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Deep-Learning-Based Group Pointwise
Spatial Mapping of Structure to Function in
Glaucoma

Zhiqi Chen, PhD,1,2,* Hiroshi Ishikawa, MD,2,3,4,* Yao Wang, PhD,1,5 Gadi Wollstein, MD,2,5,6

Joel S. Schuman, MD1,2,5,6,7,8,9

Purpose: To establish generalizable pointwise spatial relationship between structure and function through
occlusion analysis of a deep-learning (DL) model for predicting the visual field (VF) sensitivities from 3-
dimensional (3D) OCT scan.

Design: Retrospective cross-sectional study.
Participants: A total of 2151 eyes from 1129 patients.
Methods: A DL model was trained to predict 52 VF sensitivities of 24-2 standard automated perimetry from

3D spectral-domain OCT images of the optic nerve head (ONH) with 12 915 OCT-VF pairs. Using occlusion
analysis, the contribution of each individual cube covering a 240 � 240 � 31.25 mm region of the ONH to the
model’s prediction was systematically evaluated for each OCT-VF pair in a separate test set that consisted of 996
OCT-VF pairs. After simple translation (shifting in x- and y-axes to match the ONH center), group t-statistic maps
were derived to visualize statistically significant ONH regions for each VF test point within a group. This analysis
allowed for understanding the importance of each super voxel (240 � 240 � 31.25 mm covering the entire
4.32 � 4.32 � 1.125 mm ONH cube) in predicting VF test points for specific patient groups.

Main Outcome Measures: The region at the ONH corresponding to each VF test point and the effect of the
former on the latter.

Results: The test set was divided to 2 groups, the healthy-to-early-glaucomagroup (792OCT-VFpairs, VFmean
deviation [MD]:�1.32� 1.90 decibels [dB]) and the moderate-to-advanced-glaucoma group (204 OCT-VF pairs, VF
MD: �17.93 � 7.68 dB). Two-dimensional group t-statistic maps (x, y projection) were generated for both groups,
assigning related ONH regions to visual field test points. The identified influential structural locations for VF sensitivity
prediction at each test point aligned well with existing knowledge and understanding of structure-function spatial
relationships.

Conclusions: This study successfully visualized the global trend of point-by-point spatial relationships between
OCT-based structure and VF-based function without the need for prior knowledge or segmentation of OCTs. The
revealedspatialcorrelationswereconsistentwithpreviouslypublishedmappings.Thispresentspossibilitiesof learning
from trainedmachine learningmodels without applying any prior knowledge, potentially robust, and free from bias.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100523 ª 2024 by the American Academy of
Ophthalmology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).

Supplemental material available at www.ophthalmologyscience.org.

Glaucoma is a progressive optic neuropathy characterized
by a distinct pattern of structural and functional damage.
Structural damage encompasses harm to the retinal ganglion
cells, their axons, and associated glial cells, resulting in
noticeable changes in the appearance of optic nerve head
(ONH). These changes are commonly assessed using
advanced imaging techniques such as OCT. Functional
damage involves a loss of light sensitivity, often measured
through visual field (VF) loss using standard automated
perimetry. Both structural and functional damage provide
crucial information for glaucoma diagnosis as well as its

management. Although there is a strong correlation between
structural and functional measurements, there are many
clinical cases that cannot be clearly explained with such a
simple correlation. Since glaucoma progression patterns
widely vary from individual to individual, a detailed spatial
correlation map may help identifying personalized pro-
gression pattern and provide better assessment and fore-
casting of progression.

Structure-function spatial correlation has been widely
investigated.1e5 Perhaps the most well-known depiction is
the Garway-Heath map that associates clusters of VF test
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points with sectors of the optic disc by superimposing 24-2
VF test grid on retinal photographs and manually tracing
visible retinal nerve fiber layer (RNFL) defects or prominent
nerve fiber bundles to note their point of intersection.1 The
derived map divides the ONH and 24-2 VF into 6
corresponding sectors. Jansonius et al2 later proposed a
mathematical model fitting hand-traced retinal nerve fiber
trajectories to reduce variabilities in hand-tracing, leading to
a more robust portrayal of the structure-function relation-
ship. Alternative approaches used statistical methods to
produce the structure-function correspondence. Gardiner
et al3 utilized maximum correlation between normalized rim
area of 36 sectors measured by Heidelberg retina
tomography and 24-2 VF sensitivities. Turpin et al4

further constrained the correlation between Heidelberg
retina tomography measurements and VF to be
anatomically plausible with a computational model of the
axon growth of retinal ganglion cells. Ferreras et al5 used
factor analysis to divide 24-2 VF grid into 10 sectors.
Then, a similar correlation approach was applied to relate
predefined 10 VF sectors to clock-hour sectors of peri-
papillary RNFL thickness measured by OCT.

