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RESEARCH ARTICLE
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Uncovers Intratumoral Heterogeneity and

Widespread Co-Losses of Chromatin
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Abstract

Recent studies have shown that intratumoral heterogeneity (ITH) is prevalent in clear cell

renal cell carcinoma (ccRCC), based on DNA sequencing and chromosome aberration

analysis of multiple regions from the same tumor. VHL mutations were found to be univer-

sal throughout individual tumors when it occurred (ubiquitous), while the mutations in other

tumor suppressor genes tended to be detected only in parts of the tumors (subclonal). ITH

has been studied mostly by DNA sequencing in limited numbers of samples, either by

whole genome sequencing or by targeted sequencing. It is not known whether immunohis-

tochemistry (IHC) can be used as a tool to study ITH. To address this question, we exam-

ined the protein expression of PBRM1, and PBRM1-related proteins such as ARID1A,

SETD2, BRG1, and BRM. Altogether, 160 ccRCC (40 per stage) were used to generate a

tissue microarray (TMA), with four foci from each tumor included. Loss of expression was

defined as 0–5% of tumor cells with positive nuclear staining in an individual focus. We

found that 49/160 (31%), 81/160 (51%), 23/160 (14%), 24/160 (15%), and 61/160 (38%) of

ccRCC showed loss of expression of PBRM1, ARID1A, SETD2, BRG1, and BRM, respec-

tively, and that IHC could successfully detect a high prevalence of ITH. Phylogenetic trees

were constructed that reflected the ITH. Striking co-losses among proteins were also

observed. For instance, ARID1A loss almost always accompanied PBRM1 loss, whereas

BRM loss accompanied loss of BRG1, PBRM1 or ARID1A. SETD2 loss frequently occurred

with loss of one or more of the other four proteins. Finally, in order to learn the impact of

combined losses, we compared the tumor growth after cells acquired losses of ARID1A,

PBRM1, or both in a xenograft model. The results suggest that ARID1A loss has a greater
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tumor-promoting effect than PBRM1 loss, indicating that xenograft analysis is a useful tool

to investigate how these losses impact on tumor behavior, either alone or in combination.

Introduction

Tumors are generally thought to originate from one or a few cancerous cells with founding
mutation(s), with additional mutations occurring in later stages of tumor development to pro-
mote disease progression [1]. During this process of tumor evolution, one question arises: do
the additional mutations exist in all the tumor cells, such that all progeny have identical genetic
lesions, or do they occur in a subset of cells? Multiple genetic analyses have revealed that the
latter is true, i.e., that different regions of the same tumor share the founding mutation(s) but
have different subsequent mutations, and this regionally diverse mutational landscape is called
Intratumoral Heterogeneity (ITH). ITH has been described in leukemia [2], glioblastoma [3],
as well as in colon [4], pancreatic [5], ovarian [6], breast [7] and clear cell renal cell carcinoma
(ccRCC) [8, 9]. This phenomenon is prevalent as it exists in primary tumors and metastatic
sites, and it is also discovered in the recurrent tumors after surgical removal [9]. ITH can be
defined by DNA mutations, genomic copy number changes, or changes in DNA methylation
patterns [9]. The different genetic makeups of different regions suggest that, during tumor
development, additional genetic changes happened in a branched fashion instead of a linear
fashion, giving rise to multiple clones coexisting in the same tumor.

ITH poses a serious challenge to precision medicine. Precision medicine assumes that
tumors in different patients have different genetic mutations, and the presence of specific
mutations indicate sensitivities to certain treatments. Thus, treatment options must be individ-
ually tailored according to the mutation profile of each patient. Often a single biopsy is applied
to assay the mutational profiles of the patients. If the tumors have regional heterogeneity, then
the evaluation of a single site will likely miss many DNA mutations that are present in other
regions of the same tumor and will also fail to pinpoint which mutation(s) is most prevalent
and whether it should be targeted. Such incomplete information for a given tumor is likely to
negatively impact the selection of therapeutic options. Effective therapeutic options might be
overlooked, and wrong choice might be made.

In ccRCC, inactivation of the von-Hippel Lindau tumor suppressor gene, VHL, either
through DNA mutations or promoter hypermethylation, is the founding tumorigenic event
[10, 11]. VHL loss-of-function occurs in at least 80% of sporadic ccRCC tumors. Three large-
scale sequencing studies identified additional mutations in tumor suppressors that participate
in epigenetic regulation [12–14]. Approximately 40% of ccRCC tumors harbor mutations in
the polybromo-1 (PBRM1) tumor suppressor gene, which encodes a component of a SWI/SNF
chromatin-remodeling complex [12]. Additionally, 10–15% of ccRCCs have mutations in
either the BRCA1-associated protein 1 gene (BAP1) or SET domain containing 2 gene
(SETD2), encoding a histone deubiquitinase and a histone methyltransferase, respectively [13].
Furthermore, PBRM1 mutations have been found to confer a slight increase of death risk,
while SETD2 or BAP1 mutations were associated with serious death risks in ccRCC patients
[15–17].

Gerlinger et al. firmly established that ITH in ccRCC was prevalent. Through exome
sequencing of multiple intratumoral regions, they found that ITH preceded any treatment [9].
They also discovered that, in the same tumor, distinct and spatially separated inactivating
mutations could happen to the same tumor suppressor genes, e.g., SETD2, PTEN and KDM5C,
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suggestive of convergent phylogenetic evolution. Gene-expression signatures, allelic composi-
tion and ploidy profiling analysis all revealed extensive ITH. When all the changes were com-
pared, chromosome 3p loss and VHL alterations were the only ubiquitous events in ccRCC,
and they were defined as truncal losses [8]. In the case of PBRM1 mutations, 50% of tumors
with PBRM1 mutations were truncal [8]. The vast majority (>70%) of driver mutations were
mapped onto branches of the phylogenetic trees, while less than one third of driver mutations
in two genes were truncal mutations. According to their own estimate, if more biopsies were
taken, more driver mutations would be found [9]. These ITH findings were corroborated by
another group that sequencedVHL, PBRM1, SETD2, BAP1 and KDM5C in multiple regions of
the same ccRCC tumors [18]. Collectively, these studies imply that analysis of a single biopsy
severely underestimates the mutational profiles of a ccRCC tumors.

