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ABSTRACT

Colorectal cancer (CRC) is the third most common cancer and a leading cause 
of cancer-related mortality. Observed during CRC tumorigenesis is loss of post-
transcriptional regulation of tumor-promoting genes such as COX-2, TNFα and 
VEGF. Overexpression of the RNA-binding protein HuR (ELAVL1) occurs during 
colon tumorigenesis and is abnormally present within the cytoplasm, where it post-
transcriptionally regulates genes through its interaction with 3'UTR AU-rich elements 
(AREs). Here, we examine the therapeutic potential of targeting HuR using MS-444, a 
small molecule HuR inhibitor. Treatment of CRC cells with MS-444 resulted in growth 
inhibition and increased apoptotic gene expression, while similar treatment doses 
in non-transformed intestinal cells had no appreciable effects. Mechanistically, MS-
444 disrupted HuR cytoplasmic trafficking and released ARE-mRNAs for localization 
to P-bodies, but did not affect total HuR expression levels. This resulted in MS-444-
mediated inhibition of COX-2 and other ARE-mRNA expression levels. Importantly, MS-
444 was well tolerated and inhibited xenograft CRC tumor growth through enhanced 
apoptosis and decreased angiogenesis upon intraperitoneal administration. In vivo 
treatment of MS-444 inhibited HuR cytoplasmic localization and decreased COX-2 
expression in tumors. These findings provide evidence that therapeutic strategies to 
target HuR in CRC warrant further investigation in an effort to move this approach 
to the clinic.

INTRODUCTION

The lifetime risk of developing colorectal (CRC) 
cancer is ~5% for both men and women in the USA [1]. 
Various genetic alterations have been identified that promote 
the initiation and progression of colon tumorigenesis. 
Facilitating this process is the dysregulation of gene 
regulatory mechanisms that can modulate cell growth and 

inflammation. For instance, in normal intestinal epithelium, 
levels of pro-oncogenic factors are controlled through 3'-
UTR AU-rich elements (AREs) that target mRNAs for 
rapid turnover, a process known as ARE-mediated mRNA 
decay [2]. However, this mechanism of gene regulation 
is compromised during colorectal tumorigenesis, thereby 
allowing for selective overexpression of tumor promoting 
factors such as COX-2 [3–6].
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Figure 3: MS-444 inhibits HuR cytoplasmic localization. A. HCT116 cells treated with 10μM MS-444 for 6 hr were subjected 
to HuR immunofluorescence analysis (shown in green). DAPI (shown in blue) was used to visualize nuclei. B. HCT116 cells were treated 
with 10μM MS-444 for the indicated times. Cytoplasmic and whole cell lysates were probed for HuR, along with cytoplasmic α-tubulin and 
nuclear Lamin A/C markers. C. RIE-iRas cells were untreated or with 5 mM IPTG for 24 hr to induce oncogenic Ras expression, followed 
by 10 μM MS-444 for 8 hr. HuR was detected by immunofluorescence (green) along with DAPI was used to visualize nuclei (merged 
images shown). D. RIE-iRas were grown in the presence or absence of 5 mM IPTG for 24 hr and then treated with indicated amounts of 
MS-444 for 48 hr. Relative cell survival was performed by MTT assay and is represented as average of 4 independent experiments ± SEM. 
E. YAMC and YAMC-Ras cells were grown under non-permissive conditions at 37°C and treated with 10 μM MS-444 for 8 hours. HuR 
localization was assayed by immunofluorescence. F. MTT assay of YAMC and YAMC-Ras treated with MS-444 for 48 hr under non-
permissive conditions. Bars = 10 μm.
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Kollman United charges. Atomic solvation parameters 
and fragment volumes were assigned using the ADDSOL 
subroutine. The grid map was calculated using the 
auxiliary program Autogrid3. Grid maps of 120x120x120 
points centered on the active site of the ligand with 
0.375 A° spacing were calculated for each atom types 
found on the adducts. Lamarckian Genetic Algorithm 
(LGA) was selected for ligand conformational search. 
The Genetic Algorithm (GA) population size was set to 
150, the maximum number of GA energy evaluations as 
2500000, GA mutation rate as 0.02, GA crossover rate as 
0.8 and GA docking runs was set as 100. The resulting 
docking conformations were clustered into families of 
similar conformation, with root mean square deviation 
(RMSD) clustering tolerance as 1.0 A°. As a rule, the 
lowest docking energy conformations were included in the 
largest cluster. Flexible torsion in the ligands was assigned 
with AUTOTORS, an auxiliary module for Auto-Dock 
Tools. The ligand was docked to obtain the best binding 
conformation.