All previous studies either are based on prior knowledge
regarding anatomic structures and their functions or require
segmentations to get ONH measurements. It can certainly be
a good way of establishing the structureefunction re-
lationships. However, it is possible to discover unexpected
anatomic or structural features that are highly associated
with function using artificial intelligence. Recent advances
in deep-learning (DL) approaches achieve unprecedented
performancedsometimes better than human expertsdin
many medical applications. While DL models are known to
be black boxes, recently many techniques to reveal which
location within the input image contributed the most to
reach the output have been developed. In other words, it is
now possible to learn from well-trained DL models.

Several previous studies have attempted to predict VF
outcomes using OCT measurements through DL algo-
rithms.6e17 Although these studies have shown promising
results in approximating VF metrics from OCT data, the
precise spatial relationship between structural damage and
functional damage remains less well-established. Mario-
ttoni et al7 created a mapping between the 768-point RNFL
thickness profile obtained from a spectral-domain OCT
peripapillary scan and the 24-2 standard automated peri-
metry VF loss by simulating localized RNFL defects of
varying locations and characteristics. They observed the
impact of these defects on VF outcomes using a con-
volutional neural network designed to predict VF sensi-
tivities from RNFL thickness profiles. The derived map
offers a more detailed spatial structureefunction relation-
ship compared to the Garway-Heath map, but their method
depends on the segmentation outcomes, which can be
affected by image quality and segmentation errors.18

Kihara et al16 proposed a multimodal policy DL system
that directly predicts VF from unsegmented
circumpapillary OCT and scanning laser ophthalmoscopy
(SLO) image of the ONH. Thus, a circumpapillary sector
structureefunction mapping was derived in a data-
driven, feature agnostic fashion. Nonetheless, all prior

mappings remained limited to sector representations,
which is suboptimal as they fail to fully exploit the 3-
dimensional (3D) nature of retinal structure. A more
comprehensive spatial mapping, derived from 3D structure
measurements (e.g., 3D OCT data) and independent of
domain-specific knowledge (e.g., segmented RNFL
thickness), is desired to enhance our understanding of the
spatial relationship between structure and function.

Recently, DL algorithms have ventured into analyzing
higher-dimensional data to leverage 3D information that
may not be readily discernible through conventional
methods.6 Consequently, in this study, we aim to establish a
generalized pointwise spatial mapping between structure
and function by conducting occlusion analysis on a DL
model trained on an extensive clinical cohort of patients
to predict pointwise VF sensitivities from 3D OCTs. To
the best of our knowledge, this is the first work generating
a group saliency map using 3D OCT data without
segmentation around the ONH aiming for establishing
point-by-point (VF) structureefunction mapping.

Methods

Data Collection

This was a retrospective cross-sectional study. The institutional
review board of the New York University Langone Medical Center
approved this study, and a waiver of informed consent was granted
owing to the retrospective nature of this work. All methods adhered
to the tenets of the Declaration of Helsinki for research involving
human participants, and the study was conducted in accordance
with regulations of the Health Insurance Portability and Account-
ability Act.

Subjects were included in the study according to the following
inclusion criteria: �1 reliable VF test and 1 reliable 3D spectral-
domain OCT data within 90 days of each other. Visual field tests
were performed using the Humphrey Field Analyzer with the 24-2
Swedish Interactive Threshold Algorithm (Zeiss) standard proto-
col. A reliable VF test has fixation losses, false-positive errors, and
false-negative errors <33%, 15%, and 15%, respectively. Spectral-
domain OCTs were acquired by the Cirrus HD-OCT instrument
(Zeiss) using the 6 � 6 mm ONH scan 200 � 200 protocol. A
reliable test has signal strength >6 decibels (dB).