To date, ITH in ccRCC has been mostly studied using Next Gen Sequencing, which revealed
DNA mutations in exomes. ITH in ccRCC has also been studied based on the assessment of
DNA copy number changes, gene expression or ploidy, but mutational analysis has provided
the most detailed information to facilitate comparisons. While DNA sequencing provides high
quality data and high resolution, the major drawback of this approach is that it is expensive
and labor intensive, so the total number of the samples that are analyzed is generally low, thus
lacking statistical power. Immunohistochemistry (IHC) was also used to probe the samples,
but it was only used to characterize samples after ITH was identified by other techniques, not
as a tool to reveal ITH in the first place.

Since IHC is a mature technology that can be applied to human sample relatively inexpen-
sively once a tissue microarray (TMA) is built, in this study we asked whether IHC on ccRCC
TMAs could be used to detect ITH. Four spatially distinct regions from each ccRCC tumor
were selected for TMA. Forty cases were chosen for each tumor stage, with a total of 160 cases.
We decided to stain for PBRM1, ARID1A, BRG1, BRM, and SETD2 as they represent impor-
tant players in ccRCC. We report that IHC can readily detect prevalent ITH in a relatively large
series ccRCC, and striking co-losses among proteins were observed. Finally, we demonstrate in
xenografts of ccRCC how losses of PBRM1 and ARID1A impact tumor growth.

Materials and Methods

Sample preparation and TMA preparation

Written informed patient consent was obtained under a protocol (IRB#13–810) approved by
the IACUC of Fox Chase Cancer Center (FCCC). All samples were collected in accordance
with institutional guidelines and protocols.

Altogether, 160 ccRCC patients with available archived formalin-fixed, paraffin-embedded
(FFPE) tumor tissue were identified based on a search of the FCCC kidney cancer database; 40
cases from each of the 4 stages (Stage I-IV) were randomly selected. All cases were reviewed by
the same pathologist (E.D.). Four different, well-separated areas from each tumor were selected
for assessment of intratumoral heterogeneity. Eight TMAs were generated by the FCCC Bio-
sample Repository.

IHC and scoring

Antigen retrieval was performed with the Ventana Discovery ULTRA staining platform, using
Discovery CCI (Ventana cat. #950–500) for a total application time of 64 min. Primary immu-
nostaining was performed using antibodies against PBRM1 (1:50), ARID1A (1:250), BRM
(1:50), BRG1 (1:200), and SEDT2 (1:100) using Ventana Antibody Dilution Buffer (Ventana
cat. #ADB250) with a 44-min incubation at room temperature. Secondary immunostaining
used a rabbit Horseradish Peroxidase (HRP) multimer cocktail (Ventana cat#760–500) and
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immune complexes were visualized using the ultraView Universal DAB (diaminobenzidine tet-
rahydrochloride) Detection Kit (Ventana cat#760–500). Slides were then washed with a Tris-
based reaction buffer (Ventana cat. #950–300) and stained with Hematoxylin II (Ventana cat.
#790–2208) for 8 min. The antibodies used were: PBRM1 (Bethyl labs, cat. # A301-591A),
ARID1A (Sigma-Aldrich, cat. # HPA005456), BRM (Sigma-Aldrich, cat. # HPA029981),
BRG1 (Abcam, cat. # ab110641), and SETD2 (ProSci, cat. # 30–305).

Two pathologists (W.J., T.P.) independently performed the scoring of the immunostained
TMAs. The staining of tumor foci was scored as 2 if greater than 50% of tumor cells were posi-
tive, 1 if less than 50% but greater than 5% of tumor cells were positive, and 0 if less than 5% of
tumor cells were positive. In the cases where the foci had different scores, two pathologists
examined these foci together to reach a consensus. For each tumor, if one marker was scored as
0 in one focus, then that tumor is also considered to have a score of 0 for that marker.

Cell culture

Kidney cancer cell lines 786-O and Ren-02 were previously described [19, 20]. All cell lines
were maintained in glutamine-containing DMEM medium supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin and streptomycin.

Western blot

Cells were washed in PBS buffer before being lysed with EBC buffer (50 mM Tris, pH 8.0; 120
mM NaCl; 0.5% NP-40) supplemented with a protease inhibitor cocktail. The same total
amount of each lysate was loaded and resolved by SDS–PAGE and analyzed by immunoblot-
ting. The blots were developed with Super Signal Pico substrate (Pierce Biotechnology, Rock-
ford, IL) or Immobilon Western substrate (Millipore, Billerica, MA). The antibodies were the
same as the ones used for IHC.

Short hairpin RNAs (shRNAs)

All the shRNA constructs except for SCR were obtained from Sigma (St Louis, MO). The
sequences were: SCR: GCGCG CUUUGUAGGAUUCGTT; PBRM1-94: CCGGAGTCTTTGATCTA
CAAA; ARID1A-90 CCTCTCTTATACACAGCAGAT;BRM-329: GCTGAGAAACTGTCACCA
AAT; BRG1-551: CCGAGGTCTGATAGTGAAGAA;SETD2-30: CCTGAAGAATGATGAGATAAT;
SETD2-32: GCCCTATGACTCTCTTGGTTA.

Nude mice xenograft analysis

All animal experiments were conducted in accordance with a protocol (#01462-935A)
approved by the IACUC of Thomas Jefferson University. The subcutaneous nude-mice xeno-
graft assay was performed as described [21]. For each cell line, 107 cells were injected subcuta-
neously into the flanks of nude mice. Each mouse was injected with two cell lines, one on each
flank. The mice were anesthetized with isoflurane before injection. The mice were monitored
once weekly by an investigator from Yang lab during the experiment and daily by the staff of
the animal facility. The mice were followed according to an early/humane endpoint protocol,
with. euthanization of animals if the tumors become ulcerated, impede the mice’s ability to
reach food and water, or cause weight loss of 20%. In our experiments, no mouse died before
the experimental endpoint. The mice were maintained in groups of five per cage with 12 hours
of light and 12 hour of darkness light cycle. Food and water were monitored daily by staff from
the animal facility. Forty immunocompromised male nu/nu nude mice of four weeks old were
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purchased from Taconic or Jackson labs. All mice were sacrificed by CO2 inhalation 8 to 10
weeks after injection of cells, and tumors were excised and weighed.

