomery et al., 2013; Kroner et al., 2014; Chakrabarty
et al., 2015; Guillot-Sestier et al., 2015; Madsen et al., 2016).
However, a basic understanding of the kinetics of the TNFα
response in relation to the anti-inflammatory control by IL-10 is
lacking.

In our previous work, we performed an extensive literature
search and formulated a microglia-specific cytokine network
(Anderson et al., 2015). Based on this network, we developed
a mathematical model of cytokine regulatory dynamics. Our
microglia model predicted counter-intuitively that the anti-
inflammatory cytokine intereukin-10 (IL-10) impedes adaptation
or recovery of pro-inflammatory TNFα levels to baseline
under conditions of inflammatory stimulation. This prediction
was supported by in vitro evidence using bone marrow-
derived macrophages (Anderson et al., 2015). However, this
has yet to be validated in cultures of adult microglia or
in vivo.

In addition to the production and response to cytokines,
microglia exhibit a range of morphologies that reflect changes in
function, their response to injury and disease, and their ability to
shape the neuroinflammatory microenvironment (Walker et al.,
2014). In response to injury, microglia alter their morphology
within minutes (Davalos et al., 2005; Hines et al., 2009) and
long-term changes in microglial morphology have been related
to impairments in their immune function (Erny et al., 2015).
Morphological changes in microglia are essential for processes
such as phagocytosis (Tremblay et al., 2010; Abiega et al., 2016);
however, it is not known if, and how, changes in cytokine
networks during inflammation induce changes in microglial
morphology.

In the present work, we investigated whether IL-
10 controls TNFα expression dynamics and changes in
microglial morphology in response to inflammation. To assess
microglial morphology, we developed a novel unsupervised,
multivariate analysis that is capable of detecting subtle changes
in morphological parameters. We show here that IL-10-mediated
feedback inhibition of TNFα in vivo after LPS stimulation
influences adaptation of both TNFα expression and microglial
morphology. We developed a novel mathematical model of
multi-cellular cytokine networks in vivo which illuminated
potential feedback interactions that could explain our CNS data
in response to systemic LPS stimulation.

This combined analysis of cytokine networks and
morphological changes in microglia could serve as a powerful
approach to examine pathological CNS states and responses to
interventions.

MATERIALS AND METHODS

Animals
All procedures were approved by the Animal Care Committee
of the Research Institute of the McGill University Health Centre
and followed the guidelines of the Canadian Council on Animal
Care and the ARRIVE guidelines for reporting animal research
(Kilkenny et al., 2010). Male C57BL/6 (WT) mice or IL-10−/−

mice on the same background (age 8–12 weeks) (Siqueira Mietto
et al., 2015) were kept under a 12 h light/dark cycle with ad
libitum access to food and water.

Model of CNS Inflammation
Mice were injected intraperitoneally with saline or Escherichia
coli lipopolysaccharide (LPS; 0.33 mg/kg; serotype 0111:B4,
Sigma; n = 3–4 per group) and sacrificed at 24 h, 3 and 5 days
after injection.

Cytokine Profiling
We performed quantitative real time polymerase chain reactions
(RT-qPCR) to assay for the expression levels of multiple
cytokines. Mice were deeply anesthetized by intraperitoneal
injection of ketamine (50 mg/kg), xylazine (5 mg/kg), and
acepromazine (1 mg/kg), cardiac perfused (0.1 M PBS, pH
7.4) 6, 24 h, 3, or 5 days after injection, and brains or spinal
cords snap-frozen for analysis. Tissue was homogenized and
total RNA was extracted using the RNeasy Lipid Tissue Kit
(Qiagen, CA). Reverse-transcription was performed with the
Omniscript Reverse Transcription Kit (Qiagen, CA), and qPCR
was performed using 1 mL of cDNA with Fast SYBR Green
Master Mix (Applied Biosystems, CA) on a Step-One Plus
qPCRmachine (Applied Biosystems). Peptidylprolyl isomerase A
(PPIA) was used as an internal control gene. The 2−11Ct method
was used to calculate the cDNA expression fold change following
standardization relative to PPIA (Schmittgen and Livak, 2008).
All primers had a Tm of 60◦ C. Primer sequences were as follows:
Tnf—fwd: 5′ TTG CTC TGTGAAGGGAATGG 3′, rev 5′ GGC
TCT GAG GAG TAG ACA ATA AAG 3′; Il6—fwd 5′ CTT CCA
TCC AGT TGC CTT CT 3′, rev 5′ CTC CGA CTT GTG AAG
TGG TAT AG 3′; Il1b—fwd 5′ ATG GGC AAC CAC TTA CCT
ATT T 3′, rev 5′ GTT CTA GAG AGT GCT GCC TAA TG 3′;
Tgfb1—fwd 5′ CTG AAC CAA GGA GAC GGA ATA C 3′, rev 5′

GGG CTG ATC CCG TTG ATT T 3′.

Tissue Processing and Morphological
Image Analysis
Animals were deeply anesthetized as mentioned above and
perfused via the heart with 4% paraformaldehyde in 0.1 M
PBS, pH 7.4. Thoracic spinal cords segments were removed
and processed for cryostat sectioning (30 µm-thick coronal
sections). Immunofluorescence was performed using rabbit anti-
Iba1 (1:1,000; Wako) and detected using secondary antibody
anti-rabbit Alexa Fluor 488 (1:500; Invitrogen). Sections were
visualized using a confocal laser scanning microscope (FluoView
FV1000; Olympus) and 30 µm z-stacks were prepared using
FV10-ASW3.0 software (Olympus). Iba1-positivemicroglia were
imaged from the dorsal horn gray matter of the spinal cord. A
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total of 218 microglia from 28 mice were reconstructed with
semi-automated procedures using IMARIS software (Oxford
Instruments). Every complete microglia (full cell body and
processes within the 30 µ m z-stack) within the field of view
was reconstructed. The IMARIS software facilitates a semi-
automated, interactive filament tracing method to reconstruct
cells contained within confocal image stacks. Selected cells were
subjected to the FilamentTracer algorithms that estimate the
numeric values of features including geometric properties of
the somata and processes. The FilamentTracer processed one
channel (color) at a time, extracted objects corresponding to
somata and process segments, and quantified lengths, areas,
volumes, and between-segment angles. Following the automatic
extraction of geometric features, manual editing was performed
to delete erroneous process segments. Importantly, all analyses
were completed in an unbiased manner, with respect to
cell selection, by an individual blinded to the experimental
conditions.

