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A machine learning model
of response to hypomethylating agents
in myelodysplastic syndromes

Nathan Radakovich,1,2,13 David A. Sallman,3 Rena Buckstein,4 Andrew Brunner,5 Amy Dezern,6

Sudipto Mukerjee,7 Rami Komrokji,3 Najla Al-Ali,3 Jacob Shreve,8 Yazan Rouphail,9 Anne Parmentier,4

Alexandre Mamedov,4 Mohammed Siddiqui,4 Yihong Guan,10 Teodora Kuzmanovic,10 Metis Hasipek,10

Babal Jha,10 Jaroslaw P. Maciejewski,10 Mikkael A. Sekeres,11 and Aziz Nazha12,13,*

SUMMARY

Hypomethylating agents (HMA) prolong survival and improve cytopenias in indi-
viduals with higher-risk myelodysplastic syndrome (MDS). Only 30-40% of pa-
tients, however, respond to HMAs, and responses may not occur for more than
6 months after HMA initiation. We developed a model to more rapidly assess
HMA response by analyzing early changes in patients’ blood counts. Three insti-
tutions’ data were used to develop a model that assessed patients’ response to
therapy 90 days after the initiation using serial blood counts. The model was
developedwith a training cohort of 424 patients from 2 institutions and validated
on an independent cohort of 90 patients. The final model achieved an area under
the receiver operating characteristic curve (AUROC) of 0.79 in the train/test
group and 0.84 in the validation group. The model provides cohort-wide and in-
dividual-level explanations for model predictions, and model certainty can be
interrogated to gauge the reliability of a given prediction.

INTRODUCTION

For patients with intermediate-to higher-riskmyelodysplastic syndrome (MDS), the hypomethylating agents

(HMA) azacitidine and decitabine represent the current standard of care. HMA improve patients’ cytope-

nias, prolong survival, and forestall acute myeloid leukemia (AML) transformation (Montalban-Bravo and

Garcia-Manero, 2018; Stomper and Lübbert, 2019). In one accepted model of HMA mechanism of action,

HMAs counteract aberrant methylation patterns and maturation signals, thereby tilting the balance toward

normal myeloid maturation and away from malignant proliferation (Ogawa, 2020; Lindblad et al., 2017).

Owing to their mechanism of action, HMA response can be significantly delayed; typically, at least six

28-day cycles are administered before treatment is considered a failure (Montalban-Bravo and Gar-

cia-Manero, 2018). This prolonged time to response, coupled with the myelosuppressive effects of

HMAs, makes it difficult to evaluate responses and to predict which patients will ultimately benefit. For

MDS patients with ‘‘high’’ and ‘‘very high’’ risk of leukemic transformation and death as assessed by the

Revised International Prognostic Scoring System (IPSS-R), the median time between diagnosis and death

is 1.6 and 0.8 years, respectively (Greenberg et al., 2012). Treatment with HMA in higher-risk individuals may

preclude other lines of treatment entirely, thereby complicating trials of new agents.

No well-validated models to predict HMA response are in widespread use. Although some studies have

identified patient subsets for whom non-response can be predicted based on genomic data, mutational

data are not generally used to inform HMA treatment decisions in MDS, given the paucity of available

therapies (Nazha et al., 2019; Stomper et al., 2019). Peripheral blood count changes, such as early incre-

ments in platelet counts and fetal hemoglobin, may predict HMA response and overall survival in pa-

tients with MDS and AML (Stomper et al., 2017, 2019; Huang et al., 2018; Itzykson et al., 2018) as sentinel

events for the resumption of normal hematopoiesis. Indeed, in vivo evidence has directly related

improved peripheral platelet counts with increased megakaryocyte differentiation (Stomper et al.,

2019). These relationships between complete blood count (CBC) parameters and patient outcomes,
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however, have been assessed with conventional statistics, in isolated lineages, and with a limited number

of timepoints.

We hypothesized that a machine learning approach examining serial complete blood cell count data from

multiple lineages during the first 90 days of HMA therapy would yield accurate, interpretable response pre-

dictions, thereby providing a means for more promptly identifying patients to benefit from continued

therapy.