The final data set comprised 8015 VF tests and 15 026 ONH
OCT scans from 1108 subjects spanning multiple visits. The
distribution of VF mean deviation (MD) is shown in Figure 1. We
randomly split the data set at a ratio of 9:1 based on subjects to
create training and test sets. Consequently, the training set
contained 7303 VF tests and 10 711 ONH scans from 999
subjects. Every OCT was associated with every possible VF
test that was within 90 days of the OCT visit, resulting in
12 915 OCT-VF pairs in total for training. The test set con-
tained 996 OCT-VF pairs from 247 eyes (145 female þ 102 male,
180 White þ 63 Black þ 2 Asian þ 2 unknown). All participants
were clinically diagnosed with glaucoma, glaucoma suspect, or
healthy after undergoing a comprehensive ophthalmic evaluation
that included a clinical examination, a VF testing, and an OCT.
Among them, 121 eyes have glaucoma (108 open-angle þ 11
closed-angle þ 2 mixed-mechanism), 108 eyes are glaucoma
suspect, and 18 eyes are healthy. Every OCT and VF visit in the
test set was unique, that is, 1 OCT was only associated with 1 VF
test. Table 1 summarized the demographic characteristics of the
data set.
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To preprocess the OCTs and VFs, we adopted the same pre-
processing steps as described in the study by Chen et al.6 In brief,
for OCT, we detected the ONH region and flattened Bruch’s
membrane opening surface by segmenting Bruch’s membrane
opening with smoothing and moving each A-scan along the z
direction. Then central cropping and downsampling with
gaussian antialiasing filtering were applied to reduce memory
consumption during model training. After preprocessing, all 3D
ONH OCTs were flattened by Bruch’s membrane opening,
centrally cropped at the optic disc center to 144 � 144 x 576
voxels (covers a 4.32 � 4.32 � 1.125 mm region of ONH), and
downsampled to 72 � 72 � 144 voxels. For VF, the 2 blind
spot points were excluded. The sensitivities were temporally
smoothed over 5 consecutive VF visits (average time span was
1166.04 � 598.91 days) of the same eye using pointwise linear
regression to reduce random fluctuations. In average, each eye
has 9.16 � 3.90 VF visits used in temporal smoothing. For eyes
that had <5 VF visits, we used the original VFs. All left eye
visits were flipped horizontally to match the right eye format for
both OCTs and VFs.

Model Architecture and Training

Since the purpose of this study was to derive the spatial relation-
ship between structure and function, rather than developing a new
model to predict function from structure, we adopted the same
model, a 3D convolutional neural network, from the study by Chen
et al,6 which showed promising performance in predicting standard
automated perimetry sensitives from 3D OCT data of the ONH.

We adopted the same training strategy as used in the study by
Chen et al,6 that is, we trained the model with the Adam
optimizer19 for 200 epochs and a batch size of 16. The learning
rate was initially set to 2 � 10�4 and linear decayed every 100
epochs by 10�1. Different from the study by Chen et al,6 we
used a reliability-weighted mean square error loss function
instead of standard mean square error loss to compensate for larger
noises in peripheral VF test points. The pointwise weight of the
loss function, indicating the reliability of VF measurements, was
defined as the inverse of the pointwise standard deviation of VF
sensitivities among healthy subjects (VF MD >�1 dB), with the
highest reliability normalized to 1. The weight for each VF test
point is shown in Figure 2. The proposed reliability-weighted loss
function improved the average mean absolute error from 3.11 dB
as reported in 6 to 2.99 dB.

StructureeFunction Mapping

Once an accurate model is established to estimate pointwise VF
sensitivities from 3D OCT images, it becomes possible to derive
spatial correlations between each test point of the VF and the
corresponding regions of the ONH using the model. To establish
this spatial mapping, we first applied occlusion analysis on the
trained model, generating 52 pointwise 3D saliency data/volume
(in this article, we use volume and 3D data interchangeably) for
every sample in the test set. This allowed us to evaluate the
contribution of individual regions in the input OCT volume to the
model’s predictions. To ensure consistency, all saliency volumes
were registered using the geometric center of the optic disc.
Additionally, to account for variations along the depth dimension,
we averaged each saliency volume across depth to generate a 2-
dimensional (2D) individual saliency map, analogous to OCT en
face images.