Time-Series Analysis
Our general approach to statistically evaluating differences
between the WT and KO conditions entailed comparing
temporal profiles rather than individual data points (Storey et al.,
2005; Anderson et al., 2017). We used kernel density plots
visualize the distributions of morphological variables using the
beanplot package in R (Kampstra, 2008). To determine whether
particular morphological features exhibited differential dynamic
profiles in WT versus IL-10 KO microglia, we implemented the
optimal discovery procedure (Storey et al., 2007), as documented
in our recent work (Anderson et al., 2017). According to this
method, we fitted natural cubic splines to a given feature’s
temporal profile for each genotype and compared the computed
error (i.e., sum of squared error, SS) to the error obtained
if a single spline was fitted to the entire data set without
regard for genotype. The latter error is termed SS0 and
the former is SSA, corresponding to the null and alternative
hypotheses, respectively. For a given feature i, a statistic was
computed to describe the relative increase in goodness of fit
achieved by including genotype-specific spline models: Fi =
(

SS0i − SSAi
)

/SSAi . The distribution of this statistic was estimated
using bootstrap re-sampling and the resulting p-values were
computed and corrected for multiple testing (Storey et al.,
2005, 2007). This analysis was implemented using the EDGE
package for the statistical programming language R (Storey
et al., 2015; R-Core-Team, 2016). In particular, because we
were comparing overall temporal profiles defined by spline
fits, rather than individual data points, post-hoc analyses of
genotype differences at specific time points were not applicable.
Rather, our analyses provided information as to whether the
general dynamic profiles differed as a function of genotype.
For instance, consider the plot for soma area in Figure 3C.
Our ODP analyses showed that fitting two spline curves, one
for each genotype (black and magenta), resulted in a superior
fit compared to fitting a single curve to the entire data set,
based on the F statistic and associated corrected p-value (i.e.,
q-value) generated by our analysis (q = 0.04, see Table 2). This
finding suggests that the dynamic responses of the soma area

following an inflammatory trigger were distinct with respect to
genotype.

Principal Component Analysis (PCA)
PCAwas utilized to illuminate inter-cellular relationships defined
by multivariate measures that can be visualized in two or three
dimensions. This is accomplished by projecting the multivariate
data set onto a basis defined by coordinates aligned with vectors
through highly variable regions of feature space. Importantly,
groups of cells with distinguishable phenotypes can often be
categorized by spatially separated projections in PC space.
The respective projections of the cellular data in the principal
component subspace are known as “scores” that are determined
by “loadings” which indicate the relative contributions of each
variable to the separation of cellular score data. Hence, variables
or features with higher absolute loadings, corresponding to the
PCs utilized for the data reduction, have a greater influence on
the representation of the data in the PC space. Further details
regarding the theoretical background and implementation details
of our PC analysis are available in our previous work (Anderson
et al., 2016).

Feature Selection
We identified features for NMF analysis as follows. We
consideredmorphological features, or their distribution statistics,
with ODP P < 0.05 or PCA loading magnitude > 0.2 (computed
across the first four PCs (Anderson et al., 2016)) as the most
significant features (n = 65) for further analysis (Table 2). Note
that in some cases either the loadings or the ODP p-values did
not meet our criteria. This “inclusive” feature selection approach
allowed us to include features that showed substantial variation
without significant differences in temporal profiles (based on
α = 0.05), or significant genotype-specific temporal dynamics
without substantial contributions to the variance (based on the
loading magnitude cutoff of 0.2).

Non-negative Matrix Factorization (NMF)
The NMF analysis incorporates elements of both dimensionality
reduction and clustering to determine groups of features that
are associated with varying degrees of expression in distinct
clusters of cells (Brunet et al., 2004). Our NMF analysis was
applied to decompose a data matrix D, with morphological
features corresponding to rows and samples representing each
column, into two non-negative matrices—the basis matrix W
and the coefficient matrix H—such that the data matrix D is
proportional to the product of the basis and coefficient matrices
(D ≃ WH) (Lee and Seung, 1999). W provided basis vectors for
the projection of coefficients H for each sample. The rows of W
correspond to the features, and each column of W represents a
meta-feature. Each meta-feature is a basis vector with a weight
for each feature. Because NMF algorithms are generally designed
to optimize sparsity of W and H (Gaujoux and Seoighe, 2010),
most elements in each meta-feature are close to zero and all other
elements compose a feature set that defines the meta-feature. The
coefficient matrix H has a column for each sample and a row for
each meta-feature. Hence, element (i, j) ofH (i.e.,Hi,j) represents
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the contribution of meta-feature i to the morphological profile of
sample j.

In implementing NMF, there are a number of ways to
initialize W,H and to algorithmically refine the final matrices
(Gaujoux and Seoighe, 2010). Further, the fidelity of the resulting
factorization can be determined based on the likelihood that
samples will cluster together across multiple iterations of the
NMF algorithm, the degree of W,H sparsity, and/or the degree
of agreement between the factorization product and the original
data matrix (Brunet et al., 2004; Gao and Church, 2005; Cieślik
and Bekiranov, 2014). We employed a plethora of methods
to initialize the matrices (Brunet et al., 2004; Boutsidis and
Gallopoulos, 2008; Marchini et al., 2013) and implement the
refinement algorithm (Lee and Seung, 2001; Brunet et al., 2004;
Badea, 2008; Gaujoux and Seoighe, 2010) and evaluated the
results based on all aforementioned criteria. We found that
singular value decomposition-based initialization (Boutsidis and
Gallopoulos, 2008) coupled with optimization using a modified
version of the original NMF algorithm (Lee and Seung, 1999),
in which the objective function contains an offset term that
accounts for features expressed at constant levels across samples
(Badea, 2008), provided a viable approach when considering
all fidelity criteria. Our implementation of NMF established
a number of morphological cell states based on a predefined
“rank” term. We implemented the NMF analysis with ranks
spanning the range 1–12. We settled on rank = 6 as this
setting facilitated interpretability of the resulting factorization at
minimal expense of error and sparsity, consistent with previous
approaches (Brunet et al., 2004).

The basic computations underlying NMF are illustrated in
Figure 4A. In matrix computation, the element of the Data
matrix in the top left corner (1,1) is computed by taking every
element in the first row ofW, multiplying each of these values by
the corresponding values in first column ofH, and taking the sum
of these products. To compute the value of the Data matrix in the
second row of the first column (2,1), take the sum of multiples of
the second row of W and the first column of H. To compute the
value in the second row of the second column (2,2), take the sum
of multiples of the second row ofW and the second column ofH.
Thus, the Data heatmap is organized based on the organization
of bothW andH.

Multidemensional Scaling (MDS)
MDS is a commonly employed method for dimensionality
reduction (Park et al., 2014). This analysis was based on distances
di,j computed using the Spearman rank correlation coefficients
ρi,j between two cells i and j where the correlation was computed
across all features: di,j = 1 − ρi,j. The MDS algorithm was used
to plot cellular data in 3D by minimizing the difference between
Euclidean distance and distance in MDS space, where inter-
cellular distance was defined by the correlation based distance
metric d. In contrast to PCA, MDS facilitates the distinction of
cell classes based on nonlinear relationships between features.We
employed nonmetric MDS as described in detail previously (Park
et al., 2014).

The MDS analysis was based on the correlation data from
Figure 5D and provides a simplified representation of each

sample as a point in 3D space such that the distances between
points were scaled by the correlation between the respective
samples. Samples with high correlations were represented
by points that were close together. Samples with negative
correlations are represented by points that were farther apart
(Figure 5E). Both the correlation data and its transformation
into MDS coordinates—when organized or colored based on
the NFM clusters—showed that within a given NMF cluster,
the global morphological profiles were similar. This analysis
provides an independent way to view the similarities/differences
within and between NMF-based clusters. The generally high
correlations within clusters, and close cluster groupings in MDS-
space, independently support the specificity of the NMF-based
cluster/class identification.