Inclusion criteria, data collection, and definition of hypomethylating agent response

Patient data were collected from the Cleveland Clinic Taussig Cancer Center (CCF) (Cleveland, OH, USA),

Moffitt Cancer Center (Tampa, FL, USA), and Sunnybrook Cancer Center (SHC) (Toronto, CA). All adult pa-

tients at participating institutions treated with HMA forMDS, chronic myelomonocytic leukemia (CMML), or

myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes (MDS/MPN) between January

2004 and January 2019 were screened for inclusion. Patients were 18 or older, received at least four cycles of

HMA treatment with no greater than 45 days in between cycles of treatment during the first four months of

treatment (a maximum delay of one half-month), and had CBCs available at intervals of two weeks or less

during the first 90 days of treatment with HMA and had been followed and evaluated at the treating insti-

tution for at least six months after the initiation of HMA therapy.

Response to therapy was determined using the 2006 International Working Group (IWG) response criteria

for MDS (Cheson et al., 2006). Treatment was considered successful if patients had complete remission (CR)

or hematologic improvement (HI). The time of response was defined as the first date that a patient met

either of these endpoints.

Data processing

Serial CBC data pose a challenge for machine learning model development because of their irregularity

and high variable number, an example of the ‘‘curse of dimensionality,’’ wherein the number of variables

nears or exceeds the number of samples, impairing both model performance and generalizability. From

the standpoint of examining serial CBC data over 90 days, using each day as a distinct data point would

result in 90 unique variables for each component of a CBC included in the model. Thus, including several

cell lineages in a model would entail hundreds or even thousands of variables, a prohibitively high level of

dimensionality given the relatively low incidence of MDS and size of datasets available.

Data irregularity poses additional challenges. If data points are simply entered in order for each patient, the

timeline fed into a machine learning model will be distorted. For example, without appropriately spacing

data, two patients, one of whom had seven serial CBCs drawn over the course of a hospital stay, and one of

whom had seven serial CBCs drawn over the course of 14 weeks, would appear to have been observed over

similar time frames (i.e., timepoints would be entered as ‘‘one’’ through ‘‘seven,’’ without regard for the in-

terval between each point). Additionally, the number of labs drawn varies between patients. Without

appropriate pre-processing, a patient who has four labs drawn during a time period and a patient with

eight labs drawn during that same period would have disparate numbers of variables. Thus, serial CBC

data need to be processed in amanner that creates the same number of variables and at the same intervals,

for each patient.

In order to make CBC data uniform between test, training, and validation cohorts, and to reduce dimen-

sionality, laboratory values were downsampled and interpolated into regular time intervals. Downsampling

from 1-day increments to 10 days increments was done to reduce the number of variables by an order of

magnitude (i.e., reducing 90 data points per laboratory value to 9 data points). Given that the effects of

HMA are seen over periods of weeks to months, we reasoned that this strategy would capture data in

an appropriately granular manner.

Blood counts were placed on a timeline, with missing values (i.e., days when CBCs were not drawn for a

patient) filled by linear interpolation (Figure S1). Using only the values for given time points might fail to

capture the context for those values. For instance, a patient might have a platelet count of 80,000/mL on

day 60 of treatment, but the significance of that value would differ vastly depending on whether their

platelet count had been 15,000/mL or 250,000/mL at day zero. Thus, in addition to the downsampling strat-

egy used for lab values, the change in laboratory values from the baseline (i.e., the value at day 0) was also
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considered as a separate set of variables in order to better capture the individual context of a given lab

value (Figure S2). Both absolute laboratory values as well as change from baseline were used by the model.

Transfusion requirements were not included in the model owing to inconsistent availability.

Model selection and study design

Multiplemachine learningmodels were evaluated; random forests (RF) and gradient-boosted decision tree

(GBDT) models XGBoost and LightGBM were selected. Although not explicitly designed for handling

sequential data, tree-based methods performed best in preliminary analyses. Model performance was

optimized using a hyperparameter grid search strategy. Recurrent neural network and convolutional neural

network approaches were also employed, but discarded in light of poor performance in this setting.

Model development used a 5-fold train/test approach using data from CCF and Moffitt, with the SHC data

held out as a validation cohort (Figure S3). The area under the receiver operating characteristic curve

(AUROC) and area under the precision-recall curve (PR-AUC) were used to evaluate model performance.

In the train/test group, 5 distinct models were developed, with model performance determined on the ba-

sis of the models’ pooled performance scores to reduce variability. Bootstrapping was used to generate

95% confidence intervals for model performance by repeatedly using sampling with replacement to

make resampled versions (‘‘bootstraps’’) that allow for non-parametric estimation of confidence intervals.

200 bootstraps were used for each fold of cross-validation for a total of 1000 bootstraps; 95% confidence

intervals were generated by taking the 2.5th and 97.fifth percentile values of the total bootstraps.