Next, in order to generate group saliency maps for specific
glaucoma groups, we divided the test set into the healthy-to-early-
glaucoma group and the moderate-to-advanced-glaucoma group
based on VF MD values (cutoff at MD �6 dB). A pointwise t test
was performed separately for each small ONH region within each
group. This enabled us to generate group t-statistic maps (aka
group saliency map), revealing the detailed spatial relationship
between each VF test point and the corresponding statistically
significant and relevant regions of the ONH for a specific glaucoma
group.

Individual Saliency Map by Occlusion Analysis. Occlusion
analysis is widely used to visualize the decision-making process of
black box models. In this study, we utilized occlusion analysis to
quantify the contribution, also known as saliency, of each small
region of the ONH on model’s prediction for each VF test point.
The underlying assumption is that if a region of the ONH is related
to a VF test point, removing information from that region will
significantly alter the DL model’s prediction for the corresponding
point. Conversely, the model’s prediction should remain consistent
when removing information from irrelevant ONH regions.

To implement this, we replaced a small region (4 � 4 � 4
voxels, 240 � 240 � 31.25 mm) within an input volume with a
gray patch (mean intensity of the input) and calculated the saliency
by comparing the model’s prediction with the original input to its
prediction with the occluded input. The saliency was defined as the
absolute difference between the model predictions for the original
and occluded inputs. By repeating this process for all locations
throughout the entire input volume for all VF test points of each
ONH volume in the data set, we generated 52 saliency volumes for
every OCT-VF pair in the data set. Specifically, for each OCT
volume Vi in the test set fV1;V2;.;VNg, we obtained 52 saliency
volumes fSi;1; Si;2;.; Si;52g corresponding to the 52 VF test
points. Each voxel Sji;pt within a saliency volume Si;pt represented

Figure 1. Distribution of VF MD. MD ¼ mean deviation; VF ¼ visual
field.

Table 1. Demographics of the Data Set

Training Set Test Set

Number of subjects 999 130
Number of eyes 1904 247
Number of OCT-VF pairs 12 915 996
Age at testing date (year) 64.45 � 12.69

(18 w 94)
62.39 � 11.59
(18 w 86)

VF MD (dB) �4.69 � 6.86
(�32.78 w 5.78)

�4.05 � 6.47
(�30.32 w 3.77)

dB ¼ decibels; MD ¼ mean deviation; VF ¼ visual field.
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the absolute difference between the model predictions when
occluding the j-th small region of the ONH volume:

Sji;pt ¼ jf ðViÞ � f
�
T jðViÞ

���
where Vi denotes the original ONH volume, and T jð$Þ denotes

the operation that replaces the j-th patch of Vi with a value equal to
the volume’s mean intensity Vi. An example of a 3D saliency
volume was presented in the Appendix (Figs 7 and 8).

To account for variation across depth due to the adopted coarse
registration, the 3D individual saliency volumes
ffS1;1; S1;2;.; S1;52g; fS2;1; S2;2;.; S2;52g;.; fSN;1; SN;2;.;
SN;52gg were projected onto the en face plane, generating 2D in-
dividual saliency maps ff S01;1; S

0
1;2;.; S01;52g; fS02;1; S02;2;.;

S02;52g;.; fS0N;1; S0N;2;.; S0N;52gg to address depth-related varia-
tions and to ease visualization.

Group Saliency Map by t Test. To identify statistically sig-
nificant and relevant ONH regions for each VF test point in a
specific glaucoma group, we divided the test set into 2 groups, the
healthy-to-early-glaucoma and the moderate-to-advanced-
glaucoma groups, and separately conducted t tests within each
group. This process yielded the corresponding group t-statistic
maps, which encode the group-specific spatial relationships be-
tween structure and function.

