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ABSTRACT

Recognition of mammalian mitochondrial promot-
ers requires the concerted action of mitochondrial
RNA polymerase (mtRNAP) and transcription initi-
ation factors TFAM and TFB2M. In this work, we
found that transcript slippage results in heterogene-
ity of the human mitochondrial transcripts in vivo
and in vitro. This allowed us to correctly interpret
the RNAseq data, identify the bona fide transcription
start sites (TSS), and assign mitochondrial promot-
ers for > 50% of mammalian species and some other
vertebrates. The divergent structure of the mam-
malian promoters reveals previously unappreciated
aspects of mtDNA evolution. The correct assignment
of TSS also enabled us to establish the precise regis-
ter of the DNA in the initiation complex and permitted
investigation of the sequence-specific protein-DNA
interactions. We determined the molecular basis of
promoter recognition by mtRNAP and TFB2M, which
cooperatively recognize bases near TSS in a species-
specific manner. Our findings reveal a role of mito-
chondrial transcription machinery in mitonuclear co-
evolution and speciation.

GRAPHICAL ABSTRACT

INTRODUCTION

Mitochondrial gene expression involves interplay between
nuclear-encoded mitochondrial proteins and the mitochon-
drial genome. The rates of mutation in mitochondria are
significantly higher than in the nucleus, driving a constant
adaptation process, known as mitonuclear coevolution, and
facilitating speciation events (1). The control region of mi-
tochondrial DNA, which harbors two promoters, LSP and
HSP, is the most divergent region in mammalian species.
The sequence and organization of the mitochondrial pro-
moters bear no similarity to the bacterial or phage pro-
moters despite the endosymbiotic origin of mitochondria
and the relation of mtRNAP to the family of T7-like RNA
polymerases (2). Hence, the mitochondrial promoters are
challenging to predict and identify despite the conserved
arrangement of the mitochondrial genes in mammalian
species. The lack of this information has impeded our un-
derstanding of promoter recognition and speciation mech-
anisms driven by mitonuclear incompatibility.

Over the past decade, our knowledge of the transcrip-
tion initiation process in mitochondria has improved due to
a cohort of biochemical and structural studies (3–9). The
sequential model of initiation postulates that mtRNAP is
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recruited to the promoter by transcription factor TFAM,
which is bound to the -39 to -17 region upstream of the tran-
scription start site, TSS (6,10). The bending of the DNA
by TFAM allows the establishment of specific interactions
between its C-terminal ‘tail’ and the long ‘tether’ helix in
the N-terminal domain of mtRNAP (3). The resulting pre-
initiation complex (preIC) is transcription-incompetent and
requires another initiation factor, TFB2M, to melt the pro-
moter and initiate transcription (10). The more upstream
region of the bent DNA (-40 to -60) is located in proximity
to mtRNAP and appears to contribute to the overall stabil-
ity of the IC; however, sequence-specific determinants have
not been identified in this region (10). A conserved struc-
tural element in all single-subunit T7-like RNAPs, the speci-
ficity (SP) loop, has been proposed to interact with the -10
to -5 region of the yeast mitochondrial promoter (11); how-
ever, structural studies have not revealed such interactions
in the mammalian system (3). Previous studies suggested
that mutations that affected the human mitochondrial tran-
scription initiation involved bases -1/-2 and -3/-4 in the LSP
promoter (7). Whether TFB2M is involved in specific inter-
action with this region and thus would be a functional ana-
log of the bacterial specificity factor � had been a subject of
discussion; however, no evidence of its involvement in base
recognition has been presented (12).

Earlier attempts to understand the mechanisms of
species-specific promoter recognition in mitochondria em-
ployed murine promoters, the only other well-established in
vitro transcription system for mammalian species (13). The
mouse and human LSPs share superficial homology, com-
plicating the interpretation of the mutagenesis data. Inter-
estingly, it has been determined that mouse TFAM can ac-
tivate transcription on LSP when used with human mtR-
NAP and TFB2M (7). However, both human mtRNAP and
TFB2M showed strict specificity towards human mitochon-
drial promoters, defined by the interactions mapped to the
vicinity of the TSS (7).

The nuclear-encoded proteins that comprise the mito-
chondrial transcription machinery share 70–90% similar-
ity in mammalian species. Considering an apparent lack of
conservation in the promoter region of mtDNA in differ-
ent species, it remains puzzling how proteins with such sim-
ilar amino acid compositions can transcribe such divergent
promoters. Knowing how the nuclear genes encoding the
transcription machinery adapt to the mutations in mtDNA
could lead to a greater understanding of mitonuclear coevo-
lution and speciation.

In this study, we provide a detailed account of interac-
tions of human mtRNAP with its promoters and define
the major specificity determinants of the transcription ini-
tiation complex. Our data implicate transcription initia-
tion factor TFB2M in sequence-specific interactions with
the promoter and demonstrate that substitution of only
three bases in the human mitochondrial promoter allows for
its recognition by porcine mitochondrial transcription ma-
chinery. We also identified promoter regions and transcrip-
tion start sites for most orders of mammalian species and
some other vertebrates, enabling future analysis of the evo-
lution of sequence-specific DNA recognition in mitochon-
dria.

MATERIALS AND METHODS

Expression and purification of the components of human mi-
tochondrial transcription

Cys-less �42 TFAM and �20 TFB2M were expressed as
previously described (3). �119 mtRNAP was expressed and
purified as described in (10). MtRNAP mutants were ob-
tained by site-directed mutagenesis (QuikChange, Agilent)
using the �119 mtRNAP in pProEx-HTb background.

Expression and purification of the components of porcine mi-
tochondrial transcription

A sequence encoding the porcine mtRNAP lacking the first
107 residues (�107 N-his S.s. mtRNAP) was amplified by
PCR from porcine heart cells cDNA (Zyagen, PD-801) and
cloned into the pProEx-HTb vector (Invitrogen) using the
NcoI/XhoI restriction sites. The protein was expressed and
purified as previously described for human mtRNAP us-
ing Ni-agarose affinity chromatography, heparin sepharose,
and gel filtration (14).

Synthetic genes encoding porcine �42 TFAM (carry-
ing an N-terminal His6 tag) and �20 TFB2M (carrying
a C-terminal His6 tag) were cloned into the pET22b vec-
tor. The internal loop (residues 265 to 287) in the porcine
TFB2M was replaced by a short GSSG linker to improve
the protein solubility. Both proteins were expressed in BL21
(DE3)-RIPL cells. Porcine TFAM was induced for 2 hours
at 37◦C with 0.4 mM IPTG and purified using the pro-
tocol for human TFAM (Hillen, 2017). Porcine TFB2M
was induced for 18 hours at 12◦C with 0.1 mM IPTG and
purified by affinity chromatography using a HisTrap HP
column (GE Healthcare), followed by affinity chromatog-
raphy using a HiTrap heparin HP column (GE Health-
care). The heparin column was equilibrated in buffer A
(40 mM Tris·HCl, pH 7.9, 300 mM NaCl, 5% Glycerol, 5
mM �-mercaptoethanol) and porcine TFB2M was eluted
by 0–80% linear gradient of buffer B (40 mM Tris·HCl, pH
7.9, 1.5 M NaCl, 5% Glycerol, 5 mM �-mercaptoethanol).
Peak fractions were pooled, concentrated, and subjected to
cation exchange chromatography using Mono S 5/50 GL
column (GE Healthcare). The Mono S column was equi-
librated in buffer A, and porcine TFB2M was eluted by 0–
80% linear gradient of buffer B. Peak fractions were pooled,
concentrated, and stored at -80 ◦C.