Model interpretation: cohort-wide predictive performance

The machine learning interpretation software SHAP (Shapley Additive Explanations) (Lundberg and Lee,

2017) was employed in order to generate model explanations using a game theoretical approach (Fig-

ure S4). SHAP values were calculated to determine which variables carried the most weight in determining

model predictions. Shapley values are calculated by taking a model and iteratively removing a single var-

iable at a time to observe how themodel’s prediction changes (Lundberg and Lee, 2017). If the removal of a

variable decreases the likelihood of an event predicted by themodel, that variable can in turn be inferred to

have a positive influence on the likelihood of an event. Conversely, variables whose removal increases the

model’s predicted likelihood of an event can be inferred to negatively influence the likelihood of an event

(Figure S4). For example, if the default likelihood of an event is 0.6, a feature with a SHAP value of �0.1 de-

creases the overall likelihood from 0.6 to 0.5. For the ease of global model interpretation, raw SHAP values

were converted to a percentage of overall SHAP values on a per-patient basis by taking the absolute value

of the SHAP value for a given feature and dividing it by the sum of the absolute values of all SHAP values for

that patient. The result describes what proportion of a model’s prediction a given variable is responsible

for. Although SHAP values do not determine why a given variable impacts model predictions, they do

describe which variables are important, and how important they are relative to one another. Predictions

were generated by examining both pooled laboratory values (e.g., all WBC values over 90 days) and indi-

vidual time points (e.g., the WBC values for the first ten days of treatment). SHAP values for laboratory

values represent both the value of a given CBC parameter as well as its change from the parameter’s value

at the start of treatment.

To better visualize model predictions, traditional statistics were used to interrogate model predictions.

Model predictions were converted to percentiles of likelihood relative to the rest of the cohort (e.g., a pa-

tient predicted to have a 0% chance of response would be at the 0th percentile, whereas a predicted 100%

chance of response would be at the 99th percentile). Percentile likelihood as described by the model was

then compared to actual HMA response rates both by comparing event rates between discrete groups and

by modeling event rates as a function of the predicted likelihood of response.

For the categorical approach, patients’ percentile likelihoods were divided into quintiles to mirror the cur-

rent IPSS-R categorical approach to risk stratification, with response rates compared between adjacent

quintiles by the chi-squared test. The continuous approach employed the methods used by Paik et al.

(2004), which have subsequently been widely adopted in risk-stratifying breast cancer. Their approach

estimates a continuous relationship between model predictions and response rates by using logistic

regression to model the relationship between percentile likelihood of response and actual clinical out-

comes (i.e., breast cancer recurrence or documented HMA response versus treatment failure). For all

comparative statistics, a p value < 0.05 was considered significant.
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Additional material

The file ‘‘public_code.zip,’’ related to the STAR Methods is attached in the supplemental material.

RESULTS

Five hundred fourteen patients in total met eligibility criteria: 324 from CCF, 100 from Moffitt, and 90 from

SHC. Patients’ mean age was 72 years (range: 40-94 years) with 30% female patients, demographic charac-

teristics which are consistent with other cohorts. Patient risk strata varied between institutions; a greater

proportion of patients from CCF (60%) were in the ‘‘Very Low,’’ ‘‘Low,’’ or ‘‘Medium’’ risk IPSS-R risk strata,

compared to 41% from MCC and 15% from SHC (p < 0.001). In keeping with this, a smaller proportion

(36.1%) of patients with CCF had the WHO-defined higher-risk subtypes MDS with excess blasts-1

(MDS-EB1) or MDS with excess blasts-2 (MDS-EB2) compared with the MCC (57%) and SHC (57%) cohorts

(p < 0.001). Patients received similar numbers of cycles (mean number of cycles: 12.5 versus 12.9) of HMA

between CCF andMoffitt, respectively (data were missing for SHC). Rates of progression to AML and mean

follow-up time were similar between groups. Characteristics for the entire cohort as well as individual in-

stitutions are summarized in Table 1.