Morphological Adaptation Analysis
The adaptive recovery of individual morphological properties
was assessed as follows. We first computed Z-score averages
at each time point, and scaled these values to the interval
Z̄ ∈ [0,1]. We implemented this scaling transformation because
our main interest was in evaluating the relative extent of
recovery to baseline following the peak response to LPS. Because
some temporal profiles of morphological variables decreased (as
opposed to increased) following LPS application, we evaluated
whether adaptation should be considered based on recovery to
baseline following an increase or decrease in each morphological
feature (see Figure 3C). We evaluated the maximal deviation
from baseline by computing the following quantities:

1max =
∣

∣Z̄max − Z̄t0
∣

∣

1min =
∣

∣Z̄min − Z̄t0
∣

∣

where Z̄max is the maximal averaged scaled Z-score, Z̄min is the
minimal averaged scaled Z-score, Z̄t0 is the averaged scaled Z-
score under baseline conditions (t= 0 days), and |.| is the absolute
value of the argument. For cases in which ∆min > ∆max
was obtained, consistent with an LPS-mediated decrease in the
corresponding morphological variable, we set the respective Z-
score to 1− Z̄ for our assessment of adaptation:

A = 1−
Z̄final − Z̄t0

Z̄peak − Z̄t0
(1)

where Z̄peak is the mean peak Z-score and Z̄final is the mean
Z-score at time t = 5 d. Note that we did not compare
adaptation indices betweenWT and IL-10 KO in instances where
one genotype showed an LPS-mediated increase whereas the
other genotype showed an LPS-mediated decrease in a given
morphological feature. The standard deviation of the adaptation
metric A was estimated as follows using propagation of error
(Anderson et al., 2015):

σ̂ 2
A =

∑

∀Zi
SEM2

Zi

(

∂A

∂Z̄i

)2

(2)

where all ∀Z̄i refers to Zpeak and Zfinal, SEM refers to the estimated
standard deviation of the mean (standard deviation/

√
n), and
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Z̄0 was treated as a constant. Note that the SEM terms
were computed using individual Z-score values transformed
with the same scaling factors used to establish Z̄ ∈ [0,1],
that is, the min and max terms applied for Zscaled =
(Z −min (Z)) / (max (Z) −min (Z)), as described above for the
computation of A.

We compared adaptation between WT and IL-10 KO when
the following conditions were met: min (AWT ,AKO) > 0.5,
AWT > −0.2, AWT < 1.2, AKO > −0.2, and AKO < 1.2. To
evaluate the degree to which adaptation differed betweenWT and
IL-10 KO, we estimated p-values as follows (Ogunnaike, 2011).
We first defined the following T-statistic:

T = AKO − AWT
√

2S2
nmin

, S = nmin − 1

df

(

σ̂ 2
A,WT + σ̂ 2

A,KO

)

,

df = 2nmin − 2

where nmin is the minimal number of samples across all time
points and both genotypes, considered for a given feature set.
This choice of nmin tends to reduce the value of the T-statistic and
therefore provides amore conservative estimate of its probability.
We then used the t-distribution defined according to df degrees
of freedom to estimate two-tailed p-values associated with T
to test the null hypothesis that AKO − AWT = 0 against the
alternative hypothesis that AKO − AWT 6= 0. For each feature
set, we adjusted the p-values for multiple testing by applying
the Benjamini-Hochberg procedure with the qvalue package in
R (Dabney et al., 2010). For our analyses of computed adaptation
indices, we plotted errors associated with our adaptation indices
based on estimates of 95 confidence intervals defined as follows:

CI95 = A± t0.05/2
(

df
) σ̂A√

nmin

Statistical Analysis
Statistical methods included the analysis of variance (ANOVA)
with subsequent multiple comparison tests using the Fisher
least significant difference (LSD) test with the Sidak correction
(Figures 6A,B) and the hypergeometric test (using phyper in R).
For the TNFα gene expression analysis depicted in Figure 6A,
we performed a two-way ANOVA and then we compared the
WT genotype to the IL-10 KO genotype at all time points.
This analysis was motivated by our interest in investigating
differences in the peak response between the WT and KO
conditions. Similarly, for the analysis presented in Figure 6B, we
utilized a two-way ANOVA. To specifically assess whether there
were cases in which differences occurred relative to baseline for
means computed across all features within given feature sets,
we performed post hoc tests comparing feature set means to
the mean at time = t0 within each genotype. In addition, we
performed post hoc tests to compare theWT and IL10 KOmeans
at each time point (see Figure 6C).

Computational Modeling
We developed a novel computational model to account for the
dynamics of cytokine interactions between microglia and the
CNS environment. Our model builds on a previous modeling

formalism that we have successfully utilized to study cytokine
interaction network dynamics in microglia in vitro (Anderson
et al., 2015). The microglial compartment was formulated as
follows to simulate cytokine expression dynamics:

dCx

dt
=
(

1+ kx · LPS
LPS+ KLPS

)

(

∏

i

C
nix
i

C
nix
i + Kix

nix

)





∏

j

Kjx
njx

C
njx
j + Kjx

njx



− γxCx − γss,xCss,x (3)

Css,x = Cx (t = 0)

γss,x =

(

∏

i

C
nix
ss,i

C
nix
ss,i +K

nix
ix

)

(

∏

j

K
njx
jx

C
njx
ss,j +K

njx
jx

)

− γxCx

Css,x
(4)

Cytokine expression Cx = Cx (t) was modeled for the following
cytokines: x = TNFα, IL-1β, IL-6, TGFβ, IL-10, and CCL5.
Cytokine x could be produced at a maximal rate of 1 +
kx. The time-dependent production rate was modulated by
activation from cytokines Ci and inhibition from cytokines
Cj. Activation and inhibition were modeled with sigmoidal
functions characterized by half-maximal activation constant Kix

and cooperativity coefficient nix. The degradation of Cx was
modeled with both concentration-dependent and concentration-
independent rate constants: γx and γss,x. The initial value of
cytokine x was set to Css,x = 0.1 for all cytokines, and the
concentration-independent degradation constant that was set to
maintain a constant steady state (Equation 4) in the absence of
stimulation. Based on available data, LPS stimulation was applied
to all microglial species other than TGFβ as explained previously
(Anderson et al., 2015). We set the stimulus duration to 16 h, but
the qualitative characteristics of our simulation were robust to
LPS stimulus duration.

We expanded our microglial model to incorporate the
inflammatory influences of the CNS microenvironment. We
formulated a CNS compartment of the model in which we
assumed that astrocytes were the primary source of TGFβ–
mediated feedback regulation of microglia (Norden et al., 2014).
We simulated the delay between microglial IL-10 production
and subsequent TGFβ production from the CNS environment
(Norden et al., 2014) based on a series of coupled first-order
systems (Ogunnaike and Ray, 1994):

τA
dA

(1)
TGF

dt
= kA ·MIL10 − γA · A(1)

TGF (5)

τA
dA

(i)
TGF

dt
= kA · A(i−1)

TGF − γA · A(i)
TGF , i = 1, 2, ..., n (6)

where MIL10 represents microglial IL-10, A
(i)
TGF represents

the i -th element in the cascade of terms leading up to

CNS environment TGFβ A
(n)
TGF . The rate constants for the

activation and degradation of the ATGF terms are kA and γA,
respectively, and τA is the time constant governing the interaction
dynamics. This formulation has been utilized extensively in
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engineering applications involving time delays between the
activation of process control components (Liu et al., 2013).
We note that this representation of CNS neuroinflammation by
a restricted repertoire of cytokines in only microglia and the
CNS microenvironment is an oversimplification of the biological
complexity. We address this issue in the discussion.