Preparation of templates for transcription assays

The porcine regulatory region (nucleotides 1 to 1175 of
the Sus scrofa genome, NC 000845) was cloned into the
pT7Blue vector using the pT7Blue Perfectly Blunt cloning
kit (Novagen). For the porcine LSP template preparation,
the region including nucleotides 1011–1139 (-108 to + 21
of Sus scrofa LSP) was amplified by PCR and purified
using a PCR purification kit (Thermo). For porcine HSP
preparation, the region including nucleotides 1064–1175
(-79 to + 33 of Sus scrofa HSP) was amplified. Tem-
plates having single base-pair substitutions in LSP were
generated using reverse PCR primers with corresponding
mutations.
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Synthetic templates (IDT DNA, Supplementary Table
S1) containing the -41 to + 19 region of human LSP or -63
to + 19 region of human HSP were used for comprehensive
mutagenesis. For annealing, the DNA oligonucleotides (20
�l) were diluted in the ‘duplex buffer’ (100 mM potassium
acetate; 30 mM HEPES, pH 7.5) to 5 �M concentration,
heated for 7 min at 95 ◦C and cooled down (1 ◦C/min) for
70 min to 25 ◦C in a thermocycler. Upon annealing, the tem-
plates were diluted to 0.5 �M concentration with water.

The human templates for the heterologous experiments
and the mutant mtRNAP transcription assays were ob-
tained by PCR amplification. The region comprising nu-
cleotides 383 to 597 of the human reference genome
NC 012920.1 was cloned into the pT7Blue vector using the
pT7Blue Perfectly Blunt cloning kit (Novagen, 70189). For
human LSP preparation, nucleotides 386 to 514 (from –108
to + 21 of human LSP) were amplified. For human HSP
preparation, nucleotides 456 to 586 (-106 to + 25 of hu-
man HSP) were amplified. Templates having single base-
pair substitutions in LSP were generated using a reverse
PCR primer with the desired mutation.

Transcription assays

Transcription reactions were carried out using synthetic or
PCR DNA templates (50 nM), mtRNAP (150 nM), TFAM
(100 nM for synthetic templates or 200 nM for PCR tem-
plates) and TFB2M (150 nM) in a transcription buffer con-
taining 50 mM Tris (pH = 7.9), 10 mM MgCl2, 20 mM
�-mercaptoethanol and 0.1 mg/ml of BSA in the presence
of ATP (0.3 mM), GTP (0.3 mM), CTP (0.3 mM), UTP
(0.05 mM) and 0.3 �Ci [�-32P] UTP (800 Ci/mmol). When
the mutant mtRNAPs were used, reactions were carried out
at 34◦C for 5 min. All the other transcription assays were
carried out at 37◦C for 30 min. Reactions were stopped by
the addition of an equal volume of 95% formamide/0.05
M EDTA. The products were resolved by 20% PAGE
containing 6 M Urea and visualized by PhosphorImager
(GE Health). All experiments were repeated at least three
times, and the representative images are shown in the
figure.

Analysis of the catalytic activity of mtRNAP mutants by
primer extension

The activity of mtRNAP and its variants was assayed using
a primer extension assay (15). A 14 nt RNA (16) was labeled
at its 5′ end using [� -32P]ATP and PNK (NEB) and was
annealed to oligonucleotides TS02 and NT02 as described
for synthetic templates above.

Isolation of mitochondria

To isolate mitochondria, 107 HeLa cells were lysed using
a Teflon homogenizer in 7.5 ml of mitochondria isolation
buffer (20 mM HEPES-KOH, pH 7.2, 0.25 M sucrose, 1
mM EDTA, 1 mM DTT, 0.1 mg/ml BSA and 0.1 mM
PMSF). The lysate was cleared by two cycles of centrifu-
gation at 2,000 g for 5 minutes at 4◦C. The supernatant
was collected and centrifuged at 10,000 g for 12 minutes.

The pellet containing mitochondria was washed with HES
Buffer (20 mM HEPES-KOH pH 7.2, 1 mM EDTA, 0.25
M sucrose) and stored in the same buffer at -80◦C.

Identification of the 5′ ends of mitochondrial transcripts

Isolated mitochondria were taken up in 1 ml of Trizol
(Thermo Fisher Scientific), incubated for 5 min at room
temperature, mixed with 0.2 ml of chloroform, and vortexed
for 15 s. The mixture was spun down at 12,000 g for 15 min
to separate phases. The colorless upper phase was collected,
mixed with 0.5 ml of isopropanol, and incubated for 15 min
at room temperature. The RNA pellet was collected by cen-
trifugation at 12,000 g for 15 min. The pellet was washed
with 1 ml of 75% ethanol by centrifugation at 12,000 g for
15 min, dried, dissolved in nuclease-free water, and treated
with DNase I (NEB) to remove DNA contamination. The
typical yield of mitochondrial RNA was 12.5 �g per 106

cells.
The DNA primers complementary to the initially tran-

scribed regions of the LSP and HSP promotes (Supplemen-
tary Table S1) were 32P-labeled with PNK (NEB). To an-
neal the primers to the RNA, the mixture containing 3–4 �g
of total RNA and DNA primer (100 nM) was heated for 5
min at 75◦C and flash-cooled on ice for 10 min. The primer
extension was performed using ProtoScript II reverse tran-
scriptase (NEB) in a reaction containing RiboLock RNase
inhibitors (Thermo Fisher), 10 mM DTT, dNTPs (1 mM),
and 0.75–3 �g of total RNA for 30 min at 42◦C. Reactions
were stopped by the addition of an equal volume of 95%
formamide/0.05M EDTA. The products were resolved by
20% PAGE containing 6 M urea and visualized by Phos-
phorImager (GE Health).

Identification of mitochondrial promoters

NCBI Sequence Read Archives (SRA) database has been
used as the source of the primary data for promoter search.
The dataset accession numbers are listed in Table 1. The
part of the control region of mtDNA (between tRNAPhe

and CSBII), which harbors mitochondrial promoters, was
used as a query for BLASTn search of the datasets con-
taining sequences of non-polyadenylated RNA. Identifica-
tion of a homogeneous 5′ end for multiple reads aligning
to the same query region was interpreted as an indication
of a transcription start site (+1). In some cases, transcripts
originating from one of the mitochondrial promoters con-
tained several additional AMP residues at their 5′ ends, and
therefore the exact TSS could not be identified with a sin-
gle nucleotide precision. To overcome this, alignment of a
putative promoter region with the identified promoter from
the other mtDNA strand or with the promoters identified
for closely related species has been used.

Generation of sequence logos and phylogenetic tree

DNA sequence logos were built using the
weblogo.berkeley.edu/logo.cgi server. The phylogenetic
tree of extant mammalian species was generated using
iTOL software (17,18).
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Table 1. Identification of mitochondrial promoters and their TSS in mammalian species

Order Species RNA-seq accession number
NCBI reference

sequence LSP TSS HSP TSS

Rodentia Mus musculus SRX3061644 NC 005089.1 16188 16285, 16296
Rodentia Rattus norvegicus SRX016597 NC 001665.2 16191 16292
Rodentia Ictidomys tridecemlineatus SRX2039082, SRX9106226 NC 027278.1 16285 16437
Rodentia Cavia porcellus SRX1527562 NC 000884.1 16741 16770
Rodentia Heterocephalus glaber SRX9149419 NC 015112.1 16289 16346
Lagomorpha Oryctolagus cuniculus SRX3028972-74,

SRX3028966-67
NC 001913.1 16666*, 16819*,

16972*, 17125*
16719, 16872,
17025, 17178

Lagomorpha Ochotona dauurica SRX2865113, SRX2865123 NC 044120.1 16959, 17164 17034*, 17239*

Primates Homo sapiens SRX12687743-45 NC 012920.1 406* 562*

Primates Macaca mulatta SRX10270359 NC 005943.1 398* 503*

Primates Callithrix jacchus SRX1166092 CM021961.1 16294 16428
Chiroptera Phyllostomus discolor SRX6878473 CM016611.2 16606* 16625
Artiodactyla Ovis aries SRX5547561 NC 001941.1 16486 16588
Artiodactyla Sus scrofa SRX5417080 NC 000845.1 1031 1143
Perissodactyla Equus ferus caballus SRX9602386 NC 001640.1 16588* 16607
Perissodactyla Equus asinus SRX4946216 NC 001788.1 16599* 16618
Carnivora Canis lupus SRX3639642,

SRX3639655, SRX3639682
NC 002008.4 16648 16651

Carnivora Felis catus SRX4999833-35 NC 001700.1 791 794
Proboscidea Elephas maximus SRX4745754 NC 005129.2 16811, 16800 16833
Tubulidentata Orycteropus afer SRX4745740 NC 002078.1 Not found 16749
Cingulata Dasypus novemcinctus SRX1527560 NC 001821.1 16756*, 16819,

16947
17008*

Diprotodontia Phascolarctos cinereus SRX5503561 to
SRX5503566

NC 008133.1 16199 16304*

Monotremata Ornithorhynchus anatinus SRX182799-801 NC 000891.1 Not found 16988* or 16989*

Anseriformes Anas platyrrhynchos SRX9500716-19 NC 009684.1 910, 912 917, 919
Anura Xenopus laevis SRX6087549-51 NC 001573.1 2033, 2101 2104

*Indicates transcript slippage.