The group t-statistic maps were generated by separately per-
forming t tests for each small ONH region, comparing its saliency
with the pointwise group-averaged saliency. For a particular 4 � 4
region k in the en face plane and a particular VF test point pt, we
had fS0k1;pt; S0k2;pt;.; S0kN;ptg representing the saliency of region k

for model prediction at VF test point pt for each subject in a group.
The group t-statistic map Tpt of a particular VF test point pt was
created by conducting t test separately across all regions of ONH:

Tk
pt ¼

8>><
>>:

S
k
pt � mpt

skpt

. ffiffiffiffi
N

p ; if a � 0:05

0; if a>0:05

where S
k
pt and skpt denote the sample mean and sample standard

deviation of saliencies for a particular patch k, and mpt denotes the
hypothesis mean. We set mpt to be S pt þ lspt , where l ¼ 0:75: In
other words, 1-sample t test was conducted to determine the extent
to which the mean saliency of a particular patch k for a particular
test point pt exceeds the mean saliency averaged over all patches
S pt (adjusted by standard deviation spt as well) within the same
group for that test point pt.

As a result, this study generated a new map, namely the group t-
statistic map, which establishes the spatial relationship between
each VF test point and the corresponding significantly relevant
regions of the ONH.

Results

All results shown in this study were generated on the test
set. There were 792 OCT-VF pairs from 207 eyes for the
healthy-to-early-glaucoma group (MD >�6 dB, mean

Figure 2. Pointwise reliabilities. dB ¼ decibels; MD ¼ mean deviation.

A B C

Figure 3. An example of an individual saliency map of a particular VF test point. A, VF sensitivities of a subject in the test set. B, The saliency map of a particular
test point (highlighted with a red bounding box in [A]). C, the corresponding en face OCT image. VF ¼ visual field.
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MD �1.32 � 1.90 dB) and 204 pairs from 66 eyes for the
moderate-to-advanced glaucoma group (MD ��6 dB, mean
MD �17.93 � 7.68 dB). Figure 3 shows an example of an
individual saliency map that corresponds to a particular VF
test point. Figure 4 shows the mean VF sensitivity maps and
the groups t-statistic maps for both groups (also, Appendix
Fig 9). Optic nerve head sectors proposed by the Garway-
Heath map were overlaid on top of the group t-statistic
maps for comparison. In general, our maps showed good
agreement with the Garway-Heath map. Note that we have
depth information that is not depicted in the en face
expression of the maps (please see Figs 7 and 8 in the
Appendix for an illustration). Therefore, we have not only
x- and y-axes but also have z-axis information, which
might potentially improve the mapping.

We further selected 2 subsets, the superior and inferior
defect groups, from the moderate-to-advanced glaucoma
group by manually observing the 24-2 VF defect patterns.
The superior defect group included 74 OCT-VF pairs and
the inferior group included 40 OCT-VF pairs. The corre-
sponding VF sensitivity maps and group t-statistic maps are
shown in Figure 5. Similarly, Garway-Heath sectors were
overlaid on the t-statistic maps for comparison. The 2
groups’ t-statistic maps showed symmetric patterns for su-
perior and inferior damage groups. That is, the groups’ t-
statistic map of superior damages highlighted the inferior
part of retina and vice versa for the map of inferior damages.

Figure 6 depicted pointwise negative Pearson’s
correlation between saliency and VF MD, indicating a
stronger relationship with more severe defects.

Figure 4. Group t-statistic maps for the healthy-to-early-glaucoma group (MD >�6 dB) and the moderate-to-advanced glaucoma group (MD ��6 dB).
ONH sectors proposed by the Garway-Heath map were overlaid on top for comparison. Different colors represent different VF clusters defined in the
Garway-Heath map. dB ¼ decibels; MD ¼ mean deviation; ONH ¼ optic nerve head; VF ¼ visual field.
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Discussion

In this study, we successfully generated a generalized 2D
mapping that establishes the group spatial relationship be-
tween VF test points and regions of the ONH at a fine
resolution. Importantly, our algorithm relied solely on the
data without any prior knowledge about the
structureefunction relationship, free from potential bias,
segmentation errors, and/or floor effect. Despite the absence
of explicit domain knowledge, the derived mapping
captured spatial relationships that align with clinical
expectations.

As illustrated in Figure 4B, D, the group t-statistic maps
indicated that the structural locations with the most
significant impact on VF sensitivity prediction were
largely consistent with the Garway-Heath map. However,

some minor discrepancies were observed. For instance, in
both the healthy-to-early-glaucoma and moderate-to-
advanced-glaucoma groups, points 28 and 37 were slightly
closer to the temporal aspect in our derived map, while point
43 was slightly closer to the nasal aspect.