Results are reported as mean ± s.e. of the mean. Nine to ten pairs of tumors were compared.
Results were statistically evaluated with Mann–Whitney U statistic analysis from SigmaPlot.

Statistical analysis

The two-sided Fisher’s exact test was used to test the association between variables (PBRM1 vs.
ARID1A etc.) in the 2x2 tables shown in S2 Table.

Results

Validation of the antibodies used for IHC

In order to perform IHC on the TMAs of ccRCC tumor tissues, we sought to validate the speci-
ficity of each antibody we intended to use for scoring. The anti-PBRM1 antibody from Bethyl
Laboratories revealed a major band of ~180 KDa which was diminished upon stable expression
of a shRNA construct against PBRM1 (Fig 1, top left). The same antibody was used by others
for IHC and the loss of IHC signal mostly coincided with DNA mutations in PBRM1 [17]. The
anti-ARID1A antibody from Sigma-Aldrich revealed a major band of ~250 KDa which was
diminished upon stable expression of a shRNA construct against ARID1A (Fig 1, top middle).
This antibody has been previously used and validated by the Human Protein Atlas project [22,
23]. The anti-BRM antibody from Sigma-Aldrich detected a protein near 200 KDa, which was
mostly abolished by a shRNA construct against BRM (Fig 1, top left). This antibody was also
used and validated by the Human Protein Atlas project [22, 23]. It was also used for IHC in a
recent publication to detect BRM in small cell carcinoma of the ovary, hypercalcemic type
(SCCOHT), which revealed specific co-losses of BRG1 and BRM in these tumors [24]. The
anti-BRG1 antibody detected multiple bands in the 200 KDa size range, which were diminished
by a shRNA construct against BRG1 (Fig 1, bottom left). This antibody was rigorously tested
and confirmed by IHC staining SCCOHT tumors that contained either germline or somatic
mutations in BRG1 [24, 25]. There was a close correlation between loss of IHC staining of the
tumor cells and the presence of BRG1 mutations. The SETD2 antibody from Pro-Sci detected a
band near 250 KDa, which was suppressed by two independent shRNA, constructs in the
ccRCC cell line Ren-02 [20](Fig 1, bottom right). This antibody was shown by the supplier to
detect an IHC signal in human placenta.

Immunohistochemical analysis of ccRCC foci on TMAs

In order to investigate ITH, four foci from different areas from each tumor were macro-dis-
sected to construct TMAs (Fig 2A). Except for one case where the amount of tissue was too
little so only two foci were taken, each tumor was represented by four foci (Fig 2B). The anti-
bodies validated in Fig 1 were used to stain five sets of the TMA. All five proteins were stained
primarily in the nucleus (Fig 2C), which was not surprising given that each is known to be a
chromatin regulator. In the case of foci that scored as 1, to be stringent we still considered
them positive for expression, even though the staining was generally weak and spotty (Fig 2C).
In the case of the foci that scored as 0, there was a concern that the IHC simply failed on that
sample, not because the tumor cells lost protein expression. To counter that, we looked for pos-
itively stained stromal cells. In most cases scored 0, the stromal cells, but not the tumor cells,
still stained positive, suggesting that the IHC was successful and indicative of loss of protein
expression in tumor cells (Fig 2C, arrows indicated positively stained stromal cells). Scores for
all foci are summarized in S1 Table.

Immunohistochemistry Reveals Intratumoral Heterogeneity in Kidney Cancer
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Summary of protein expression losses in tumors and foci

Usually if a DNA mutation is detected as a fraction of the wild type allele from a single biopsy,
then that tumor is considered positive for that mutation. To be consistent with this criterion,
we decided that if protein expression was absent in one focus out of four foci from a tumor,
then that tumor would be considered to have loss of expression of that marker. After tallying
protein expression losses, we found that 31% of the 160 tumors lost expression of PBRM1, 51%
of them lost ARID1A, 14% lost SETD2, 15% lost expression of BRG1, and 38% lost expression
of BRM (Fig 3A). Because usually not all four foci of any one tumor showed lost expression of
a specific marker, the percentage of all foci that show loss of expression was lower than for all
cases. Thus, for foci, lost protein expression was lower: i.e., 17%, 32%, 6.1%, 6.9% and 22% of
foci lost expression of PBRM1, ARID1A, SETD2, BRG1 and BRM, respectively (Fig 3A).

For each marker, we examined protein losses in different tumor stages. For the sake of sim-
plicity, we report the percentage of tumors with protein expression loss followed by percentage
of foci with protein loss in parenthesis. For instance, 25% (13%) indicates that 25% of tumors
and 13% of all foci exhibited protein expression loss of the indicated marker. PBRM1 loss
tended to increase with rising tumor stage, i.e., 25% (13%) for stage I, 30% (16%) for stage II,
18% (9%) for stage III, and 50% (29%) for stage IV (Fig 3B). A similar trend was observed for
ARID1A loss, with 40% (30%), 50% (32%), 55% (31%), and 58% (34%) from stages I to IV,
respectively (Fig 3C). SETD2 loss showed a more dramatic increase with increasing tumor

Fig 1. Validation of the antibodies used for IHC. Kidney cancer cell lines stably expressing control shRNA or shRNA against ARID1A, PBRM1,

BRG1, BRM, and SETD2 were used for western blot analysis with indicated antibodies.

doi:10.1371/journal.pone.0164554.g001
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stages; 5% (4%), 13% (4%), 15% (6%), and 25% (10%) from stages I to IV, respectively (Fig
3D). BRG1 loss fluctuated among tumor stages. From stages one to four 15% (10%), 25%
(11%), 8% (3%), and 13% (4%) lost BRG1 expression (Fig 3E). For BRM, there was a modest
decrease in the percentage of protein loss with increasing tumor stages; 48% (32%), 45% (25%),
25% (12%), and 35% (21%) for stages I to IV, respectively (Fig 3F).