RESULTS

In vivo Analysis of Cytokine Expression
and Microglial Morphology Dynamics
To assess the in vivo expression of cytokines described as
important by our previous in silicomodeling, based on published
data, we investigated the temporal responses to systemic LPS
(0.33 mg/kg i.p) which elicits a pro-inflammatory cytokine
response in the brain in adult mice (Henry et al., 2009; Fenn
et al., 2012). The inflammatory responses of the CNS spinal
cord in vivo were distinct from in vitro data (Anderson et al.,
2015): (i) Tnf and Il6 were rapidly expressed with fast recovery
to the baseline level, (ii) Il1b showed rapid decay toward the
baseline, and (iii) Tgfb1 showed partial recovery of expression
with sustained upregulation for 5 days (Figure 1). The prominent
adaptive responses observed for Tnf and Il6 suggest that these
cytokines are regulated by robust negative feedback in vivo.

Microglial morphology is critical for both the chemical
and physical functions of microglia (Kettenmann et al., 2013;
Morrison and Filosa, 2013; Šišková and Tremblay, 2013; Yamada
and Jinno, 2013; Erny et al., 2015; Schafer and Stevens, 2015).
Because previous studies have not compared the dynamic profiles
of cytokine expression with the temporal responses of microglial
morphology, we assessed microglial morphology over time
following systemic LPS (Figure 2A). Based on our previous work,

FIGURE 1 | Dynamical analyses of cytokine network behavior in vivo. Spinal

cord tissue cytokine gene expression data following systemic LPS (0.33 mg/kg

i.p) at time = 0 (n = 3–4 mice per group).

we hypothesized that IL-10 could regulate neuroinflammation
through negative feedback, and we examined both wildtype
(WT) and IL-10 knockout mice (IL-10−/−; Figure 2B). We
reconstructed the morphological properties of 218 spinal cord
microglia fromWT and IL-10−/−. We analyzed an expansive set
of geometrical features related to microglial soma and processes
(Figure 3A, Table 1). Kernel density plots show the distributions
of morphological variables as a function of time for WT and
IL-10−/− (black and magenta, respectively) (Figure 3B). These
analyses illustrate the relative influence of LPS on morphological
properties in WT and IL-10−/− microglia over time. Note the
non-Gaussian forms of the distributions, many of which exhibit
long tails. In many cases, LPS (dosed IP at time = 0, t0)
resulted in an apparent expansion of the distributions. These
complexities highlight the utility of sensitive analytic methods
for deciphering the temporal properties of microglial responses
to neuroinflammation.

Unsupervised, Multivariate Analysis of
Microglial Morphology Reveals Distinct
Cell States Characterized by Functionally
Defined Sets of Morphological Properties
To comprehensively analyze the features of microglia, such as
number of branch points and branch point angles, which are
distributed variables in single cells, we assessed distributional
statistics related to center (mean, median, mode), spread
(standard deviation, variance, coefficient of variation), and shape
(skewness, and kurtosis), yielding 110 total features (Table 2).
To elucidate the morphological features with statistically
distinguishable dynamic profiles between WT and IL-10−/−, we
employed the optimal discovery procedure (ODP) (Storey et al.,
2005, 2007). This analysis facilitated the direct comparison of
temporal profiles (smooth curves in Figure 3C), as opposed to
individual data points, which is optimal for time-series analysis
(Storey et al., 2005). Several features showed genotype-specific
significant differences in the respective temporal dynamics (P
< 0.05; Figure 3C; Table 2–q-values). For distributed features
of microglial processes, we directly compared the underlying
distributions using the Kolmogorov-Smirnov (K-S) test and
observed several time- and genotype-specific differences (data
not shown). To determine whether the temporal dynamics
of global cell state variations were sensitive to IL-10, we
applied principal components analysis (PCA) to our multivariate
morphology data. This analyses revealed subtle but distinct
quantitative morphological differences between WT and IL-
10−/− microglia, particularly in the initial phase of the response
to LPS (t = 1 day; Figure 3D). Furthermore, our PCA data
facilitated the identification morphological features with high
variability that we utilized in downstream analysis (Table 2, see
Methods–Feature selection).

We next examined whether genotype-specific microglial cell
states could be segregated into distinct classes based on specific
groups of morphological features. We employed non-negative
matrix factorization (NMF), a highly effective technique to define
groups of features that are associated with varying degrees
of representation in distinct clusters of cells (Lee and Seung,
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FIGURE 2 | Immunofluorescent labeling and IMARIS reconstruction of microglial morphology in the spinal cord dorsal gray matter over time after LPS injection in WT

and IL-10 KO mice. Representative examples of Iba-1 labeled microglial morphology (green) in naive mice or 24 h, 3, and 5 days after systemic LPS (0.33 mg/kg i.p) in

(A) WT and (B) IL-10−/− mice. Below each Iba-1 image is the respective IMARIS reconstruction of microglial morphology (white). Dorsal horn gray matter was

imaged, as shown. Scale bar = 50 µm.

1999), which involves factorization of a data matrix D (Nf
morphological features measured in Ns cells) into a basis matrix
W of meta-features (a combination of individual features), and
a coefficient matrix H with entries corresponding to the non-
negative weight of each meta-feature in each sample (Figure 4A).
We utilized NMF to test whether particular combinations of
morphological features were overrepresented in specific subsets
of the microglial population. Because the interpretability of
multivariate analysis results is sensitive to the information
content of the variables included in the analysis, we implemented
a novel step-wise approach in which we initially identified
informative features based on independent ODP and PC
analyses. Figure 4B shows Z-score feature data with microglial
cells (columns of the heatmap) organized based on the clustering
of the coefficient matrix H, and rows organized based on the
clustering of the basis matrix W. The clarity of the Z-score
groupings, as indicated by the lines and diagonal pattern of
‘reddish blocks’, suggest that theWH decomposition (an estimate

of two matrices whose product approximates but is not identical
to the data set) provides a useful representation of the data
that facilitates its interpretation. Thus, the Z-score data matrix
(D) can be approximated by multiplying W and H (Figure 4B).
This analysis identified four clusters of features (“feature sets,”
fs1-4) and six clusters of discrete microglial cell states, each
characterized by a specific profile of feature-set representation
(c1-6; Figure 4B).

Our analysis revealed four clusters of morphological features
involving process ramification (fs1), soma size/shape (fs2),
process shape (fs3), and process size (fs4) (Figure 5A; Table 2).
There was considerable agreement between the features included
in each feature-set and previously identified feature relationships
(Yamada and Jinno, 2013; Kongsui et al., 2014). Feature
set 1 (fs1) was associated with large branch arbors with
numerous branch bifurcations and progressive decrements in
thickness from soma to terminal (Table 2). This feature set
was highly represented in both WT and IL-10−/− microglia
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FIGURE 3 | Time-series and multivariate statistical analyses reveal that IL-10 modulates the dynamics of microglial morphology. (A) Panels show an Iba1 stained

microglia (top) and a line sketch showing some of the main morphological features analyzed (bottom). (B) Kernel density plots show the distributions of various

morphological variables as a function of time for WT and IL-10−/− (black and magenta, respectively). These analyses illustrate the relative influence of LPS on

morphological properties in WT and IL-10−/− microglia. (C) Morphological features with statistically different dynamic profiles between genotypes were analyzed

using the optimal discovery procedure (ODP). Several features showed genotype-specific significant differences. As described in the methods, we used the ODP to

compare the temporal profiles of WT and IL-10−/− microglial features and we indicated the false discovery rate adjusted p-values (i.e., q-values) in the four panels;

see Table 2 for documentation of all q-values. (D) Principal component analysis of differences in morphological features at various times after LPS administration.