These discrepancies primarily occurred at the edge points
of VF clusters defined in the Garway-Heath map, suggesting
the existence of finer clusters that were not captured by the
coarse mapping. Additionally, several factors might have
contributed to the observed differences. First, despite tem-
poral smoothing of VF tests to mitigate noise, the remaining
sensitivity variability of VF measurements could still hinder
the model’s ability to accurately characterize the
structureefunction relationship, leading to potential inac-
curacies in the spatial mapping. Second, the coarse indi-
vidual image registration method to generate group maps

Figure 5. Group t-statistic maps of superior and inferior defects. ONH sectors proposed by the Garway-Heath map were overlaid on top for comparison.
Different colors represent different VF clusters defined in the Garway-Heath map. ONH ¼ optic nerve head; VF ¼ visual field.
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did not account for morphologic variables such as disc to
foveola angle. While we mitigated interindividual variation
by using a relatively large sample size, these variations
could still contribute to the observed discrepancies between
our map and the Garway-Heath map. Finally, differences in
the sample population, including demographic and clinical
characteristics, could also contribute to slight variations in
the structureefunction mapping. To tell whether the dis-
crepancies are artifacts or new information requires further
investigation.

Previous studies have reported that the correlation be-
tween structure and function varies with the severity of the
disease.20e23 In line with these findings, our study also
demonstrated a connection between saliency and the
severity of VF damage. Figure 6 illustrates the pointwise
Pearson’s correlation between saliency and VF MD for all
subjects in the test set. It was observed that the saliency
exhibited a negative correlation with VF MD, indicating a

stronger association between saliency and MD when
defects are more severe. As a result, the group t-statistic
map of the healthy-to-early-glaucoma group appears less
representative compared with that of the moderate-to-
advanced-glaucoma group. Furthermore, this correlation
leads to symmetric spatial patterns for the subgroups with
superior and inferior defects, as depicted in Figure 5. This
correlation also explains the highlighted areas in the less-
defected hemifields in Figure 5. For example, in the
superior defect group, highlighted areas on the saliency
map corresponding to the inferior portion of the VF are
also present. Note that these points are also with a deficit
as the average VF sensitivities are close to or <20 dB.
Thus, some highlighted areas in the opposite hemifield are
expected. Moreover, the differences between the 2
hemifields proves the potential toward an application of
the proposed group saliency map, that is phenotyping the
structureefunction map.

While the application of occlusion analysis to visualize
the effects of OCT on VF prediction is not ground-
breaking,8,16 the majority of these studies primarily center
around confirming the accuracy of the proposed DL
model. For instance, Christopher et al8 employed a DL
model to predict averaged function measurements of VF
sectors as defined in the Garway-Heath map. They utilized
occlusion analysis to generate a structureefunction map for
individual cases. Although their map demonstrated specific
sectoral structureefunction relationships, such as the
model’s emphasis on superior ONH structures to predict
function in the inferior and inferior nasal VF sectors, and
vice versa, it was not specifically tailored to assess the
broader trend of spatial mapping between structure and
function. Its primary objective was to establish the validity
of the proposed DL model on an individual case basis.
Similarly, Kihara et al16 managed to derive a more refined
occlusion-based structureefunction map with 2 separate
DL sub-models, able to provide VF sensitivity estimation
from 2D circumpapillary OCT and infrared SLO images,
respectively. However, the resulting 2D occlusion-based

Figure 6. Pointwise Pearson’s correlation between saliency magnitude and
VF MD. MD ¼ mean deviation; VF ¼ visual field.

A B C D

Figure 7. The cross-sectional view of an individual saliency volume. A, A VF test. B, The associated en face OCT image. C, Cross-sectional B-scan
associated with the red line in (B), overlaid with the corresponding saliency of point 21 highlighted with red bounding box in (A). D, Cross-sectional B-
scan associated with the green line in (B), overlaid with the corresponding saliency of point 21 highlighted with red bounding box in (A). VF ¼ visual field.
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heatmaps on infrared SLO images remained specific to in-
dividual cases. Moreover, neglecting the 2D en face infor-
mation brought by infrared SLO images, they only plotted
the distribution of the circumpapillary angles at which the
highest peak of the heatmap was located. Thus, their map-
ping remained angular and could not represent the over-
arching structure-to-function trend.