Construction of phylogenetic trees of tumors with protein losses

Ancestral relationships of different regions, e.g., quadrants, of a given tumor can be inferred by
clonal ordering [26]. Subsequently, a phylogenetic tree can be constructed. If a molecular event
happens very early during tumor evolution, it will be present in all or most regions of a tumor

Fig 2. Immunohistochemical analysis of ccRCC foci from TMAs. A) Two FFPE ccRCC tissue blocks from one tumor with four cores excised

(indicated by arrows). B) H&E stained foci from three tumor samples. C) Representative foci stained for different markers showing different scores.

The arrows point to stromal cells that stained positive for the markers.

doi:10.1371/journal.pone.0164554.g002
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Fig 3. Summary of losses of expression of protein markers in ccRCC tumors and foci. A) Overall losses of each marker in tumor and

foci. Loss of individual marker in different tumor stages: PBRM1 (B), ARID1A (C), SETD2 (D), BRG1 (E), BRM (F).

doi:10.1371/journal.pone.0164554.g003
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and it will be detected in most foci from the same tumor. Such an event is usually considered a
truncal (early) change. Conversely, if a molecular event occurs late during tumor development,
its presence will be limited to a small region of the same tumor, and it might not be detected at
all or only detected in one or two foci that also have the truncal change(s). Such an event is con-
sidered a branch (late) change. For instance, in tumor 5 from our stage I group, losses of
ARID1A and BRM were each detected in the first three foci, whereas losses of PBRM1 and
BRG1 occurred only in the third focus (Fig 4A, left). In this case, losses of ARID1A and BRM
were deemed to be truncal events, whereas losses of PBRM1 and BRG1 were considered branch
events. Thus, a phylogenetic tree was built based on this interpretation (Fig 4A, right). Using
this method we created phylogenetic trees of tumors with protein losses in tumor stage I (Fig
4B), stage II (Fig 4C), stage III (Fig 4D), and stage IV (Fig 4E). It is worth noting that these phy-
logenetic trees had different shapes. Some had only a trunk, e.g., stage I tumors 11, 12 and 16
with loss of one or more markers (Fig 4B). Other tumors had branches, e.g., stage II tumors 1,
2, 3, and 6 (Fig 4C). Occasionally, tumor branches bifurcated, e.g., stage III tumor 26 (Fig 4D).
Infrequently, tumors displayed two trunks instead of one, with examples being stage IV tumors
1, 3, 9, 10, 13, and 34 (Fig 4E). In summary, 58%, 58%, 65% and 75% of tumors showed losses
of at least one marker in tumor stages I, II, III and IV, respectively. From stage I to stage IV,
there was no clear trend of a selection for tumors with or without branches. In tumor stages II
and IV, a small percentage of cases exhibited two trunks instead of one (Fig 4F).

ITH and phylogenetic trees are traditionally examined based on DNA mutations in a lim-
ited number of samples. Our investigation clearly shows that IHC is able to accurately reveal
ITH in ccRCCs at the protein levels on a larger scale. This afforded us the opportunity to statis-
tically analyze the association between ITH and various biological or clinical parameters,
which will be described elsewhere.

Co-losses of protein markers in both tumors and foci

While the protein expression losses were tallied on foci and tumors, one conspicuous observa-
tion was made: many markers were lost in the same foci and tumors. For instance, in tumors
with PBRM1 loss, 75% to 90% of the same tumors also had co-loss of ARID1A (Fig 5A). This
happened in all the tumor stages, and a similar pattern was observed when an individual focus
was considered (Fig 5A). Similarly, 80% to 100% of tumors or foci with BRG1 loss also had
co-loss of BRM (Fig 5B). Statistical analysis of all the possible pairs revealed that PBRM1/
ARID1A, PBRM1/SETD2, PBRM1/BRG1, PBRM1/BRM, ARID1A/SETD2, ARID1A/BRG1,
ARID1A/BRM, SETD2/BRG1, SETD2/BRM, BRG1/BRM, all had statistically significant co-
losses in both tumors and foci (the biggest 2-sided p values was 0.0019, based on Fisher’s exact
test) (Fig 5C). The original comparisons are shown in S2 Table. Thus, in this set of ccRCC sam-
ples, losses of these markers were highly correlated with each other and did not occur ran-
domly. In kidney cancer cells, these proteins did not rely on each other for protein expression,
as the shRNA-mediated suppression of each mRNA encoding these proteins did not lead to a
reduction in the expression of other proteins.

ARID1A loss appears to have greater tumor-promoting effect than

PBRM1 loss

It is not known whether co-loss of these protein markers significantly impacts ccRCC tumor
biology. To investigate this possibility, we next tested whether co-losses of PBRM1 and
ARID1A affect tumor growth in a xenograft model when compared to single losses. We first
verified that our shRNA constructs knocked down the expression of intended targets, as
expected (Fig 6A). The same number of cells expressing either control (scrambled, SCR) or
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Fig 4. Phylogenetic trees of protein losses in ccRCC tumors. A) Depiction of the way in which a phylogenetic tree was constructed. A: ARID1A

loss; M: BRM loss; P: PBRM1 loss, G: BRG12 loss; S: SETD2 loss. AM = losses of AIRD1A and BRM. PG = losses of PBRM1 and BRG1. R1, R2,

R3 refer to the foci. Presentation of phylogenetic trees of stage I (B), stage II (C), stage III (D), and stage IV (E) ccRCCs. F) A summary of

phylogenetic trees in tumors.

doi:10.1371/journal.pone.0164554.g004
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experimental shRNA were injected into opposite flanks of the same immunocompromised
nude mice so that they shared a nearly identical physiological environment. As the durations
of tumor growth for different groups usually differed, and the dominant tumor in the same
mouse sometimes seemed to repress the growth of the other tumor, we think that only the
comparisons between the pairs in the same mice are valid, while the cross-group comparisons,
either of the same or different genotypes, are invalid. When PBRM1 expression was knocked
down in 786-O VHL-deficient ccRCC cells, the tumors they generated were much larger than
the ones from the control cells (Fig 6B and 6C). A similar result was observed when ARID1A
was suppressed, suggesting that PBRM1 and ARID1A are two potent tumor suppressors that
inhibit the rate of tumor growth (Fig 6D and 6E). Interestingly, when both PBRM1 and
ARID1A were simultaneously knocked down in 786-O cells, much bigger tumors were seen
than when only PBRM1 was suppressed (Fig 6F and 6G). However, when PBRM1 and
ARID1A were both knocked down in 786-O cells, the tumors were not bigger than the ones