RESULTS

Transcription initiation at HSP and LSP involves transcript
slippage

In vitro transcription at human HSP generates several RNA
species, some of which are 1–4 nt longer than the predicted
19–20 nt run-off product (Figure 1A, B). To understand the
reason behind the heterogeneity of the HSP transcripts, we
altered the base pairs in the stretch of the three template
strand dTMP residues located near the TSS (Figure 1A).
Strikingly, substituting the most upstream A-T base pair to
a T-A base pair resulted in the synthesis of a nearly homo-
geneous 19 nt RNA product (Figure 1B, right lane). The
observed change in transcription pattern suggests that the
dTMP base in the middle of the T-stretch is the bona fide
TSS (designated here as + 1). The additional RNA prod-
ucts observed during initiation at the native HSP resulted
from transcription slippage, an iterative cycle of addition
of AMP residues to the growing end of the transcript on a
homopolymeric track of dTMP residues in the DNA (19)
(Supplementary Figure S1A). To confirm this, we substi-
tuted the -1 and the + 1 A-T base pairs with G-C base pairs
(Figure 1C). While transcription of the ‘-1G’ template was
inefficient, the ‘+1G’ promoter produced a robust 19 nt long
RNA product (Figure 1C). We confirmed the utilization of
GTP as the priming substrate for the ‘+1G’ promoter by us-
ing [� -32P]-GTP, which can only label the 5′ end of the RNA
(Figure 1D, Supplementary Figure S1B). As expected, the
RNA products obtained using the native HSP were not de-

tected; however, efficient labeling was observed in the case
of the ‘+1G’ HSP, confirming initiation with GTP and lo-
cation of the start site at position + 1 (position 562 in the
reference human mtDNA) (Figure 1D).

Transcription initiation at LSP results in two major RNA
species (19 and 20 nt, Figure 1E, F), previously interpreted
as originating from two adjacent alternative start sites (14).
However, similar to the situation with HSP, the interruption
of the T-stretch at TSS (‘-1T’ LSP) or mutation of the + 1
base to dGMP (and thus utilization of GTP as the priming
substrate) results in the production of a single 19-nt run-off
band (Figure 1F, Supplementary Figure S1C). This finding
also suggests transcript slippage as the mechanism behind
the formation of multiple RNA products and illuminates a
single initiation site in LSP (+1) at position 406 in the hu-
man mtDNA (Figure 1G).

We next probed whether transcript slippage occurs dur-
ing transcription initiation in vivo. We isolated total RNA
from human mitochondria and performed 5′-end mapping
of the HSP and LSP transcripts using primer extension
by reverse transcriptase (Supplementary Figure S1D). The
cDNA copies of the HSP transcripts were 1, 2, or 3 nt
longer than the control 32P-labeled DNA primer made to
match the length and sequence of the nascent transcript
originated from the + 1 position (Supplementary Figure
S1D, upper panel). Similarly, in the case of the LSP tran-
scripts, two major species were identified (Supplementary
Figure S1D, lower panel). The size and the pattern of the
RNA species identified at both mitochondrial promoters in
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Figure 1. Transcript slippage occurs during transcription initiation at human mitochondrial promoters. (A) Schematic illustration of the mutations made
near the HSP TSS. The mutated bases are highlighted in green. TSS location is indicated based on the data obtained in this work. The lengths of the
observed RNA species are indicated next to the bent arrow. (B) Substitution of the -1 base-pair suppresses transcript slippage at HSP. RNA species having
additional AMP residues (red) at the 5′ end are indicated. (C, D) Substitution of the + 1 NT base with dGMP in HSP allows transcription initiation with
GTP. Transcription reactions were labeled with [�-32P]-UTP (C) or [� -32P]-GTP (D). (E, F) Substitution of the -1 or + 1 base pairs suppresses transcript
slippage at LSP. RNA species having additional AMP residues (red) at the 5′ end are indicated. (G) Alignment of human HSP and LSP promoters based
on the TSS identified in this work. The positions of the start sites and their location in mtDNA are indicated in blue letters and marked by black arrows.
The positions of the previously identified TSS are shown in grey arrows. Identical bases between the LSP and HSP promoters in the -14 to + 4 region are
highlighted in yellow, and the TFAM binding site is underlined. (H) Distribution of the 5′-ends of human RNA sequence reads in the vicinity of HSP and
LSP. Bars represent the number of reads in the SRA that have their 5′-ends at corresponding positions. The bars colored in teal represent the reads that
have their 5′-ends mis-paired to the template DNA. Sequences of the 5′-proximal regions of the RNA species are shown in the insets (red) aligned to the
sequence of the template strand of DNA (blue).

vivo and in vitro match closely, confirming the occurrence of
transcript slippage during transcription initiation in human
mitochondria. Finally, analysis of LSP and HSP transcripts
using RNA-sequencing data (20) reveals heterogeneity at
the 5′ end of these transcripts consistent with the transcript
slippage pattern observed in in vitro experiments above (Fig-
ure 1H). The observed confinement of most RNA species to
only two locations within the control region of mtDNA (to
LSP and HSP), and the presence of additional, mismatch-
ing AMP residues at their 5′ ends, unequivocally suggests

that they represent the initially transcribed sequence and
not caused by nuclease processing.

Identification of mitochondrial promoters for mammalian
species

Mammalian mitochondrial promoters are generally not
easily identifiable because of the lack of sequence conser-
vation. Identification of TSS of mitochondrial promoters is
further complicated by the transcript slippage phenomenon
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described in this study, resulting in the heterogeneity of the
5′ ends of the transcripts, which prevents the TSS assign-
ment with a single-nucleotide precision. Considering these
findings, we analyzed the available RNAseq databases for
species belonging to various orders of mammals and de-
termined promoter regions and their TSS based on the se-
quence of the 5′ ends of RNA transcripts (Table 1, Figure
2A, Supplementary Figures S2–S5).

Analysis of mitochondrial promoters of mammals be-
longing to seventeen orders reveals a different degree of con-
servation of the TSS region and a variable distance between
LSP and HSP (Figure 2B). Overall, the TSS region is poorly
conserved, with a notable exception of the order Carnivora
(Figure 2A).

In all mtDNA sequences analyzed, LSP and HSP are
found in proximity to each other (Table 1, Figure 2B).
The shortest inter-promoter region is found in the Car-
nivora species (2 bp between LSP and HSP TSS), while the
longest is observed in humans (155 bp). In many orders, the
length of the inter-promoter region is conserved between
species. Thus, the distance between the LSP and HSP TSS
in all species belonging to the six orders of the superorder
Afrotheria is 21 nt. In primates, however, the length of the
inter-promoter regions differs from family to family and is
between 110 and 155 nt. Surprisingly, species of the Lago-
morpha and Cingulata orders have several promoter units
in their mtDNA (Figure 2B). Four LSP-HSP units were de-
tected in mtDNA of European rabbit and nine-banded ar-
madillo, two - in Daurian pika (Figure 2B, Supplementary
Figure S3).