Note the difference between the two groups at t = 1 day.

from cluster 1 (Figure 5B), with features indicative of the
ramified morphology of healthy microglia. Fs2 was associated
with larger soma size, consistent with microglial activation
following LPS application (Kozlowski and Weimer, 2012).
Interestingly, cluster 2 microglia with relatively high fs2
levels were observed primarily in IL-10−/− (P = 0.019,
hypergeometric test), indicating that this cell state may be
associated with pro-inflammatory up-regulation associated with
the absence of IL-10. Fs3 was associated with the complexity
of branch shape, including features related to the angularity
of branching, the functional significance of which is not clear
(Karperien et al., 2013) and was represented equally in cluster
3 WT and IL-10−/− microglia. Fs4 was associated with the
size of the branches, indicated by features such as branch
length. Cluster 4-5 microglia showed relatively high levels of

fs4 morphological features and a trend toward predominant
representation in IL-10−/− microglia (P = 0.15). Cluster 6
microglia were characterized by moderate expression of all
feature sets. Overall, the morphological feature sets could be
summarized respectively to indicate the extent of ramification,
soma size/shape, process shape, and process size (Figure 5A,
Table 2).

When sample images of reconstructed microglia
representative of each NMF-based cluster were examined,
the six clusters were not easily or unambiguously identifiable
by visual inspection (Figure 5C). The heterogeneity seen within
and across microglial clusters highlights the need for detailed
morphological analyses across a range of experimental contexts,
based on large sample sizes of microglia, in an unbiased manner
(Walker et al., 2014). To confirm that our NMF results could not
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TABLE 1 | IMARIS labels and descriptors.

IMARIS

label—features

Renamed

label—features

Compartment Units Distributed Feature Primary Description

set cluster

Area Soma area Soma um2 No fs2 c2 Surface area of the soma

Ellipsoid.Axis.

Length.A

Soma ellipsoid

length A

Soma um No fs2 c2 Refers to parameters associated with

ellipsoidal fits to somata

Ellipsoid.Axis.

Length.B

Soma ellipsoid

length B

Soma um No fs2 c2 Refers to parameters associated with

ellipsoidal fits to somata

Ellipsoid.Axis.

Length.C

Soma ellipsoid

length C

Soma um No fs2 c2 Refers to parameters associated with

ellipsoidal fits to somata

Ellipticity.oblate. Ellipticity oblate Soma NA No NA NA Shape parameter of the soma

Ellipticity.prolate. Ellipticity prolate Soma NA No fs2 c2 Shape parameter of the soma

Number.of.Triangles Number triangles Soma Count No fs2 c2 Number of triangles, associated with resolution

required for analysis

Number.of.Vertices Number vertices Soma Count No fs2 c2 Number of vertices in a filament (a filament is a

process emanating from the soma, along with

all associated branches)

Number.of.Voxels Number voxels Soma Count No fs2 c2 Number of voxels in the contour surface of the

soma

Sphericity Soma sphericity Soma NA No NA NA Shape parameter of the soma

Volume Soma volume Soma um3 No fs2 c2 Volume of the soma

Filament.No.Dendrite.

Branc.28

Process branches Process Count No fs1 c1 The number of process branch points

Filament.No.Dendrite.

Segments

Process segments Process Count No fs1 c1 Number of process segments in a filament

Filament.No.Dendrite.

Termi.31

Process terminals Process Count No fs1 c1 Number of process terminals in a filament

Filament.No.Edges Filament edges Process Count No fs1 c1 Number of connections between vertices in a

filament

Filament.Volume.

sum.

Filament volume Process um3 No fs1 c1 Total volume of all processes of the cell

Dendrite.Area Process area Process um2 Yes fs4 c4-6 Surface area of a process segment (sum of

areas encompassing edges)

Dendrite.Branch.

Depth

Branch depth Process Count Yes fs1 c1 Number of process bifurcations along the

shortest path from the soma to a given

coordinate

Dendrite.Branch.

Level

Branch level Process NA Yes fs1 c1 Metric of incremental decrease in dendrite

diameter at each bifurcation point

Dendrite.Branching.

Angle

Branch angle Process Degrees Yes fs3 c3 Angle between branches at a bifurcation point

Dendrite.Branching.

Angle.B

Branch angle B Process Degrees Yes fs3 c3 Angle between the line from the beginning of a

filament to a bifurcation and between a

bifurcation and terminal

Dendrite.Length Process length Process um Yes fs4 c4-6 Sum of edge lengths between bifurcation

points

Dendrite.Mean.

Diameter

Process diameter Process um Yes fs3 c3 Diameter of a process

Dendrite.Orientation.

Angle

Process

orientation angle

Process Degrees Yes fs3,4 c3-6 Angle between image plane and line

connecting the start to end of a branch

Dendrite.Position Process position Process um Yes fs1,4 c1,4-6 Positional coordinate of a process

Dendrite.Resistance Process resistance Process um−1 Yes fs4 c4-6 Proxy for electrical length based on process

length and cross-sectional area

Dendrite.Straightness Process

straightness

Process NA Yes fs3,4 c3-6 Sum of edge lengths divided by distance from

start to end of a segment (h)

Dendrite.Volume Process volume Process um3 Yes fs4 c4-6 Total filament volume including all segments

be attributed to a spurious product of algorithmic processing, we
implemented an independent analysis using sample-by-sample
correlations and multidimensional scaling (Figures 5D,E; also
see Methods). We found that clusters of samples, based on the

NMF analysis, exhibited high correlations and relative proximity
within MDS coordinates. Overall, our analyses revealed subtle
differences in microglial morphology mediated by IL-10 in this
model of CNS inflammation.
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TABLE 2 | Genotype-specific differences in the temporal dynamics of features.