Fig 5. Co-losses of protein markers in both tumor and foci. A) Co-loss of ARID1A and PBRM1 expression in tumors/foci. B) Co-loss of BRM and

BRG1 expression in tumors/foci. C) Statistical analysis of co-losses of the different protein markers in ccRCC tumors and foci. Co-losses of any two

parameters considered here were found to be non-random.

doi:10.1371/journal.pone.0164554.g005
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Fig 6. ARID1A loss seemed to have greater tumor-promoting effects than PBRM1 loss. A) Western blots showing suppression of PBRM1

and ARID1A expression. B, D, F, H) Representative photographs of excised tumors from tumor-bearing recipient mice. C, E, G, I) Summary of

xenograft studies comparing tumor growth of the indicated cell lines. N.S.: not significant. n indicates the number of mice used in each

experiment.

doi:10.1371/journal.pone.0164554.g006

Immunohistochemistry Reveals Intratumoral Heterogeneity in Kidney Cancer

PLOS ONE | DOI:10.1371/journal.pone.0164554 October 20, 2016 12 / 17



with their ARID1A knocked down (Fig 6H and 6I). Thus ARID1A knockdown seemed to have
a more potent tumor-promoting effect than PBRM1 knockdown. It is worth noting that the
suppression of PBRM1 did not reduce the protein expression of ARID1A in 786-O cells (Fig
6A and S2 Fig), thus the co-loss of ARID1A in tumors with PBRM1 mutations is correlative,
not a result of PBRM1 loss. ARID1A loss contributes to tumor growth significantly, but it is
unlikely to be the major mechanism of tumor suppression by PBRM1.

Discussion

ITH presents an important challenge for the field of precision medicine. The goal of precision
medicine is to treat patients with drugs that specifically attack the vulnerabilities conferred by
the major driving mutations in a given cancer. For example, imatinib (Gleevec) is used to treat
chronic myeloid leukemia [27] to block the BCR-ABL fusion kinase and gastrointestinal stro-
mal tumors [28] to block hyperactive, mutant KIT, Gefitinib is used to treat non-small cell
lung cancer patients with tumors exhibiting mutant EGFR [29], and Vemurafenib to treat mel-
anoma because it is a potent inhibitor of hyperactive, mutant BRAF [30]. Because of the speci-
ficity of these drugs, they would mostly spare the genetically normal cells of the body, so
usually the side effects are mild. Unfortunately, they would also have little effect on a subpopu-
lation of malignant cells of a tumor that do not have mutations on the target genes. ITH could
mean that a subpopulation of such drug-resistant cancer cells would naturally exist in most
tumors, and over time these cells would dominate and render the targeted therapies useless.
Alternatively, even if all the cancer cells have mutations in the target genes, ITH would mean a
fraction of cancer cells also have mutations in other genes or epigenetic changes that would
render the cells resistant to the targeted therapies [31]. Over time, drug sensitive cancer cells
would be killed off, while the drug-resistant subpopulation expands. ITH can also pose a chal-
lenge for animal models of different human cancers. It is difficult to genetically engineer model
organisms with half a dozen or more mutations or to induce tumors in which some mutations
are only present in a fraction of the neoplasm. Despite their value in studying cancer, this is
one of the reasons why animal models do not completely recapitulate the setting in human
disease.

ITH is very prevalent in various human malignancies, and it potentially has a huge impact
on how we mange and treat cancers. However, our understanding of ITH is still quite limited.
DNA sequencing for mutations, either by whole exome scanning or by use of a targeted panel,
has emerged as an excellent tool to study ITH. It provides a very accurate representation of
ITH in tumors, and the data quality is very high. In the case of whole exome sequencing, pro-
files of different portions of a given tumor can provide a comprehensive view of the heteroge-
neity within it. However, the drawback of this approach is that DNA sequencing still tends to
be expensive and labor intensive, so reports of these studies usually consist of a dozen or so
tumors, even when only a panel of genes is sequenced. Such a low number of samples do not
provide enough statistical power to establish an association between phylogenetic trees with
clinical parameters such as patient survival and response to drugs. Regional ploidy analysis can
reveal ITH but is lacking in other details, while karyotypic and chromosome microarray analy-
sis are not convenient for large-scale analysis because of cost and/or labor. Thus, we sought to
address this problem by investigating whether we could reveal ITH by performing IHC on
TMAs, a very mature technique that can simultaneously analyze a large number of samples at a
relatively low cost.

However, a major concern for IHC is signal specificity, i.e., are the positive signals coming
from the protein of interest or cross-reactivating proteins? In the case of loss of expression, did
the IHC simply fail on the sample? Thus, the choice of antibodies to be used is crucial to the
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credibility of IHC study. We chose antibodies that have been validated in other studies as well
as in our own hands. A key method to validate IHC signals is to compare them with DNA
mutation profiles in the same tumor samples. It has been found that tumor samples harboring
DNA mutations in a tumor suppressor gene also tend to lose expression of the encoded protein
when examined by IHC, so we chose antibodies that were shown to pass this test where possi-
ble. We further examined the specificity of the chosen antibodies using shRNA and immuno-
blotting. Since these antibodies passed these tests, we are confident that the IHC signals are
specific.

Our IHC analyses revealed that ITH is prevalent in ccRCC. In most cases, lost of expression
of any given protein did not happen in all four foci from the same tumor (Fig 3A), similar to
what has been reported in studies of DNA mutations in ccRCC. For some protein markers we
examined, the incidence of loss of the expression was elevated in higher tumor stages, while
with other markers, loss of expression was reduced in higher stages. With the expression loss
data, we were able to construct phylogenetic trees of each individual tumor (Fig 4). The rela-
tively large number of samples also ensured that we could find statistically significant correla-
tions between protein expression losses and various clinical parameters, including disease-free
survival, which will be presented elsewhere.