While each species in most mammalian orders possess
a distinct set of divergent promoters, promoters of some
Perissodactyla and Chiroptera species share extraordinary
sequence homology (Figure 2C). For example, the TSS re-
gions in mtDNA of horses and pale spear-nosed bats are
nearly identical (Figure 2C).

The Carnivora species have the most conserved promoter
region (10–14 absolutely conserved bases in LSP/HSP)
(Figures 2A, D, Supplementary Figure S4A, B). A single
mutation within the palindromic region will affect both pro-
moters and, consequently, could affect transcription and
replication of mtDNA, which likely explains the high level
of preservation of this region in Carnivora order. A closely
spaced, palindromic promoter unit can be an early inven-
tion in evolution as it is also observed in amphibians (Fig-
ure 2E). Remarkably, a closely spaced AT-rich promoter
unit has been identified in birds (Figure 2F). Analysis of
the SRA data suggests that mtDNA of wild duck (Anas
platyrhynchos) contains two pairs of promoters, both of
which are responsible for transcription (Figure 2F, Sup-
plementary Figure S5D). In many Chiroptera species, the
palindromic promoter region is interrupted, and its conser-
vation involves only the bases adjacent to the TSS of LSP
and HSP (Figure 2G).

Analysis of mammalian mitochondrial promoters reveals
that transcript slippage is very common and is seen in bats,
rabbits, hares, horses, armadillo, platypus, and koalas on ei-
ther LSP or HSP (Supplementary Figures S2–S5). The only
group of animals in which the transcript slippage occurs at
both promoters is the catarrhines, which includes apes and
the old-world monkeys (Supplementary Figure S3).

Comprehensive mutagenesis identifies bases essential for pro-
moter utilization

Identifying the bona fide TSS in human LSP and HSP (Fig-
ure 1) allows for precise positioning of the DNA register in
the active site of mtRNAP and mapping of interactions be-
tween the promoter bases and the residues in mtRNAP and
transcription factors. As a consequence, probing the mech-
anisms behind species-specific promoter recognition is now
possible.

To determine which DNA bases are critical for binding
and recognition by mtRNAP, we performed comprehensive
mutagenesis of the promoter region predicted to interact
with mtRNAP and TFB2M (3). Human LSP is the most
studied mammalian mitochondrial promoter and serves as
a convenient target for mutagenesis. The bases in the region
from -10 to + 4 of LSP were substituted to represent all
possible base-pair variants (Figure 3A, Supplementary Fig-
ure S6, and Table 2). Of the 42 promoter templates tested,
the most dramatic effect on transcription efficiency was ob-
served when the bases in proximity to the TSS were substi-
tuted (Figure 3A and Table 2). This is consistent with the
conservation of these bases among human LSP and HSP in
this region (Figure 1G).

As discussed above for HSP, substituting the dTMP bases
that promote transcript slippage (-1A, +1A, +2A) had a no-
table effect on the transcription pattern (Figures 1A, B, 3A).
Different substitutions in this region had variable effects
on transcription efficiency, likely due to minute changes in
DNA binding and melting. We also found that substituting
the conserved + 3G and + 4A bases resulted in a 3–6-fold
reduction of transcription efficiency, with a notable excep-
tion of the + 3G > A mutation, which resulted in an almost
complete loss of transcription initiation (Table 2).

Earlier studies of mitochondrial transcription predicted
that the specificity (SP) loop of yeast mtRNAP makes base-
specific contacts with the promoter (11). In the human mi-
tochondrial transcription initiation complex, the SP loop is
inserted into the major groove of DNA and is thus in a posi-
tion to make base-specific interactions (3). However, unlike
the situation with the phage T7 promoters, the upstream re-
gion (bases from -12 to -6) is not conserved between LSP
and HSP (Figure 1G), and base substitutions there do not
considerably affect the efficiency of transcription initiation
(Table 2). While our mutagenesis data cannot completely
rule out base-specific interactions with this region of the
promoter, it seems likely that the mode of promoter recog-
nition by the SP loop in mtRNAP may differ quite signifi-
cantly from that observed in phage RNAPs.

Finally, substituting the -3 and -4 base-pairs (conserved
in both LSP and HSP in human mtDNA) resulted in dra-
matic inhibition of transcription initiation (Figure 3A, and
Table 2). These bases are melted in the IC (21) and can, in
theory, be recognized in either strand of DNA by mtRNAP
and/or TFB2M (3).

Promoter bases -3 and -4 are located in close proximity to
conserved structural elements in mtRNAP in the IC

Analysis of the structure of the human mitochondrial IC
reveals two structural elements that can specifically interact
with the -3G and -4G bases in the template strand of DNA -
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Figure 2. Structural features of mammalian mitochondrial promoters. (A) Mitochondrial promoters and their TSS in mammalian species. The phylogenetic
tree of extant mammalian species is shown. Suborders, orders, and subfamilies of species, whose promoters have been identified, are highlighted with
colored lines. The sequence logos represent the conservation between promoters in the species of the superorder Afrotheria, order Carnivora, Perissodactyla,
Artiodactyla, Lagomorpha, and Chiroptera, suborder Hystricomorpha, infraorder Simiiformes, and the Murinae subfamily. The sequence logo shown for
suborder Myomorpha is based on LSP only. Promoters have been identified for platypus (Ornithorhynchus anatinus, O.a.), koala (Phascolarctos cinereus,
P. c.), and armadillo (Dasypus novemcinctus, D. n.), (logos are not shown). Species whose mitochondrial promoters were not identified are represented in
grey lines. (B) Schematic structure of some promoter units in mammalian mtDNA. TSS of LSP and HSP and the distance between them are indicated,
and the -3 and the -4 bases are highlighted. Repeated promoter units are indicated by the 4X and 2X signs in Oryctolagus (rabbits) and Ochotona (pikas)
species. (C) Sequence alignment showing identical bases between LSP of Equus caballus (horse) and LSP of Phyllostomus discolor (pale spear-nosed bat).
Yellow boxes highlight identical bases, TSS is indicated by arrows. (D) The structure of a palindromic LSP-HSP unit in dogs and wolves. The palindrome
sequence is indicated in a blue box. (E) The structure of the LSP-HSP promoter in frogs (Xenopus). The palindrome sequence is indicated in blue boxes. (F)
The structure of the LSP-HSP promoter in ducks (Anas). The palindrome sequence is indicated in blue boxes. (G) The interrupted palindromic promoter
unit in some bat species. The palindrome sequence is indicated in blue boxes.
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Figure 3. Promoter-mtRNAP interactions within transcription initiation complex. (A) Comprehensive mutagenesis of the LSP promoter. Run-off tran-
scription assays were performed using synthetic LSP templates and human mtRNAP, TFB2M, and TFAM. (B, C) A close-up view of the active sites of
human mtRNAP and T7 RNAP initiation complexes, PDB ID 6ERP and 1QLN. Conserved structural elements of the RNAPs – the G helix and the
specificity loop-interact with the -3 and -4 bases of promoter DNA. Note that the residues in the proximity to -3 and -4 bases are shown as alanines in the
SP loop of human IC. The position of the -5 base in the template strand of LSP is different from the -5 base in T7 RNAP IC because it has been artificially
pre-melted. (D, E) Sequence alignment of the G helix (D) and the specificity loop (E) of mtRNAP in mammalian species. Residues that are identical or
similar to human sequence are highlighted in yellow.

the G helix (residues 497–519) and the base of the SP loop
(residues 1081–1110, Figure 3B). Of these two bases, only
the density for the -4G base has been observed in the struc-
ture of the IC (3); however, the position of the -3G base can
be modeled by homology modeling using the T7 RNAP IC
(22). Comparison of the structures of the human mtRNAP
and T7 RNAP initiation complexes reveals that the same
structural elements in these polymerases interact with the
analogous bases (Figure 3B and C). Residue S139 in the G
helix of T7 RNAP hydrogen bonds to the -4 base, whereas
the N762 residue in the SP loop recognizes the -3 base (Fig-
ure 3C). While sequence conservation of these structural el-

ements in mtRNAP and T7 RNAP is superficial, the N1103
residue in the SP loop and R502 in the G helix of mtR-
NAP are in a position to interact with the -3 and -4 bases in
a manner that is analogous to that observed in T7 RNAP
(Figure 3B).