MS-444 sensitivity assay

Cells were seeded at subconfluent levels (<50% 
confluence) in 96-well tissue culture plates and treated 
with increasing concentrations of MS-444 [21] for 48 
hours at 37°C. Cell survival was assayed using the MTT-
based cell growth determination kit (Sigma-Aldrich) 
as previously described [3]. Relative cell survival was 
calculated as percentage relative to DMSO vehicle-treated 
controls. A dose-response curve was fitted to the data using 
the software KaleidaGraph 4.0 (Synergy), from which the 
half-maximal inhibitory concentration (IC50) was derived 
and represented as a mean of 4 independent experiments 
± standard error of the mean (SEM).

Annexin V staining and flow cytometry

HCT116 and RIE-1 cells treated with 10 μM MS-
444 for 48 hours were subjected to Annexin V staining and 
flow cytometry per manufacturer’s protocol (ThermoFisher-
Molecular Probes). 1x106 cells were resuspended in Annexin 
V binding buffer and incubated with 5 μL Annexin V-PE and 
5 μL propidium iodide for 15 minutes in the dark. Cells were 
subjected to flow cytometry using the BD Accuri C6 flow 
cytometer. The collected data was subjected to compensation 
analysis by adjusting the gating and virtual voltage in the BD 
Accuri C6 software and graphically represented as means 
of 3 independent experiments. Cells treated with 5 μg/ml 
cycloheximide (Chx) (Sigma-Aldrich) and 10 ng/ml TNF-α 
(R&D Systems) for 8 hr were used as positive controls.

Western blotting

Western blots were performed as described [12] 
using antibodies against HuR (clone 3A2, Santa Cruz 
Biotechnology) at a dilution of 1:20,000 for 1 hr at RT 

and COX-2 (160126, Cayman Chemical) at a dilution 
of 1:1000 for 16 hours at 4°C. Caspase 3 cleavage was 
detected using rabbit polyclonal anti-Caspase 3 (9662, 
Cell Signaling) at a dilution of 1:1000 for 16 hr at 4°C. 
Membranes were stripped and re-probed using β-actin 
antibody (Clone C4; MP Biomedicals). Cytoplasmic 
lysates were obtained using NE-PER cytoplasmic 
extraction reagent (Thermo Scientific) using α-tubulin 
(322500, 1:20,000 dilution, Invitrogen) and Lamin 
A/C (2032S, 1:2,000 dilution, Cell Signaling) as 
cytoplasmic and nuclear loading controls, respectively. 
Detection and quantitation of blots were carried out as 
described [10].

RNA analysis

Total RNA was extracted using Trizol reagent 
(Invitrogen). cDNA synthesis was performed using 1 μg 
of total RNA in combination with oligo(dT) and Improm-
II reverse transcriptase (Promega). qPCR analysis was 
performed as described [12] using the 7300 PCR Assay 
System with TaqMan probes for COX-2 (PTGS2) and 
GAPDH (Applied Biosystems). GAPDH was used as 
a control for normalization. Detection of apoptosis-
associated mRNAs was accomplished using Apoptosis 
PCR Array PAHS-012Z (SA Biosciences/Qiagen) and 
qPCR was performed according to the manufacturer’s 
protocol using SYBR green PCR master mix (Applied 
Biosystems). Fold change in mRNA expression levels was 
normalized to the cycle threshold (Ct) using non-treated 
cells and analyzed by the ΔΔCt method.

Ribonucleoprotein immunoprecipitations

Immunoprecipitation (IP) of ribonucleoprotein 
complexes (RNP-IP) was done as described [6] using 
HCA-7 cells grown on 100 mm dishes treated with 
either vehicle DMSO or 10 μM MS-444 for 6 hr. Prior 
to harvesting cells, 40 μl of Protein A/G beads (sc-
2003, Santa Cruz Biotechnology) were coated with 20 
μg of rabbit anti-HuR (3A2, Cat # sc-5261, Santa Cruz 
Biotechnology) or control IgG antibody overnight at 
4°C. Beads were washed in NT2 buffer (50 mM Tris-HCl 
pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40) and 
incubated with equal amounts (250 μg) of cytoplasmic 
lysates obtained from cells lysed in 200 μl polysome 
lysis buffer (20 mM Tris-HCl pH 7.6, 5 mM MgCl2, 150 
mM NaCl, 1 mM DTT, 0.5% NP-40) containing 100 
U/ml RNase inhibitor (Ambion) and protease inhibitor 
cocktail (Sigma-Aldrich) and incubated overnight at 
4°C with HuR- or control-IgG coated beads. Reactions 
were washed 5X with NT2 buffer and total RNA was 
isolated from immunoprecipitates using 1 mL TRIzol 
per IP reaction and then used for cDNA synthesis. 
Analysis of COX-2 (PTGS2) mRNA was done by qPCR 
as described above.
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DNA transfections

Luciferase reporter constructs containing the COX-
2 3’UTR (Luc+COX-2 3'UTR) or control (LucΔ3'UTR) 
were transfected as previously described [31]. Cells were 
transfected for 24 hr, then treated with MS-444 for 8 hr 
before being lysed in reporter lysis buffer and assayed 
using the Luciferase Assay System (Promega, Madison, 
WI). Reporter gene activities were normalized to total 
protein; all results represent the average of triplicate 
experiments.