Feature Compartment Feature set Dist property Loading q-value

Process branches Process fs1 NA 0.24 0.023

Process segments Process fs1 NA 0.238 0.023

Process terminals Process fs1 NA 0.233 0.023

Filament edges Process fs1 NA 0.237 0.04

Filament volume Process fs1 NA 0.229 0.042

Branch depth_mean Process fs1 Center 0.213 0.028

Branch depth_median Process fs1 Center 0.203 0.03

Branch level_mean Process fs1 Center 0.189 0.015

Branch level_median Process fs1 Center 0.178 0.015

Branch level_mode Process fs1 Center 0.175 0.015

Process position_sdev Process fs1 Spread 0.206 0.078

Branch depth_sdev Process fs1 Spread 0.179 0.03

Soma area Soma fs2 NA 0.286 0.04

Soma ellipsoid length A Soma fs2 NA 0.216 0.113

Soma ellipsoid length C Soma fs2 NA 0.243 0.015

Number triangles Soma fs2 NA 0.29 0.041

Number vertices Soma fs2 NA 0.29 0.041

Number voxels Soma fs2 NA 0.288 0.052

Soma volume Soma fs2 NA 0.288 0.054

Ellipticity prolate Soma fs2 NA 0.136 0.04

Process diameter_mean Process fs3 Center 0.258 0.078

Process diameter_median Process fs3 Center 0.225 0.042

Process straightness_mean Process fs3 Center 0.205 0.113

Branch angle_mean Process fs3 Center 0.12 0.03

Process diameter_mode Process fs3 Center 0.139 0.03

Branch angle_95ci Process fs3 Spread 0.232 0.106

Branch angle B_95ci Process fs3 Spread 0.238 0.09

Process diameter_95ci Process fs3 Spread 0.226 0.148

Branch angle B_sdev Process fs3 Spread 0.197 0.04

Process orientation angle_95ci Process fs3 Spread 0.188 0.03

Branch angle B_skew Process fs3 Shape 0.248 0.03

Branch angle B_kurt Process fs3 Shape 0.217 0.099

Process area_mean Process fs4 Center 0.239 0.033

Process area_median Process fs4 Center 0.236 0.04

Process area_sdev Process fs4 Center 0.251 0.063

Process length_mean Process fs4 Center 0.245 0.04

Process length_median Process fs4 Center 0.221 0.066

Process resistance_mean Process fs4 Center 0.246 0.077

Process resistance_median Process fs4 Center 0.212 0.075

Process volume_mean Process fs4 Center 0.238 0.03

Process volume_median Process fs4 Center 0.238 0.03

Process area_mode Process fs4 Center 0.159 0.03

Process volume_mode Process fs4 Center 0.173 0.03

Process area_95ci Process fs4 Spread 0.242 0.023

Process area_cv Process fs4 Spread 0.283 0.125

Process length_sdev Process fs4 Spread 0.259 0.091

Process length_95ci Process fs4 Spread 0.25 0.03

Process length_cv Process fs4 Spread 0.281 0.115

Process resistance_sdev Process fs4 Spread 0.239 0.13

Process resistance_95ci Process fs4 Spread 0.245 0.042

(Continued)
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TABLE 2 | Continued

Feature Compartment Feature set Dist property Loading q-value

Process resistance_cv Process fs4 Spread 0.245 0.1

Process volume_sdev Process fs4 Spread 0.228 0.04

Process volume_95ci Process fs4 Spread 0.228 0.015

Process volume_cv Process fs4 Spread 0.245 0.11

Process position_95ci Process fs4 Spread 0.174 0.015

Process area_skew Process fs4 Shape 0.27 0.115

Process area_kurt Process fs4 Shape 0.241 0.09

Process length_skew Process fs4 Shape 0.271 0.13

Process length_kurt Process fs4 Shape 0.239 0.106

Process resistance_skew Process fs4 Shape 0.238 0.13

Process resistance_kurt Process fs4 Shape 0.201 0.078

Process volume_skew Process fs4 Shape 0.205 0.109

Process orientation angle_kurt Process fs4 Shape 0.09 0.04

Process straightness_skew Process fs4 Shape 0.056 0.023

IL-10 Impedes Adaptation of TNFα and
Microglial Morphology
Adaptation is an important emergent property of engineered
feedback control systems and components of the immune system
operating inside and out of the CNS (Brudecki et al., 2013;
Anderson et al., 2015; Montefusco et al., 2016). Our previous
study showed that IL-10 restrained the adaptation of the TNFα
response to LPS in vitro. We directly tested the hypothesis that
IL-10 represses adaptation of CNS TNFα expression in response
to systemic LPS in vivo at peak (24 h) and recovery (3 days)
of expression. We assessed the TNFα response to LPS (i.p.) in
brain tissue. Despite reported microglial heterogeneity in the
healthy CNS (Grabert et al., 2016), or during plasticity, we
found no difference in TNFα expression the brain and spinal
cord 24 h after LPS injection (Supplementary Figure 1). Our
experimental results with IL-10−/− mice showed, as predicted,
a larger fold change in TNFα gene expression in the CNS
following LPS (P < 0.05, two-way ANOVA with with Sidak’s
multiple comparisons P = 0.0147, Figure 6A). However, TNFα
expression showed complete recovery to WT levels 3 days after
LPS injection (Figure 6A). Thus, the absence of IL-10 resulted
in enhanced adaptive recovery of the TNFα inflammatory
response to LPS in vivo. These results suggest a novel
hypothesis that the anti-inflammatory cytokine IL-10 restrains
the degree of adaptive recovery following in vivo inflammation in
the CNS.

We next assessed whether IL-10−/− influences the adaptation
of morphological properties in response to LPS stimulation, as
was observed for TNFα gene expression in vivo (Figure 6A).
For this analysis, the arithmetic mean levels of each feature-
set were evaluated at each time-point. For all feature sets, we
observed significant main effects for time [P < 0.001; F(3, 2608)
= 9.5, F(3, 1736) = 56.1, F(3, 2608) = 63.8, and F(3, 5878) =
5.6 for fs1-4, respectively], and we observed significant main
effects of genotype (P < 0.001) for every feature set other than
fs3 [P = 0.85; F(1, 2608) = 48.1, F(1, 1736) = 18.0, F(1, 2608) =

0.04, and F(1, 5878) = 24.0]. Likewise, significant time-genotype
interaction terms were observed for all feature sets (F > 5, P
< 0.001), thus indicating that the occlusion of Il10 modifies the
temporal dynamics of the morphological response the systemic
inflammation, consistent with our time series analysis. When the
temporal dynamics of feature set averages were compared across
genotypes, the mean response profiles for fs2 and fs3 appeared
to be consistent with enhanced morphological adaptation in IL-
10−/−, as compared to WT (Figure 6B). It is noteworthy that
WT microglia showed peak fs2 responses at t = 3 d whereas
IL-10−/− microglial expression of fs2 features were maximal at
t = 1 d following LPS. In contrast, the fs3 peak responses of
both genotypes were observed at t= 1 day post-LPS (Figure 6B).
See Figure 6C for a complete summary of our post hoc analysis
results. These data indicate that genetic ablation of IL-10 has
selective influences on the kinetics of morphological responses
to TLR-4 stimulation. Furthermore, the IL-10−/− responses
appeared to show a more complete recovery to the pre-stimulus
(t = 0) levels in comparison to the findings for the WTmicroglia
for fs2 and fs3 (Figure 6B).

To quantify morphological adaptation betweenWT and IL-10
KO, we computed adaptation indices and estimated the standard
errors corresponding to these adaptation indices (Figures 7A,B;
see Methods). For morphological features that met our criteria
for adaptation analysis, all fs2 features showed greater adaptation
for the IL-10 KO genotype, and 5/7 fs3 features showed greater
adaptation for IL-10 KO (Figures 7B,C). When we considered all
morphological features, the majority showed significantly greater
adaptation for IL-10 KO (all P < 1.4 × 10−15, Figure 7B; the
p-values were computed as described in the Methods section
“Morphological adaptation analysis” based on the t-distribution
corresponding to an estimate of the T-statistic). Strikingly,
these data indicate that the adaptive recovery of morphological
features and cytokine responses to infiammatory insult are
enhanced by the absence of IL-10 in the cytokine regulatory
network.
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FIGURE 4 | Morphological cell states characterized by distinct sets of morphological features. (A) Illustrative example of Non-negative matrix factorization (NMF) to

show representations of a Data matrix, Basis matrix, and Coefficient matrix. (B) Microglial morphology data set organized according to feature sets. The Z-score

matrix of morphological data D is organized based on the NMF analysis. The Basis matrix W of morphological meta-features is defined by four sets of features (fs1-4)

from 218 reconstructed microglia, and the Coefficient matrix H shows a representation of meta-features in clusters of microglia (c1-6). *Denotes multiplication.