Examination of sequence conservation in these regions
of mtRNAP from various mammalian species reveals high
variability in otherwise structurally conserved elements.
The variable residues cluster around amino acid R502/E503
(indicated as ‘RE’) in the G helix (human mtRNAP num-
bering here and throughout the manuscript), and the substi-
tutions include polar or charged residues such as HR, HE,
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Table 2. Comprehensive mutagenesis of human LSP

WT base1,2
Base

substitutions

Transcription
efficiency3, %

of WT Notes

+4A (403) T 19+/-12
G 38+/-8
C 22+/-12

+3G (404) T 28+/-4
C 13+/-2
A <2

+2A (405) T <2
G 42+/-15
C 24+/-10

+1A (406) T <2 Compared to the 19 nt
product in WT

G 100+/-12 Compared to the 19 nt
product in WT

C <2 Compared to the 19 nt
product in WT

-1A (407) T 44+/-16
G <2
C 20+/-5

-2A (408) T 95+/-22
G 75+/-30
C 20+/-6 Enhanced transcript

slippage
-3C (409) T 5+/-2 Enhanced transcript

slippage
G <2
A <2

-4C (410) T <2
G <2
A <2

-5G (411) T 100 +/-11
C 59+/-36
A 11+/-1

-6C (412) T 92+/-4
G 42+/-6
A 92+/-10

-7C (413) T 54+/-18
G 34+/-12
A 55+/-9

-8A (414) T 59+/-8
G 102+/-17
C 80+/-33

-9T (415) G 48+/-5
C 71+/-3
A 51+/-5

-10A (416) T 105+/-3
G 97+/-7
C 98+/-3

1In the non-template strand of the LSP promoter.
2Position in human mtDNA is given in parenthesis.
3Assayed by the run-off transcription assay using all four NTPs and mea-
sured for the 19 and 20 nt long RNA products.

HN, QQ, QN (Figure 3D). Similarly, in the cluster of the
polar/charged residues in the base of the SP loop of human
mtRNAP - T1101/H1102/N1103 (or ‘THN’), variations in-
volving other residues capable of forming hydrogen bonds
with DNA are found (Figure 3E). They include the follow-
ing variants: NSS, NHS, SSS, TSS, SNS, SQS, and some
others. The combination of these variable residues in both
the G helix and the SP loop can, in principle, serve as a basis
for recognition of the -3 and -4 bases in promoter DNA.

In vitro reconstitution of the porcine mitochondrial transcrip-
tion system

To understand further the molecular basis of mitochondrial
promoter recognition, we cloned and purified porcine mtR-
NAP, TFB2M and TFAM and reconstituted the porcine
in vitro transcription system using the control region of
Sus scrofa mtDNA (Supplementary Figure S7A). Human
and porcine promoters share no sequence homology (Fig-
ure 4A), allowing probing species-specific interactions using
transcription assays. Unlike human mitochondrial promot-
ers, porcine LSP and HSP contain identical 10 bp regions
spanning the -5 to + 5 interval (Figure 4A). Similar to hu-
man promoters, porcine LSP and HSP possess limited ho-
mology in the putative TFAM binding region (Figure 4A).

We obtained robust transcription using two fragments
of porcine mtDNA that encompass LSP (position 1011–
1139) and HSP (1064–1175). As is the case for human tran-
scription (4), porcine transcription critically depends on
the simultaneous presence of transcription initiation fac-
tors TFAM and TFB2M, which act synergistically (Fig-
ure 4B,C). Using the appropriate RNA markers and [�-32P]
ATP, we identified the exact location of the TSS in both LSP
and HSP (Figure 4A-C), in full agreement with our SRA
database analysis (Table 1).

Human and porcine transcription machinery display re-
markable specificity towards the autologous promoters, as
no specific transcripts were detected when heterologous
promoters were used (Figure 4D,E). This high specificity
of recognition is unlikely defined by interactions of TFAM
with the promoter DNA, as substitution of human TFAM
with its porcine homolog, or vice versa, did not result in a
significant reduction in transcription (Figure 4F, Supple-
mentary Figure S7B–S7D). Analysis of TFAM-mtRNAP
interacting interface, which involves the C-terminal ‘tail’
of TFAM and the ‘tether’ helix of mtRNAP (3) (Figure
4G), reveals its conservation in many mammalian species.
Residues in TFAM involved in hydrogen-bonding with
mtRNAP - R159, R210, and E214 - are identical in human,
mouse, and porcine TFAM, explaining their activity in the
transcription reactions above (Figure 4H).

In contrast to TFAM, the substitution of human TFB2M
with its porcine counterpart resulted in an almost complete
loss of transcription activity on both promoters (Figure 4I,
Supplementary Figure S7E). Similarly, human TFB2M was
a poor substitute for porcine TFB2M, though some resid-
ual activity was detected at a high concentration of this pro-
tein (Figure 4J). TFB2M-mtRNAP interaction appears to
be broadly conserved in mammals, with the notable excep-
tion of a salt bridge between the B-loop of mtRNAP and the
C-terminal domain in TFB2M. Disruption of R601-D346
interaction in human mtRNAP results in a 5-fold reduction
of transcription (3). In both human and porcine TFB2M,
however, the D346 residue is preserved, suggesting that the
dramatic decrease in transcription activity observed in ex-
periments in Figure 4I could be due, at least in part, to in-
compatibility of the human promoter with porcine TFB2M.
Finally, the substitution of human mtRNAP with porcine
mtRNAP, or vice versa, resulted in a complete loss of tran-
scription activity (Figure 4K and Supplementary Figure
S7D).
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Figure 4. Reconstitution and characterization of the porcine in vitro mitochondrial transcription system. (A Sequence alignment of the Sus scrofa pro-
moters. TSS (+1) is indicated in blue. The sequence of human LSP is shown aligned to the porcine promoters based on the TSS location. Identical bases
between the three promoters from bases -15 to + 5 are highlighted in yellow. (B, C) Transcription initiation by Sus scrofa mtRNAP is specific and critically
depends upon TFAM and TFB2M. Transcription assays were performed using the PCR-amplified templates containing porcine LSP (B) or HSP (C).
The reactions contained S. scrofa mtRNAP, TFAM, and TFB2M, as indicated. Products of transcription reaction involving human LSP (21 and 22 nt)
were used as size markers (M). (D) Porcine initiation complex does not recognize human promoters. Transcription assays using human (H) or porcine (S)
initiation complex proteins (mtRNAP, TFAM, and TFB2M) were performed using human LSP (left panel) or HSP (right panel). The blue and black font
of the labels distinguishes the porcine and human proteins/sequences used. (E) Human transcription machinery does not recognize the porcine promoters.
Transcription assays using human (H) or porcine (S) initiation complex proteins (mtRNAP, TFAM, and TFB2M) were performed using porcine LSP (left
panel) or HSP (right panel). (F) Porcine TFAM can substitute for human TFAM during transcription initiation at LSP. Transcription assays were per-
formed using human LSP, human mtRNAP, and TFB2M, and increasing concentrations of human (lanes 2–6) or porcine (lanes 7 -11) TFAM. (G) Close-up
view showing the TFAM-mtRNAP interactions at LSP. Hydrogen bonds between the conserved residues are indicated. (H) Sequence conservation in the
region of TFAM that interacts with mtRNAP. Identical residues are highlighted in yellow. (I) Porcine TFB2M cannot substitute for human TFB2M during
transcription initiation at LSP. Transcription assays were performed using human LSP, human mtRNAP, and TFAM, and increasing concentrations of
human (lanes 2 and 3) or porcine (lanes 4–7) TFB2M. (J) Human TFB2M has reduced activity when used with porcine LSP. Transcription assays were
performed using porcine LSP, porcine mtRNAP, and TFAM, and increasing concentrations of porcine (lanes 2 and 3) or human (lanes 4 -7) TFB2M. (K)
Human and porcine mtRNAPs are selective towards their corresponding promoters. Left panel. Transcription assays were performed using human LSP,
TFB2M, TFAM, and human (lane 1) or porcine (lane 2) mtRNAP. Right panel. Transcription assays were performed using porcine LSP, TFB2M, TFAM,
and human (lane 3) or porcine (lane 4) mtRNAP.
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Species-specific recognition of the -3 base in promoter DNA