The close examination of the protein loss patterns revealed surprising co-losses of the mark-
ers (Fig 5), and our use of a xenograft model offered a method to evaluate the biological conse-
quence of such losses (Fig 6). How mechanistically such combinations impact tumor behavior
and drug response are clearly worthy of further investigation. In the renal cancer cell lines the
suppression of one protein did not seem to impact the expression of other biomarkers we stud-
ied (Fig 6A, and S2 Fig), suggesting that the co-losses were likely created by biological pressures
that led to further tumor development, instead of the co-dependence of each other for protein
expression/stability. Such co-losses were clearly not recapitulated in the xenograft model, prob-
ably because it would take a long time for the secondary changes to occur in human tumors
whereas the short time frame of the xenograft analysis did not allow that to happen.

Previous studies have shown that when BRG1 is deficient, cancer cells become dependent
on the presence of BRM for survival [32, 33]. Consistent with this notion, we found that in
786-O kidney cancer cells efficient knockdown of both BRG1 and BRM could not be simulta-
neously achieved. However, concurrent losses of BRG1 and BRM were observed in SCCOHT
tumor samples and isolated cancer cells [24]. It was also observed in cell lines from rhabdoid
cancer, adrenal carcinoma and non-small cell lung cancer [34, 35]. Induction of BRM expres-
sion actually suppressed the growth of the rhabdoid cancer cells [34]. Thus, it appears that
acute co-loss of BRG1 and BRM is not well tolerated by cultured cancer cells, but chronic co-
losses occur in certain tumors and cancer cell lines. It is possible that some genetic or epigenetic
alterations permit cancer cells to tolerate co-loss of BRG1 and BRM in these tumors.

DNA sequencing of multiple tumor regions provides a wealth of high quality data, but the
current costs and labor involved make it difficult to apply to studies of ITH on a large scale.
IHC is a technique that is relatively inexpensive to survey large number of samples if TMAs are
constructed. It is worth pointing out that alterations detected by sequencing and IHC are not
always consistent with each other. DNA mutations do not necessarily lead to changes in pro-
tein levels, and loss of protein expression certainly may arise for reasons other than DNA
mutations. Proteins are the executors of the biological actions while the DNA is the blueprint.
Protein expression changes are more nuanced and fluid while DNA mutations are more defini-
tive. Thus, these approaches are mutually supportive and should both be employed for ITH
studies.

ITH is a product of tumor evolution and can reflect adaptation to the microenvironment
during the natural history of a neoplasm. ITH might also play a critical role in therapeutic
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efficacy and drug resistance. A multisite, dynamic survey of ITH within the same patients over
time might elucidate how tumors evade treatments, and also provide clues about ways to mod-
ify treatments to manage a changing enemy effectively.

Conclusion

IHC can successfully detect prevalent ITH at a large scale. We also observed striking co-losses
of many markers. Using xenograft analysis, we provide evidence suggesting that ARID1A loss
might be more potent in enhancing tumor growth than PBRM1 loss.

Supporting Information

S1 Fig. The original western blots for the validation of the antibodies used for IHC.
(TIF)

S2 Fig. Suppressions of PBRM1 did not affect the protein expression of ARID1A. Soluble
lysates from 786-O kidney cancer cells stably expressing control shRNA or shRNA against
ARID1A, PBRM1, or JARID1C were used for western blot analysis with indicated antibodies.
(TIF)

S1 Table. The scores of the IHC signals of PBRM1, ARID1A, BRG1, BRM and SETD2 on
each focus of the TMA.
(XLS)

S2 Table. Comparisons of the all the pairs of markers for potential co-losses in tumors and
foci. Statistical analysis of co-losses of the different protein markers in ccRCC tumors and
foci. 0 stands for expression loss and 1 for positive expression.
(XLSX)

Acknowledgments

We thank Dr. William Kaelin, Jr. for providing 786-O cells. We thank Drs. Brian Rini and Dan
Lindler for Ren-02 cells.

Author Contributions

Conceptualization:HY ED JRT.

Data curation: QW.

Formal analysis: KD.

Funding acquisition: HY JRT.

Investigation: WJ TP ED LL RO EAC.

Methodology:HY.

Project administration: HY.

Resources: ED CS SCP JRT RU.

Supervision:HY.

Validation: WJ TP.

Visualization: HY.

Immunohistochemistry Reveals Intratumoral Heterogeneity in Kidney Cancer

PLOS ONE | DOI:10.1371/journal.pone.0164554 October 20, 2016 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164554.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164554.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164554.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164554.s004


Writing – original draft: HY.

Writing – review& editing: HY JRT.

References

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–74. doi:

10.1016/j.cell.2011.02.013 PMID: 21376230.

2. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM, et al. Genetic variegation of

clonal architecture and propagating cells in leukaemia. Nature. 2011; 469(7330):356–61. doi: 10.1038/

nature09650 PMID: 21160474.

3. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity

in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013; 110

(10):4009–14. doi: 10.1073/pnas.1219747110 PMID: 23412337; PubMed Central PMCID:

PMC3593922.

4. Thirlwell C, Will OC, Domingo E, Graham TA, McDonald SA, Oukrif D, et al. Clonality assessment and

clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroen-

terology. 2010; 138(4):1441–54, 54 e1–7. doi: 10.1053/j.gastro.2010.01.033 PMID: 20102718.

5. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns

and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010; 467(7319):1109–

13. doi: 10.1038/nature09460 PMID: 20981101; PubMed Central PMCID: PMC3137369.

6. Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. Distinct evolutionary trajectories of pri-

mary high-grade serous ovarian cancers revealed through spatial mutational profiling. The Journal of

pathology. 2013; 231(1):21–34. doi: 10.1002/path.4230 PMID: 23780408; PubMed Central PMCID:

PMC3864404.

7. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by sin-

gle-cell sequencing. Nature. 2011; 472(7341):90–4. doi: 10.1038/nature09807 PMID: 21399628;

PubMed Central PMCID: PMC4504184.

8. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evo-

lution of clear cell renal cell carcinomas defined by multiregion sequencing. Nature genetics. 2014; 46

(3):225–33. doi: 10.1038/ng.2891 PMID: 24487277.

9. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogene-

ity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012; 366(10):883–92.

Epub 2012/03/09. doi: 10.1056/NEJMoa1113205 PMID: 22397650.

10. Kaelin WG Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002; 2

(9):673–82. Epub 2002/09/05. doi: 10.1038/nrc885 nrc885 [pii]. PMID: 12209156.

11. Linehan WM, Vasselli J, Srinivasan R, Walther MM, Merino M, Choyke P, et al. Genetic basis of cancer

of the kidney: disease-specific approaches to therapy. Clin Cancer Res. 2004; 10(18 Pt 2):6282S–9S.

Epub 2004/09/28. doi: 10.1158/1078-0432.CCR-050013 10/18/6282S [pii]. PMID: 15448018.

12. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies fre-

quent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 469(7331):539–

42. Epub 2011/01/21. nature09639 [pii] doi: 10.1038/nature09639 PMID: 21248752; PubMed Central

PMCID: PMC3030920.

13. Dalgliesh GL, Furge K, Greenman C, Chen LN, Bignell G, Butler A, et al. Systematic sequencing of

renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010; 463(7279):360–3. doi:

10.1038/Nature08672. ISI:000273748100045. PMID: 20054297

14. Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear cell renal cell

carcinoma. Nature. 2013; 499(7456):43–9. doi: 10.1038/nature12222 PMID: 23792563; PubMed Cen-

tral PMCID: PMC3771322.

15. Joseph RW, Kapur P, Serie DJ, Eckel-Passow JE, Parasramka M, Ho T, et al. Loss of BAP1 protein

expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell car-

cinoma. Cancer. 2014; 120(7):1059–67. doi: 10.1002/cncr.28521 PMID: 24382589; PubMed Central

PMCID: PMC4075029.

16. Joseph RW, Kapur P, Serie DJ, Parasramka M, Ho TH, Cheville JC, et al. Clear Cell Renal Cell Carci-

noma Subtypes Identified by BAP1 and PBRM1 Expression. The Journal of urology. 2016; 195

(1):180–7. doi: 10.1016/j.juro.2015.07.113 PMID: 26300218.

17. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S, et al. BAP1 loss

defines a new class of renal cell carcinoma. Nature genetics. 2012; 44(7):751–9. doi: 10.1038/ng.2323

PMID: 22683710; PubMed Central PMCID: PMC3788680.

Immunohistochemistry Reveals Intratumoral Heterogeneity in Kidney Cancer

PLOS ONE | DOI:10.1371/journal.pone.0164554 October 20, 2016 16 / 17

http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.1038/nature09650
http://dx.doi.org/10.1038/nature09650
http://www.ncbi.nlm.nih.gov/pubmed/21160474
http://dx.doi.org/10.1073/pnas.1219747110
http://www.ncbi.nlm.nih.gov/pubmed/23412337
http://dx.doi.org/10.1053/j.gastro.2010.01.033
http://www.ncbi.nlm.nih.gov/pubmed/20102718
http://dx.doi.org/10.1038/nature09460
http://www.ncbi.nlm.nih.gov/pubmed/20981101
http://dx.doi.org/10.1002/path.4230
http://www.ncbi.nlm.nih.gov/pubmed/23780408
http://dx.doi.org/10.1038/nature09807
http://www.ncbi.nlm.nih.gov/pubmed/21399628
http://dx.doi.org/10.1038/ng.2891
http://www.ncbi.nlm.nih.gov/pubmed/24487277
http://dx.doi.org/10.1056/NEJMoa1113205
http://www.ncbi.nlm.nih.gov/pubmed/22397650
http://dx.doi.org/10.1038/nrc885
http://www.ncbi.nlm.nih.gov/pubmed/12209156
http://dx.doi.org/10.1158/1078-0432.CCR-050013
http://www.ncbi.nlm.nih.gov/pubmed/15448018
http://dx.doi.org/10.1038/nature09639
http://www.ncbi.nlm.nih.gov/pubmed/21248752
http://dx.doi.org/10.1038/Nature08672
http://www.ncbi.nlm.nih.gov/pubmed/20054297
http://dx.doi.org/10.1038/nature12222
http://www.ncbi.nlm.nih.gov/pubmed/23792563
http://dx.doi.org/10.1002/cncr.28521
http://www.ncbi.nlm.nih.gov/pubmed/24382589
http://dx.doi.org/10.1016/j.juro.2015.07.113
http://www.ncbi.nlm.nih.gov/pubmed/26300218
http://dx.doi.org/10.1038/ng.2323
http://www.ncbi.nlm.nih.gov/pubmed/22683710


18. Sankin A, Hakimi AA, Mikkilineni N, Ostrovnaya I, Silk MT, Liang Y, et al. The impact of genetic hetero-

geneity on biomarker development in kidney cancer assessed by multiregional sampling. Cancer med-

icine. 2014. doi: 10.1002/cam4.293 PMID: 25124064.

19. Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M, et al. The von Hippel-Lindau tumor suppressor

protein regulates gene expression and tumor growth through histone demethylase JARID1C. Onco-

gene. 2012; 31(6):776–86. doi: 10.1038/Onc.2011.266. ISI:000300222100010. PMID: 21725364

20. Negrotto S, Hu Z, Alcazar O, Ng KP, Triozzi P, Lindner D, et al. Noncytotoxic differentiation treatment

of renal cell cancer. Cancer Res. 2011; 71(4):1431–41. doi: 10.1158/0008-5472.CAN-10-2422 PMID:

21303982; PubMed Central PMCID: PMC3661214.

21. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr. Inhibition of HIF is necessary for tumor

suppression by the von Hippel-Lindau protein. Cancer Cell. 2002; 1(3):237–46. Epub 2002/06/28.

S1535610802000430 [pii]. PMID: 12086860.

22. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-

based map of the human proteome. Science. 2015; 347(6220):1260419. doi: 10.1126/science.

1260419 PMID: 25613900.

23. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-

based Human Protein Atlas. Nature biotechnology. 2010; 28(12):1248–50. doi: 10.1038/nbt1210-1248

PMID: 21139605.