In silico Modeling Analysis of IL-10
Feedback Regulation of TNFα Adaptation
To assess whether our previous model of in vitro microglial
cytokine dynamics (Anderson et al., 2015) agreed with our
in vivo cytokine expression measurements, we compared the
model simulations (Figure 8A) to our data (Figure 1). Our
original model was designed to simulate the microglial response
to a continuous LPS stimulus (Figure 8A, dashed traces). To
match our in vivo experiment, we re-simulated the model
with a transient stimulus (Figure 8A, solid traces). Regardless
of the LPS stimulus duration, our in vitro model did not
capture the expression dynamics observed in vivo (note
that we show data for a 16 h stimulus). In particular, the
pronounced degree of adaptation observed for Il1b and Il6
in vivo suggested that additional negative feedback constraints
may enforce adaptive recovery to infection or insult in
the CNS.

To quantitatively evaluate network influences on cytokine
expression dynamics in vivo, we developed a new multi-cellular
computational model in which IL-10 from microglia stimulates
TGFβ up-regulation by in the surrounding microenvironment
(most likely derived from astrocytes) and TGFβ inhibits
microglial IL-1β and IL-6 expression (Norden et al., 2014)
(Figure 8B). The inclusion of microglia interactions with the
CNS environment was critical to account for the in vivo cytokine
expression dynamics in the simulations (Figure 8C; compare
with Figure 1). Simulation of our new neuroinflammation
model yielded temporal patterns of cytokine expression that

were in qualitative agreement with our experimental data
(Figure 1). To examine the implications of negative feedback
on the cytokine network, we simulated the effects of IL-10
KO on the TNFα response to LPS by removing the IL-10
node from the network (Anderson et al., 2015). As expected,
removal of IL-10 resulted in enhanced TNFα responses to
LPS over a range of doses (Figure 8D). This model prediction
is consistent with a wealth of data demonstrating that IL-
10 provides feedback inhibition on TNFα expression in glia
(Sheng et al., 1995). In agreement with our previous in vitro
results (Anderson et al., 2015), simulating IL-10 KO in our new
model enhanced adaptive recovery of TNFα response to LPS,
particularly at lower stimulus intensities (Figures 8E,F). Thus,
our simulations and analysis derived from the present in vivo
data supported the counter-intuitive prediction that IL-10, a
feedback inhibitor of TNFα expression, impedes the recovery
of TNFα expression toward the baseline level following an LPS
stimulus.

DISCUSSION

This work presents a new approach to investigate microglia
by integrating measurements of inflammatory cytokines with
novel, unbiased, multivariate analyses to assess microglial
morphology and dynamics in vivo. Our analyses detected
subtle changes in microglial morphology that are missed
by conventional qualitative analysis. We also quantitatively
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FIGURE 5 | Temporal analysis of IL-10 influences on feature set dynamics. (A) List of morphological signatures of the 4 feature sets (see Table 2): ramification, soma

size/shape, process shape, and process size. (B) Morphological cell state clusters (c1-6) are displayed for WT (top) and IL-10−/− microglia (bottom). Note the 6

classes of microglia based on differences in feature set distribution, and differences in the population size of the different classes (c1-c6) between genotypes.

(C) Representative confocal images of the six classes of cells and their confocal image-based reconstructions. Scale bar = 20 µm. (D) The Spearman rank correlation

matrix shows that samples are highly correlated within the six clusters defined by NMF. (E) The Multidimensional scaling (MDS) analysis shows that samples of

NMF-defined clusters are grouped together in a 3-dimensional projection according to MDS. These results independently support the findings from the NMF analysis.
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FIGURE 6 | IL-10 restrains TNFα adaptation and regulates specific morphological features. (A) In vivo CNS gene expression of TNFα in WT and IL-10−/− LPS-treated

mice show that the absence of IL-10 is associated with an enhanced LPS response and corresponding enhanced adaptive recovery to baseline (two-way ANOVA

with with Sidak’s multiple comparisons P = 0.0147, n = 4 mice per group, brain tissue). (B) For both WT and IL-10−/−, the arithmetic means across each feature set

(fs1-4) was computed at the four time points (t = 0, 1, 3, and 5 days). Temporal dynamics of each feature set was analyzed using a two-way ANOVA and p-values

based on a Fisher LSD post-hoc test with a Sidak correction. (C) The heatmap depicts corrected p-values for a focused set of post hoc comparisons (columns)

applied for each feature set (rows). For instance, the first column shows results for the comparison of the WT means at time 0 and time 1 day, the third column shows

the comparison of the IL-10−/− means at time 0 and time 1 day, and the last column shows the comparison of the WT and IL-10−/− means at time 5 days.

characterized adaptation processes based on negative feedback
regulation in a novel computational model of CNS inflammation.

It is assumed that microglial morphology affects cell function,
and assessments of microglial morphology as a readout of the
cell’s activation state have been employed for many years (Streit
et al., 1999, 2014). Stratifying microglia into classes along a
continuum of ramified/hyper-ramified/reactive/ameboid states
serves as a useful descriptor of gross changes in morphology.
However, such changes (ramified to amoeboid) are rarely seen
outside of overt injury sites, such as in traumatic/ischemic
lesions. Furthermore, assessment of microglial cell morphology
in such lesions has been confounded by the presence of
infiltrating monocyte derived macrophages (Mawhinney et al.,
2012; Greenhalgh and David, 2014; Bennett et al., 2016;
Greenhalgh et al., 2016). As microglial functions are now
implicated in the onset of Alzheimer’s disease, schizophrenia,
epilepsy and intellectual disability (Frick et al., 2013; Abiega
et al., 2016; Hong et al., 2016), appropriate assessment of
subtle changes in microglial morphology may illuminate

their homeostatic and pathophysiological functions. Our
current approach circumvents the shortcomings associated
with conventionally applied qualitative morphology analyses.
For example, when sample images of reconstructed microglia
most representative of each cluster were examined, the six
clusters were not easily or unambiguously identifiable by visual
inspection. Many studies have used 3-D reconstruction software,
such as IMARIS, to advance the study of microglia by providing
quantitative measures of their morphology (Madore et al.,
2013; Erny et al., 2015; Lewitus Gil et al., 2016). Our results
show that over one-hundred measurable parameters can be
quantified using such analyses. The caveat with these large
data sets is that it is difficult to identify significantly different
morphological features while controlling for the type I error
rate. We have attempted to avoid such errors by incorporating
the entire dataset and using appropriate statistical measures
such as the optimal discovery procedure (ODP) (Storey et al.,
2005, 2007) instead of ANOVA, which is sub-optimal for
analyzing temporal dynamics across many features (Storey
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FIGURE 7 | IL-10 restrains morphological adaptation. (A) Average Z-scores represented as a function of time for individual features from feature sets fs2 (soma

size/shape) and fs3 (process shape). Rows (features) were sorted according to the peak WT average Z-scores. (B) Adaptation indices were computed and displayed

for a subset of features that met certain criteria (Methods). IL-10−/− microglia exhibit enhanced adaptation of key features associated with the shape of somata and

processes. (C) Specific examples of adaptation indices illustrate the enhancement of morphological adaptation associated with IL-10−/−. The data were analyzed

using two-tailed t-test with corrected p-values using the Bengamini-Hoshberg procedure.