Structural data and the comprehensive mutagenesis anal-
ysis described above (Figure 3) suggest that the -3 and -4
bases in the human promoters are critical for their recog-
nition. Notably, these bases differ between human and the
newly identified porcine promoters (Figure 4). Similar to
the situation with human promoters, substitutions of bases
-3 and -4 in porcine LSP results in a significant decrease in
transcription efficiency (Figure 5A), suggesting that recog-
nition of these bases by mtRNAP could serve as a molecu-
lar basis for mitochondrial promoter specificity in different
mammals. In agreement with this observation, the residues
in the promoter-recognizing elements of mtRNAP located
in the proximity to -3 and -4 bases (Figure 3B) are markedly
divergent in mammalian species (Figure 3D,E), suggesting
that they may play an essential role in species-specific pro-
moter recognition (Figure 5B).

To investigate the mechanism of promoter recognition
by mtRNAP, we substituted residues in the SP loop and
the G helix of human mtRNAP that are in a position to
interact with -3 and-4 DNA bases with their counterparts
from porcine mtRNAP (Figure 5C) and assayed the effect
of the substitutions on recognition of native and modified
promoters. Three human mtRNAP variants were gener-
ated. The first variant (termed ‘HR’) involved substitutions
of R502 and E503 to histidine and arginine, correspond-
ingly, the residues found in the G helix of Sus scrofa mtR-
NAP (Figure 5B,C). Another mutant, ‘NSS’, involved the
non-conserved residues in the specificity loop of mtRNAP
- T1101N, H1102S, and N1103S. Finally, the third con-
structed variant, called ‘pentamutant’, combined the afore-
mentioned mutations in helix G and the SP loop of mtR-
NAP (Figure 5C).

While these mutants retained full catalytic activity in a
primer extension assay (Supplementary Figure S8A), they
showed significantly reduced transcription during initia-
tion on the human native promoter (Figure 5D, lanes 1–4).
This confirms the critical role of these residues in promoter
recognition.

When the mutant ‘-3T’ promoter was used, the activity
of WT mtRNAP was reduced ∼5 fold (Figure 5D, lane 5).
Remarkably, the mutant mtRNAPs demonstrated a higher
transcription activity on the ‘-3T’ promoter than the native
promoter (Figure 5D, lanes 5–8). Thus, while the activity of
the HR mutant increased only marginally, the NSS and the
pentamutant mtRNAP showed a 2.5–4 fold increase, sug-
gesting a clear preference in recognition of the ‘porcine’ -3
T-A base pair. Unexpectedly, none of these mutants were
active on the ‘-4A’ LSP promoter (Figure 5D, lanes 9–12)
or the double mutant -3T/-4A LSP promoter (Supplemen-
tary Figure S8B), suggesting that additional mechanisms
may be involved in recognition of this base. Recognition of
the -3 base by the pentamutant was specific to the T-A base
pair found in the porcine promoter, as no other base varia-
tion at this position produced efficient transcription (Fig-
ure 5E). Transcription of the ‘-3T’ promoter was strictly
TFB2M-dependent, confirming that the observed product
was specific (Supplementary Figure S8C). These results in-
dicate that the G-helix and the SP loop of mtRNAP harbor
residues that define the specificity of recognition of the -3
base in mitochondrial promoters.

TFB2M and mtRNAP recognize the -4 base of the promoter

The finding that mutations in mtRNAP did not improve
recognition of the ‘porcine’ -4A promoter variant suggested
that the mechanism of recognition of this base pair in-
volves additional interactions, possibly with TFB2M. In-
deed, TFB2M makes extensive contacts with the non-
template strand of promoter DNA during transcription ini-
tiation (3).

The -4 to + 3 promoter region is melted in the IC, and
TFB2M appears to bind the single-stranded DNA (3). We,
therefore, can assess the effect of substitutions in a single-
stranded context. To this end, to clarify whether recogni-
tion of the bases near the TSS occurs in the template (TS)
or non-template strand (NT), we used a set of mismatched
human LSP templates, in which a single base was substi-
tuted by the base found in the porcine promoter (Figure
6A). The substitution at the -3 TS position decreased tran-
scription efficiency, while substitution of the -3 NT base had
no effect (compare lanes 5 and 6, Figure 6A). This confirms
our structural observations that the -3 base-pair is recog-
nized in the template strand by mtRNAP (Figure 3B). The
substitution at the -1 NT position also caused a decrease
in transcription, suggesting that this base is being recog-
nized (compare lanes 1 and 2, Figure 6A). Consistent with
the data above (Figure 3A), mismatches at -2 did not re-
sult in significant changes in transcription efficiency, while
the bases at position -4 appear to be recognized in both
strands (Figure 6A; compare lanes 3,4 and 7,8). These data
suggest that the -1 and -4 bases in the non-template strand
are important for promoter recognition and are likely rec-
ognized by TFB2M, as no contacts of mtRNAP with the
non-template strand in this region were observed in the IC
structure (3).

To further demonstrate the ability of TFB2M to recog-
nize bases -1 and -4, we compared the transcription effi-
ciency of a modified porcine LSP in the presence of porcine
or human TFB2M (Figure 6B). As expected, the substi-
tution of base-pairs -1, -3, or -4 in the porcine LSP with
those from the human LSP sequence resulted in decreased
transcription in reactions involving porcine proteins. (Fig-
ure 6B, lanes 1–4). However, in the presence of human
TFB2M, a notably increased transcription was observed
in the case of substitution in the -1 base-pair, suggesting
that it is specifically recognized (compare lanes 5 and 6, as
opposed to 1 and 2, Figure 6B). A slight increase in tran-
scription efficiency was observed in the case of the -4 base-
pair (lane 5 vs. 8, as opposed to 1 vs. 4, Figure 6B). Again,
no changes were observed for the -3 base (lane 3 and lane
7 vs its own controls), which is recognized by mtRNAP
only.

To probe the selectivity of TFB2M interactions with the
-1 and -4 non-template bases, we compared transcription
efficiency using human TFB2M and the porcine LSP hav-
ing all possible base-pair substitutions at position -1 and
-4 (Figure 6C and Supplementary Figure S8D). In the case
of the -1 base substitution, human TFB2M demonstrated
a clear preference towards its ‘native’ base (dAMP) in the
non-template strand (Figure 6C, lane 4). A preferable recog-
nition of pyrimidine bases was observed at the -4 NT posi-
tion (dCMP is the native base in human LSP). (Supplemen-
tary Figure S8D, E).

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/5/2765/6534357 by oup user on 19 April 2022



2776 Nucleic Acids Research, 2022, Vol. 50, No. 5

Figure 5. Promoter recognition by human mtRNAP. (A) The -3 and -4 bases in the porcine promoter are important for promoter recognition. Transcription
assays were performed using porcine proteins and native promoter (lanes 1 and 5) or promoter variants having substitutions at the -3 and -4 positions
(Lanes 2–4, 6–8). (B) Schematic drawing illustrating the non-conserved residues in the specificity loop and the G helix in human (black) and porcine (blue)
mtRNAP implicated in recognition of the bases -3 and -4 in the template strand of promoter DNA. (C) Human mtRNAP variants having substitutions in
the G-helix and the specificity loop. The substitutions were made to match the corresponding residues found in porcine mtRNAP. (D) The G helix and the
SP loop of mtRNAP recognize the -3 base in LSP. Transcription assay was performed using the native, ‘-3T’ or ‘-4A’ human LSP with the WT or mtRNAP
mutants as indicated. (E) The pentamutant mtRNAP specifically recognizes the ‘-3T’ LSP. Transcription assays were performed using the native or mutant
LSP, in which the -3 base was changed to all possible variants.