The MS2-based plasmids pcDNA-MS2-YFP and 
pMS2-COX-2 3'UTR used for fluorescent visualization 
of RNA, and the P-body marker mCherry-tagged Dcp1a 
(pmCherry-Dcp1a) have been previously described [31, 
40]. The MS2 plasmids were transiently co-transfected 
with pmCherry-Dcp1a into HCT116 cells using 
Lipofectamine Plus for 24 hr and the cells were treated 
with 10 μM MS-444 for 8 hr. Cells were harvested in 
2% paraformaldehyde and prepared for fluorescence 
microscopy.

Immunofluorescence

Cells grown on coverslips were washed twice 
with PBS containing 10 mM glycine, fixed in 2% 
paraformaldehyde for 15 min at RT, and permeabilized 
with 0.02% Triton X-100 (Sigma-Aldrich) in PBS. 
Cells were blocked with 5% normal goat serum in PBS 
containing 1% IgG-free BSA (Jackson Immunoresearch) 
and incubated with primary antibody overnight at 4°C 
diluted in blocking solution. HuR was detectedwith 
anti-HuR monoclonal primary antibody (3A2, 1:200 
dilution; Santa Cruz Biotechnology) for 1 hr at RT. 
Secondary antibody incubation was done for 1 hr at 
RT using FITC-conjugated anti-mouse IgG (1:100 
dilution) or Alexa488-conjugated anti-mouse IgG (1:500 
dilution; Invitrogen). Cells were counter-stained with 
DAPI to visualize nuclei. Fluorescence microscopy 
and image analysis was accomplished as described [31, 
61]. Detection of P-bodies and assessment of P-body 
co-localization with MS2-YFP was accomplished as 
described [31].

Xenograft tumor growth

Athymic nude (Nu/Nu) mice were purchased 
from Harlan Laboratories and maintained under sterile 
conditions in cage micro-isolators according to approved 
IACUC guidelines. HCT116 (2 x 106 cells) and HCA-7 
(2.5 x 106) cells resuspended in PBS were injected into 
the dorsal subcutaneous tissue. Mice (n=5 per group) 
received intraperitoneal (IP) injections of MS-444 (25 mg/
kg) dissolved in PBS/5% N-Methyl Pyrrolidine (NMP) 
(Sigma-Aldrich) or vehicle control every 48 hr. Tumor 
growth was assayed as described [3].

Immunohistochemistry (IHC)

IHC was performed using formalin-fixed, 
paraffin-embedded (FFPE) tumors sectioned at 4 μm 
with monoclonal anti-HuR antibody (19F12; Molecular 
Probes) at 1:1250, polyclonal anti-cleaved caspase 3 
(Asp175) antibody (#9661, Cell Signaling Technologies) 
at 1:1000, and polyclonal anti-COX-2 (160126; 
Cayman Chemical) at 1:400 dilutions. Staining and 
immunoreactivity scoring was performed as described 
previously [12, 65].

Microvessel density analysis

Tumor microvessels were detected by IHC ofFFPE 
tumors using a polyclonal antibody to CD31 (ab28364; 
Abcam) at a dilution of 1:500 for 1 hr at RT in primary 
antibody diluent (Dako). After washing in Tris-buffered 
saline containing 0.05% Tween-20 (TBS-T), slides were 
incubated with biotinylated anti-rabbit labeled polymer 
(Dako). IHC was visualized using DAB peroxidase 
substrate kit (Dako) and counterstained with hematoxylin 
(Sigma-Aldrich). The area of tumor microvessels was 
quantitatively measured using the ImagePro Plus 4.5 
software (Media Cybernetics) as previously described 
[66]. Tumor section images were imported into the 
ImagePro Plus software, where the CD31-positive staining 
was selected using the color selection function. Positive 
staining pixels were measured using the area/density 
(intensity) measurement function and represented as 
microvessel density.

Ex Vivo imaging of COX-2

Athymic nude (Nu/Nu) mice bearing HCA-7 
xenografts were established as described above. When 
palpable tumors (~100 mm3) were observed, mice were 
treated with MS-444 or vehicle control as indicated. 
COX-2 protein expression was visualized ex vivo by IP 
injection of 2 mg/kg of Fluorocoxib (Xenolght Rediject 
Fluorescent COX-2 Probe, Caliper Life Sciences) for 
3 hr. Mice were euthanized and excised tumors were 
imaged in an IVIS platform (Caliper Life Sciences) with 
the following settings: 570 excitation, 620 emission, 
F-1 Stop, epifluorescence. Following visualization, the 
tumors were snap-frozen and processed for RNA and 
protein analysis.

Statistical analysis

Statistical analyses were performed using GraphPad 
Prism (GraphPad Software). The data are expressed as the 
mean of three independent experiments ± S.E.M. Student’s 
t-test was used to determine significant differences. 
P-values less than 0.05 were considered statistically 
significant.
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