24. Karnezis AN, Wang Y, Ramos P, Hendricks WP, Oliva E, D’Angelo E, et al. Dual loss of the SWI/SNF

complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell

carcinoma of the ovary, hypercalcaemic type. The Journal of pathology. 2016; 238(3):389–400. doi:

10.1002/path.4633 PMID: 26356327.

25. Ramos P, Karnezis AN, Craig DW, Sekulic A, Russell ML, Hendricks WP, et al. Small cell carcinoma of

the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in

SMARCA4. Nature genetics. 2014; 46(5):427–9. doi: 10.1038/ng.2928 PMID: 24658001; PubMed

Central PMCID: PMC4332808.

26. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev

Cancer. 2006; 6(12):924–35. doi: 10.1038/nrc2013 PMID: 17109012.

27. Mauro MJ, Druker BJ. STI571: targeting BCR-ABL as therapy for CML. Oncologist. 2001; 6(3):233–8.

PMID: 11423669.

28. Demetri GD. Targeting the molecular pathophysiology of gastrointestinal stromal tumors with imatinib.

Mechanisms, successes, and challenges to rational drug development. Hematology/oncology clinics

of North America. 2002; 16(5):1115–24. PMID: 12512386.

29. Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor

receptor antagonists in non-small-cell lung cancer. J Clin Oncol. 2007; 25(5):587–95. doi: 10.1200/

JCO.2006.07.3585 PMID: 17290067.

30. Smalley KS. PLX-4032, a small-molecule B-Raf inhibitor for the potential treatment of malignant mela-

noma. Current opinion in investigational drugs. 2010; 11(6):699–706. PMID: 20496265.

31. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated

reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010; 141(1):69–80. doi: 10.1016/j.

cell.2010.02.027 PMID: 20371346; PubMed Central PMCID: PMC2851638.

32. Oike T, Ogiwara H, Tominaga Y, Ito K, Ando O, Tsuta K, et al. A synthetic lethality-based strategy to

treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res.

2013; 73(17):5508–18. doi: 10.1158/0008-5472.CAN-12-4593 PMID: 23872584.

33. Hoffman GR, Rahal R, Buxton F, Xiang K, McAllister G, Frias E, et al. Functional epigenetics approach

identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc Natl

Acad Sci U S A. 2014; 111(8):3128–33. doi: 10.1073/pnas.1316793111 PMID: 24520176; PubMed

Central PMCID: PMC3939885.

34. Kahali B, Yu J, Marquez SB, Thompson KW, Liang SY, Lu L, et al. The silencing of the SWI/SNF sub-

unit and anticancer gene BRM in Rhabdoid tumors. Oncotarget. 2014; 5(10):3316–32. doi: 10.18632/

oncotarget.1945 PMID: 24913006; PubMed Central PMCID: PMC4102812.

35. Song S, Walter V, Karaca M, Li Y, Bartlett CS, Smiraglia DJ, et al. Gene silencing associated with SWI/

SNF complex loss during NSCLC development. Mol Cancer Res. 2014; 12(4):560–70. doi: 10.1158/

1541-7786.MCR-13-0427 PMID: 24445599; PubMed Central PMCID: PMCPMC3989415.

Immunohistochemistry Reveals Intratumoral Heterogeneity in Kidney Cancer

PLOS ONE | DOI:10.1371/journal.pone.0164554 October 20, 2016 17 / 17

http://dx.doi.org/10.1002/cam4.293
http://www.ncbi.nlm.nih.gov/pubmed/25124064
http://dx.doi.org/10.1038/Onc.2011.266
http://www.ncbi.nlm.nih.gov/pubmed/21725364
http://dx.doi.org/10.1158/0008-5472.CAN-10-2422
http://www.ncbi.nlm.nih.gov/pubmed/21303982
http://www.ncbi.nlm.nih.gov/pubmed/12086860
http://dx.doi.org/10.1126/science.1260419
http://dx.doi.org/10.1126/science.1260419
http://www.ncbi.nlm.nih.gov/pubmed/25613900
http://dx.doi.org/10.1038/nbt1210-1248
http://www.ncbi.nlm.nih.gov/pubmed/21139605
http://dx.doi.org/10.1002/path.4633
http://www.ncbi.nlm.nih.gov/pubmed/26356327
http://dx.doi.org/10.1038/ng.2928
http://www.ncbi.nlm.nih.gov/pubmed/24658001
http://dx.doi.org/10.1038/nrc2013
http://www.ncbi.nlm.nih.gov/pubmed/17109012
http://www.ncbi.nlm.nih.gov/pubmed/11423669
http://www.ncbi.nlm.nih.gov/pubmed/12512386
http://dx.doi.org/10.1200/JCO.2006.07.3585
http://dx.doi.org/10.1200/JCO.2006.07.3585
http://www.ncbi.nlm.nih.gov/pubmed/17290067
http://www.ncbi.nlm.nih.gov/pubmed/20496265
http://dx.doi.org/10.1016/j.cell.2010.02.027
http://dx.doi.org/10.1016/j.cell.2010.02.027
http://www.ncbi.nlm.nih.gov/pubmed/20371346
http://dx.doi.org/10.1158/0008-5472.CAN-12-4593
http://www.ncbi.nlm.nih.gov/pubmed/23872584
http://dx.doi.org/10.1073/pnas.1316793111
http://www.ncbi.nlm.nih.gov/pubmed/24520176
http://dx.doi.org/10.18632/oncotarget.1945
http://dx.doi.org/10.18632/oncotarget.1945
http://www.ncbi.nlm.nih.gov/pubmed/24913006
http://dx.doi.org/10.1158/1541-7786.MCR-13-0427
http://dx.doi.org/10.1158/1541-7786.MCR-13-0427
http://www.ncbi.nlm.nih.gov/pubmed/24445599

	Immunohistochemistry Successfully Uncovers Intratumoral Heterogeneity and Widespread Co-Losses of Chromatin Regulators in Clear Cell Renal Cell Carcinoma.
	Let us know how access to this document benefits you
	Recommended Citation
	Authors

	Immunohistochemistry Successfully Uncovers Intratumoral Heterogeneity and Widespread Co-Losses of Chromatin Regulators in Clear Cell Renal Cell Carcinoma