In the experiments described above (Figure 5D), mu-
tations in human mtRNAP allowed for recognizing the
‘porcine’ -3 but not the -4 base in human LSP, even though
the structural data suggest the proximity of this base to the
mutated amino acids. Since TFB2M recognizes the -4 NT
base, we probed whether the -4 base in the template strand
is indeed recognized by mtRNAP (Figure 6D). When the
-1 and -4 base-pairs in human LSP were substituted with
the ‘porcine’ -1 and -4 bases, low transcription efficiency
was observed, even though porcine TFB2M, which recog-
nizes bases -4 and -1 in this template, was used instead of
human TFB2M (Figure 6D, lane 1). A robust transcrip-
tion was detected only when the -4 base in the template
strand was reverted to match the native human base (dG)
(lane 2, Figure 6D). This increase in transcription was not
caused by the mismatch, as the -4 mutation in either strand
suppresses transcription in the presence of human TFB2M
(Figure 6A). These data suggest that the -4 base-pair is rec-
ognized by mtRNAP in the template strand and TFB2M in
the non-template strand (Figure 6E).

Unraveling the major principles of specific recognition
of mitochondrial promoters (Figure 6E) challenged us to
switch promoter specificity and force the porcine transcrip-
tion machinery to recognize a modified human LSP and vice
versa (Figure 6F,G). Substitution of the bases defining the
specificity of the interactions (bases -1, -3, -4) in human LSP
with their porcine counterparts resulted in complete inacti-
vation of this promoter when human transcription machin-

ery was used (Figure 6G, left panel, lane 2). Similarly, ‘hu-
man’ mutations in porcine LSP inactivate transcription by
porcine proteins (Figure 6G, right panel, lane 6). However,
when the porcine transcription machinery was applied to
the ‘porcinized’ human LSP, efficient and specific transcrip-
tion activity was detected (Figure 6G, right panel, lane 8),
indicating that just a few mutations generated in a mam-
malian mitochondrial promoter are sufficient to switch the
specificity of recognition. The reciprocal approach did not
result in a specificity switch (Figure 6G, left panel, lane
4). We speculate that an additional yet unknown sequence
specificity determinant, which is not present in the human
transcription machinery, may be required to recognize the
porcine promoters.

DISCUSSION

Transcription start site in mammalian mitochondrial promot-
ers

Definitive identification of the human TSS is one of the ma-
jor findings of this work, as it paves the way to the analysis of
the mechanisms behind species-specific promoter recogni-
tion in mtDNA. We have corrected the previously misidenti-
fied TSS for several model organisms such as humans, mice,
rats, and pigs and, for the first time, revealed promoters for
some avian species. Precise identification of the TSS for hu-
man and murine species is particularly important because
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Figure 6. Mitochondrial promoters are recognized cooperatively by mtRNAP and TFB2M. (A) Mismatched nucleotides introduced into the NT DNA
strand at positions -1 or -4 affect transcription efficiency. Transcription was performed using human proteins, and human LSP templates with single
nucleotide mismatches at the position indicated. (B) Substitution of S. scrofa TFB2M with H.s. TFB2M compensates for the defects in the transcription of
porcine LSP having mutations at positions -1 and -4. Transcription was performed using porcine mtRNAP and TFAM, and porcine (lanes 1–4) or human
(lanes 5–8) TFB2M. LSP templates with single base-pair substitutions (porcine to human base) at the position indicated were used. Note the efficient
transcript slippage observed on the -1A mutant template due to the generated stretch of three TMP bases in the template DNA strand (lanes 2 and 6). (C)
Human TFB2M recognizes the dAMP base at the -1 position in the non-template strand. The native porcine LSP or its variants having all possible base-
pair substitutions at position -1 were used in transcription assay with porcine TFAM, mtRNAP, and human TFB2M. (D) Human mtRNAP recognizes
the -4 base in the template DNA strand. Human LSP template having base-pair substitutions at positions -1 and -4 (lane 1, template I) or a base pair
substitution at position -1 and a mismatch at base -4 (lane 2, template II) were transcribed with human mtRNAP and TFAM, and porcine TFB2M. (E)
Schematic illustration of promoter recognition by mtRNAP and TFB2M. MtRNAP recognizes the -3 and -4 bases in the template strand, while TFB2M
recognizes the -1 and -4 bases in the non-template strand. (F, G) Porcine transcription machinery can recognize a modified human LSP. Transcription
assays involved native human LSP (III), a porcinized human LSP with base-pair substitutions at positions -1, -3, and -4 (IV), native porcine LSP (V), and
a modified (humanized) porcine LSP with base-pair substitutions at positions -1, -3 and -4 (VI). The promoter sequences near TSS are shown to the left
(F). The left panel of the gel in (G) represents transcription reaction using human proteins, the right panel - transcription with porcine proteins.

the in vitro transcription systems have been previously de-
veloped. While the transcript slippage phenomenon com-
plicated the TSS identification for the human promoters
(23) and required the abovementioned experiments (Figure
1), the murine TSS also appears to be shifted 1–2 nt from
the previously reported locations (24), as indicated by our
RNAseq analysis. The high homology of the LSP promot-
ers and the corresponding 5′ ends of the transcripts in mice
and rats brings high confidence into murine TSS identifica-
tion by the RNAseq analysis (Supplemental Figure S4).

The observed 5′ end heterogeneity of the human mito-
chondrial transcripts arises from the propensity of the mi-
tochondrial machinery to engage in transcript slippage dur-
ing transcription initiation (Figure 1). Transcript slippage
has been demonstrated for various transcription systems

and plays an important role in gene expression and repli-
cation (19,25,26,27,28). Analysis of mitochondrial promot-
ers reveals the conservation of the T-stretch near TSS, and
as a consequence, the possibility of transcript slippage in
LSP and HSP in humans, apes, and old-world monkeys but
not in most other animals, which may have slippage in only
one of the promoters or no slippage at all (Table 1, Supple-
mentary Figures S2–S5). At this time, the significance of the
conservation of transcript slippage mechanism in the mito-
chondria of humans and monkeys remains unclear.

Mitochondrial promoters in many mammalian species
utilize ATP as a priming nucleotide, which is also the case
for yeast mitochondrial promoters (29). The reason ATP is
the preferred priming substrate is unclear. Pyrimidine bases
do not appear to serve as efficient priming substrates, as
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no transcription initiation was detected with UTP and CTP
(Figure 3) and, consistently, no promoters having + 1 TMP
or + 1 CMP have been found (Figure 2). However, our in
vitro data demonstrate that initiation with GTP can be as ef-
ficient as with ATP. While promoters that initiate with GMP
appear to be rare, we identified GMP at the 5′ end of RNA
transcripts from mice, rats, and a few other species (Figure
2, Supplementary Figures S2–S5).

Promoter recognition in mammalian species

The core transcription system in mammals involves three
proteins - mtRNAP, TFAM, and TFB2M - all of which have
been implicated in recognizing promoter DNA. TFAM, a
high mobility group protein, binds ∼15 bp upstream of
TSS and leaves a clear footprint on LSP and HSP in nu-
clease protection assay (30). However, the basis for such
specific preference of promoter sequences is not clear, as
most TFAM interactions occur in the minor groove of the
DNA (31,32). Nevertheless, the initial binding of TFAM to
the promoter, followed by recruitment of mtRNAP, plays
an important role in transcription initiation by positioning
the polymerase active site over the TSS during the forma-
tion of the pre-initiation complex (pre-IC). The alignment
of promoter regions of mammalian species suggests a much
higher degree of conservation of the TFAM HMG2 bind-
ing target than the HMG1 region (Figure 7A). This high-
lights the importance of the HMG2 region for the position-
ing of the C-terminus of TFAM, which recruits mtRNAP to
the promoter. However, the detailed mechanism of HMG2
recognition by TFAM requires further investigation.