In another study, Mariottoni et al7 developed a DL-
based spatial structureefunction mapping by simulating
localized peripapillary RNFL defects and feeding the
resulting thickness profile into a pretrained convolutional
neural network model. The identified pattern exhibited
agreement with previous maps such that the RNFL defects
simulated on the temporal superior and temporal inferior
regions led to arcuate VF defects in the inferior and su-
perior hemifield, respectively. However, it is important to
note that the derived map remained sectoral in nature and
was confined to the peripapillary sampling circle, lacking a
comprehensive representation of the entire
structureefunction relationship. Also, their method relied
on RNFL segmentation.

Our study generated comprehensive maps that were
consistent with previously published ones, providing
detailed spatial relationships between structure and func-
tion potentially free from bias. However, there are several
limitations to consider in this study. First, the accuracy of
the saliency maps heavily relies on the chosen model ar-
chitecture and the training process. Varied models and
datasets can produce divergent saliency maps, encom-
passing the inherent biases of the specific model architec-
ture and the training data utilized. Uncommon defect
patterns, such as early onset patterns, may not be well
captured by the network during training, leading to
underappreciation of certain structureefunction relation-
ships. Additionally, VF test results in patients with glau-
coma are susceptible to random noise and
subjectivity,24e26 which inherently reduces the accuracy of
the model in predicting VF sensitivities. Second, our
technique relies on the assumption of a linear correlation
between a region’s significance and the fluctuation in the

model’s predictions when that region is occluded. How-
ever, DL models, especially those handling high-
dimensional data such as 3D OCT images, may exhibit
nonlinear relationships that simple occlusion fails to cap-
ture. Moreover, the spatial interconnections between
different regions in a 3D OCT scan are not adequately
addressed by the occlusion method. This oversimplification
hinders a comprehensive understanding of the intricate
interactions among various regions in the OCT scan.
Furthermore, the choice of occlusion method (e.g.,
replacement with a gray patch, mean pixel value, or
random noise) can impact the analysis outcomes, resulting
in diverse interpretations of the model’s behavior. Without
a clear awareness of the limitations inherent in our pro-
posed technique, there is a potential risk of overinterpreting
the saliency maps generated. This overinterpretation could
lead to misleading conclusions regarding the
structureefunction relationship. Another limitation is the
use of naive registration in this study. Although the derived
map demonstrates fine resolution and aligns well with
known clinical knowledge and understanding of
structureefunction relationships, the naive registration
does not account for refractive errors or other morphologic
variables such as disc-foveola angle. These variations can
contribute to differences in the spatial relationship between
VF test points and corresponding ONH regions. Advanced
registration techniques are required to uncover more subtle
spatial relationships. Finally, we followed the conventional
way of visualizing this relation as x-y projection to
collapse information along the z-axis so that clinicians will
better appreciate the results, ignoring the fact that the sa-
liency data we derived were essentially 3D data. Though
such collapse partially compensates for the individual
variability, it prevents us from deriving more comprehen-
sive 3D structure-to-function mapping. The z-axis infor-
mation might provide new insights. However, at this
moment, we do not have clear explanation for the z-axis
information. Thus, further investigation is needed to fully
leverage the 3D nature of the ONH and interpret the z-axis
information.

A B C

Figure 8. The en-face view of an individual saliency volume. A, A VF test. B, The associated cross-sectional OCT B-scan. C, A scan associated with the red
line in (B), overlaid with the corresponding saliency of point 21 highlighted with red bounding box in (A). VF ¼ visual field.
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This study is the first work to utilize 3D OCT image
data without segmentation around the ONH aiming for
establishing VF-pointwise structureefunction mapping.
The revealed en face spatial correlations offer detailed
and specific mapping that is consistent with previous
studies, highlighting the potential of machine learning in
establishing intricate structureefunction relationships.
The proposed DL methods are fully automated, data-

driven, and able to utilize depth information.
Combining with advanced registration methods, it is
possible to fully unlock the 3D potential of OCT images
and derive more comprehensive mappings. This opens
up the possibility of discovering new structureefunction
relationships and lots of potential use of the proposed
group saliency map such as phenotyping the
structureefunction map.
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