et al., 2005). Furthermore, for the first time in the assessment
of microglial morphology, we employed non-negative matrix
factorization (NMF), which is a highly effective technique
to define groups of features that are associated with varying
degrees of representation in distinct clusters of cells (Lee
and Seung, 1999). Spatiotemporal monitoring of microglia
morphology in relation to brain injury has been investigated
(Morrison and Filosa, 2013) and hierarchical cluster analysis
of the morphometric features was used to objectively describe
and classify morphological changes under homeostatic and
neuropathological conditions (Yamada and Jinno, 2013; Diniz
et al., 2016). Our present data build on these hierarchical
clustering techniques and provide an approach that is unbiased,
sensitive, and can be widely used to study subtle changes in
microglial morphology.

After predicting and validating the counter-intuitive notion
that IL-10 limits the recovery of TNFα in vivo, we sought to
investigate whether certain aspects of microglial morphology
were also regulated similarly. Using the sensitive, unbiased
approaches to assess morphology, we found that adaptation of
feature sets associated with soma size/shape (fs2) and process
shape (fs3) showed significantly increased adaptation in the
absence of IL-10. These findings indicate that IL-10 impedes
the recovery of these features of microglial morphology to
homeostatic levels in a similar time-course as IL-10 impedes
the return of TNFα to baseline. We also considered groups of
individual morphological features, the majority of which showed
significantly greater adaptation in IL-10−/− mice, especially
those associated with larger soma size, consistent with microglial
activation following LPS application (Kozlowski and Weimer,
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FIGURE 8 | Dynamical modeling analyses of cytokine network regulation. (A) Simulation of our in vitro cytokine model cannot account for in vivo dynamics under

conditions of either continuous (dashed) or transient (solid) LPS stimulation. (B) Literature-based data-driven cytokine interaction network based on in vivo data. (C) In

silico model simulations of in vivo cytokine network dynamics (see Methods and Discussion for further explanation of this model). (D) Simulations of wildtype (WT;

black) and IL-10 KO; magenta) model TNFα response to a range of LPS stimulus magnitudes (arbitrary units). (E) Analytic framework for computing adaptive recovery

of the TNFα response to LPS. (F) LPS concentration response profiles for adaptation of WT and IL-10 KO phenotypes in silico show that the IL-10 KO enhances

adaptation to LPS (left-shifted curve).

2012). Interestingly, features associated with the complexity
of branch shape, including features related to the angularity
of branching, also showed significantly greater adaptation,
consistent with the notion that ramified microglia represent a
surveying, non-activated state (Karperien et al., 2013).

We developed a novel computational model to account for
the dynamics of cytokine interactions between microglia and
the CNS environment based on the in vivo cytokine data
collected in the current study. In the present two-compartment
model, we improved our previously established model of
cytokine dynamics which represented a single compartment of
microglial cells, regulated through autocrine/paracrine signaling,
based on data obtained from primary microglial cell cultures
(Anderson et al., 2015). To incorporate the interactions of
microglial cells with their in vivo microenvironment, we added
a second compartment to the model. This compartment was
proposed to be dominated by astrocyte-mediated feedback
influences on microglia based on astrocyte TGFβ release and
consequent feedback inhibition of microglial IL-1β and IL-
6 (Norden et al., 2014). CNS neuroinflammation involves
an expansive repertoire of cytokines secreted by cell types
including neurons, endothelial cells, pericytes, astrocytes, and
microglia. Our simplified modeling approach was driven by
(a) the dearth of data regarding the cellular sources, temporal
expression dynamics, and relative functional influences of the
multitude of cytokines, and (b) the motivation to develop a
parsimonious model that could capture the complex dynamics
of multivariate cytokine expression—as regulated by feedback
control of microglial inflammation—without the unnecessary
inclusion of unknown molecular interaction parameters. Such
simplified models are often considered to be desirable from
the perspective of model analysis because model simplification
facilitates the identification of critical regulators of the system’s

function (Huang et al., 2010; Transtrum and Qiu, 2014). While
we have not undertaken focused experimental analyses to verify
the proposed components of astrocyte-mediated feedback of
microglia via TGFβ, our data are consistent with our model
analyses. Even if astrocyte-mediated feedback regulation of
microglial inflammation were not exclusively controlled by
TGFβ, our model illustrates a plausible mechanism from the
perspective of the observed process dynamics. Furthermore,
we have argued that computational modeling can be utilized
for numerous purposes other than accurately recapitulating
or predicting the precise mechanisms of function (Anderson
and Vadigepalli, in press). Alternatively, as in our study,
modeling can be used to show that negative feedback
processes—regardless of their precise molecular mechanisms—
are sufficient to explain the effect of IL-10 occlusion on
the adaptive response to CNS insult. Our model of in vivo
neuroinflammation captures the dynamics of two glial cell
types with distinct regulatory interactions. Based on model
simulations, we predicted that the anti-inflammatory cytokine
IL-10 would impede the adaptation of TNFα. Our experimental
data confirmed this prediction, highlighting the utility of
mathematically modeling of complex cytokine networks to
investigate neuroinflammation.

Morphological analyses were performed on microglial cells
of the spinal cord. This is a particularly relevant region of the
CNS to study neuroinflammatory mechanisms, as understanding
its effect on neuronal degeneration and regeneration are key to
recovery in spinal cord injury. An interesting avenue for further
investigation will be to understand if there are region-specific
responses during neuroinflammation. It has been demonstrated
that there is microglial diversity between different brain regions
(Grabert et al., 2016). This is more pronounced in the healthy
brain as, in perturbed CNS states, such as aging and pathological
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conditions, microglial diversity and the homeostatic signature of
microglia is lost (Grabert et al., 2016; Keren-Shaul et al., 2017).

Transcriptional analyses of microglia in their various states
of activation have contributed greatly to our understanding of
these cells (Butovsky et al., 2014; Healy et al., in press). As
microglia morphology also reflects their function (Walker et al.,
2014), the coupling of morphological data-sets, such as in the
present study, with transcriptional profiles of these individual
cells, could provide a tool kit to the exact functions of distinct
morphologies.

Future extensions of our study include identifying disease
or injury-specific dynamic profiles of cytokine networks and
correlations with changes in particular aspects of microglial
morphology that can reveal functional states, and lead to the
identification of molecular mechanisms underlying the coupling
between cytokine regulation and microglial morphology. Our
results depict a hitherto unrecognized association between
the dynamics of cytokine gene expression and microglial
morphology in the CNS, and the counter-intuitive role of IL-
10 in regulating these dynamics in vivo. The combination of
mathematical modeling of cytokine networks, in vivo validation,
and sensitive morphological analysis will be a valuable tool
to study changes in microglial responses in CNS injury and
disease.
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