Because the DNA duplex is not melted in the pre-IC (8),
it is possible that the initial recognition of the promoter in-
volves major groove interactions with the SP loop of mtR-
NAP. The subsequent recruitment of TFB2M followed by
promoter melting results in specific interactions with the
unwound portion of the DNA. This includes sequence-
specific interactions of mtRNAP with the -4 and -3 bases
and TFB2M with the -1 and -4 bases (Figures 5 and 6).

Since the discovery of TFB2M (and its yeast analog
Mtf1), it has been speculated that this protein plays a role
similar to that of the sigma subunit in bacterial RNAP (12).
Our data provide evidence that TFB2M is indeed involved
in sequence-specific interactions within the initiation com-
plex. These interactions likely occur after the initial pro-
moter melting, as only the nucleotides in proximity to the
TSS are recognized. Recognition of the non-template bases
could be due to their flipping out and insertion into the
pockets on the TFB2M surface, as observed in the yeast IC
(33). Contrary to the SP loop’s role in T7 RNAP (Cheetham
et al., 1999), we detected only a moderate (10–50%) de-
crease in transcription efficiency when substitutions were
introduced in the -6 to -12 promoter region. However, these
regions of human promoters share no apparent sequence
homology arguing against extensive sequence-specific con-
tacts between the SP loop and major groove of DNA.
Instead, the structure-based mutagenesis revealed interac-
tions between the SP loop and residues at the C-terminal
end of the G helix with the -3 base of the promoter. The
amino acid composition in these structural elements is very

divergent in mammals and can serve as a recognition ‘code’
for promoter binding in different species. Indeed, analysis of
the promoter regions in mammalian species suggests con-
servation of both -3 and -4 bases between LSP and HSP
of the same species (Figure 7B). An example of a recogni-
tion code is observed in multiple Chiroptera species, where
one of three possible combinations of the residues in mtR-
NAP strictly correlates with one of the -3 base variants in
LSP (Figure 7C). An exception to this recognition rule is
the species of the Perissodactyla order, such as horses, that
lack conservation of the -3 or the -4 base between LSP and
HSP (Figure 7B). We speculate that the mechanisms of pro-
moter recognition in these species can be different and do
not include recognition of the -3 and -4 bases. Instead, simi-
lar to yeast mtRNAP (34), the more upstream region of the
promoter (from -7 to -5) could be recognized by the SP loop
of mtRNAP in equine species (Supplementary Figure S5).

Transcription machinery, mitonuclear incompatibility, and
speciation

The interplay between the nuclear and the mitochondrial
genome is crucial for cell homeostasis. Because of the much
higher mutation rates for mtDNA, the nuclear genome must
adapt rapidly to preserve mitochondrial functions. Thus,
nuclear genes that have functional interactions with mito-
chondrial genes evolve faster than other nuclear genes (35).
This mitonuclear coevolution is known to be a key factor in
hybrid incompatibility, and as a consequence, an important
step in speciation (36).

Since both nuclear-encoded mtRNAP and TFB2M rec-
ognize mitochondrial promoters, these genes would be ex-
pected to co-evolve with the mitochondrial DNA. Indeed,
elevated evolutionary rates have been detected for both pro-
teins. TFB2M is subject to positive selection in hominoids,
Komodo dragons, and mole rats (37–39). Similarly, POL-
RMT shows a high rate of evolution and positive selec-
tion in the copepod Tigriopus californicus (40). The mtDNA
of geographically isolated Tigriopus species is highly diver-
gent (40), explaining the hybrid incompatibility observed in
these species. The offspring produced from crosses between
isolated populations of T. californicus preferentially inherit
maternal mtRNAP along with their mtDNA (41). This sug-
gests that other offspring variants, which inherit paternal
mtRNAP and maternal mtDNA, are incompetent, likely
because defects in promoter recognition are too severe and
affect mitochondrial biogenesis.

The involvement of mtRNAP in hybrid incompatibility,
which can lead to speciation, is further supported by an in-
teresting finding in reptiles. As a result of an ancient geo-
graphic barrier, the mtDNA of two chameleon populations
in Southern and Northern Israel significantly diverged (42).
Now that the barrier is lost, both populations can mate
and share nuclear genes, but the mitochondrial genome re-
mains specific to each population. One of the nine polymor-
phisms identified in chameleon nuclear genes was mapped
to the specificity loop (Q1090L) of mtRNAP. Interestingly,
while two mtRNAP variants (Q and L) were present in both
populations, they rarely appeared as homozygous in com-
bination with mtDNA from the other population, indicat-
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Figure 7. Evolution of the mammalian mitochondrial promoters. (A) Sequence conservation in TFAM-binding region of LSP and HSP in mammalian
species. The sequence logos were built by alignment of promoters of all species for which TSS has been identified (Table 1), except the Rodentia species. (B)
Sequence conservation between LSP and HSP in individual mammalian species as identified by RNAseq analysis. Top. The sequence logos were built by
alignment of HSP and LSP in mtDNA of the same species. The -3 and -4 bases are indicated by a red box. Bottom. The schematic illustrates the conservation
of the promoter bases in the species shown above. (C) Amino acid variation in the G helix and the SP loop of some bat species and the bases they recognize
in LSP. The phylogenetic tree of the extant bat species is shown. Amino acids in the SP loop and the G helix of mtRNAP are indicated next to the species
names. The recognized residues in the LSP promoters are indicted (bold caps) for the branches of the Chiroptera order. Rhinolopus ferrumequinum (R.f.),
Hipposideros armiger (H.a.), Rousettus aegyptiacus (R.a.), Pteropus vampyrus (P.v.), Desmodus rotundus (D.r.), Phyllostomus discolor (P.d.), Sturnira
tildae (S.t.), Artibeus jamaicensis (A.j.), Myotis brandtii (M.b.), Myotis davidii (M.d.), Myotis myotis (M.m.), Pipistrellus kuhli (P.k.). (D) Sequence
conservation of LSP (left) and HSP (right) in species of the Murinae subfamily. The sequence logos for the -10/+5 promoter regions are shown.

ing that inheriting the ‘mismatched’ mtRNAP/mtDNA re-
duced the fitness of the individual (43). These findings sug-
gest that mitochondrial promoters have diverged in these
chameleon populations and that the observed polymor-
phism in the specificity loop of mtRNAP is an adap-
tive modification to this change. Unfortunately, the mito-
chondrial transcription system in reptiles has not been de-
fined, precluding the analysis of promoter changes in these
species.

Our findings suggest that the most dramatic effect on
transcription initiation is related to the role of the -4 and
-3 base in promoter recognition. The conservation of these
bases is apparent between LSP and HSP of individual
species, as both promoters are recognized by the same set
of proteins (Figure 7B). However, transcription at LSP gen-
erates the mRNA and a replication primer (44). Therefore,
mutations at these bases would produce transcription- and
replication-incompetent genomes. At the same time, muta-
tions of the -3 and -4 bases in the HSP promoter, which is

not involved in the replication primer synthesis, can give rise
to replication-competent but transcription-incompetent, or
‘selfish’ mtDNA. Indeed, the HSP promoters are signif-
icantly more divergent in mammalian species with non-
palindromic promoters, as seen with the Murinae, Artio-
dactyla, Lagomorpha, and Perissodactyla species. For exam-
ple, in Murinae, LSP contains eleven absolutely conserved
residues, while HSP – only one (Figure 7D). It is tempt-
ing to speculate that mutations in HSP that generate selfish
mtDNA can drive the evolution of mitochondrial promot-
ers. Further, identification of the TSS of more than 50% of
mammals will enable studies of the evolution of the protein-
DNA recognition mechanisms in mitochondria and a better
understanding of mitonuclear coevolution.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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