Model performance

Model performance was evaluated for RF, XGBoost, and LightGBM. Demographic data and results of next-

generation sequencing panels were included in preliminary models; however, they did not improve model

performance and were removed thereafter. When predicting HMA response after 90 days of treatment, the

RF model achieved an AUROC of 0.78 [0.60-0.89] and PR-AUC of 0.77 [0.61-0.89] in the train/test cohort,

with an AUROC of 0.84 [0.76-0.92] and PR-AUC of 0.84 [0.71-0.93] in the validation cohort. XGBoost

achieved an AUROC of 0.79 [0.67-0.90] and PR-AUC of 0.78 [0.6211-0.90] in the train/test cohort, with an

AUROC of 0.82 [0.74-0.91] and PR-AUC and of 0.84 [0.72-0.92] in the validation cohort. LightGBM achieved

an AUROC of 0.81 [0.66-0.91] and PR-AUC of 0.79 [0.64-0.92] in the train/test cohort, with an AUROC of 0.83

[0.74-0.91] and PR-AUC of 0.83 [0.70-0.92] in the validation cohort. XGBoost was selected from these three

models for further analysis on the basis of achieving the best-combined performance in the training and

validation cohorts.

When feature importancewas assessed by calculating Shapely values for both laboratory values and change

in laboratory values from baseline (Figure 1), the most influential parameter was hemoglobin, followed by

platelets, red cell distribution width (RDW), and white blood cell (WBC) count in both the train/test and vali-

dation cohorts. The magnitude of importance was similar between the train/test and validation cohorts.

When the importance of laboratory values was examined along individual time points (Figure 2), hemoglo-

bin, platelets, and absolute neutrophil count (ANC) carried more weight during days 60-90 of treatment.

RDW was most influential during days 30-60 of treatment. The influences of absolute laboratory values

and change from baseline were also considered separately. In this case, the change in hemoglobin and

platelets wasmost influential at the end of the treatment period, and the change in RDWwasmost influential

during days 31-60 (Figure S5). When absolute laboratory values were considered separately, hemoglobin

values were most influential during the last 30 days of treatment; conversely, WBC, platelet, monocyte,

ANC, and RDW absolute values were more influential during the first half of treatment (Figure S5).

Shapley values also provide predictions about individual patients’ response to HMA. Figure 3 shows two

examples of personalized predictions: a patient predicted not to respond (‘‘low’’ likelihood; second quin-

tile of likelihood) and a patient with a high (fourth quintile) likelihood of response.

Logistic regression was used to estimate the relationship between response rates and the percentile of the

predicted response generated by the model (i.e., how likely a given patient was to respond compared to

the rest of the cohort). A 0.69 pseudo R^2 value (p = 0.000) was observed between predicted percentile and

actual events for the train/test cohort; the pseudo-R^2 value for the validation cohort was 0.26 (p =

6.9 3 10�37, Figure 4). When the percentile of response likelihood was split into quintiles (labeled ‘‘very

low,’’ ‘‘low,’’ ‘‘intermediate,’’ ‘‘high,’’ and ‘‘very high’’ likelihoods of response) significant differences

(p < 0.05 for all comparisons) were observed between all adjacent quintiles in both the train/test and vali-

dation cohorts (Figure 5). Assessment of the relationship between response likelihood, both via estimating

by logistic regression and by dividing into different risk strata, demonstrated that the model effectively dis-

criminates between patients with different likelihoods of responding to HMA.
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DISCUSSION

Wedescribe a novel approach tomore rapidly assess HMA response in patients withMDS based on routine

serial monitoring of patient CBC values during the first 90 days of therapy. The cohorts used to generate the

model, taken from three different academic hospitals, are similar to those previously described in clinical

trials with regard to patient age, biological sex, and response rates. Cohorts were similar in terms of mean

follow-up time and length of treatment. Although the proportion of disease risk (per the IPSS-R) and dis-

ease subtypes varied significantly between cohorts, IPSS-R has not been shown to be predictive of

response, and similar rates of AML transformation were observed between groups (Stomper et al., 2019).

Table 1. Cohort demographics

Missing Total CCF Moffitt SHC p value

Number 514 324 100 90

Female 0 154 (30) 101 (31) 28 (28) 25 (28) 0.723

Age, mean (SD) 0 71.8 (9) 71.6 (10) 69.6 (8) 74.8 (9) 0.001

Days of follow-up,

mean (SD)

752.8 (722) 776.1 (685) 714.3 (595) 712.5 (948)

De novo, n (%) 91 336 (79) 260 (81) 76 (76) Missing 0.406

Number of cycles,

mean (SD)

92 12.6 (12) 12.5 (12) 12.9 (12) Missing

Azacitidine (%) 0 428 (83) 256 (79) 90 (90) 84 (92) <0.001

Decitabine (%) 0 86 (17) 68 (21) 10 (10) 6 (8)

Prior lenalidomide (%) 90 29 (7) 20 (8) 9 (10) Missing 0.208

Other prior treatment (%) 90 12 (3) 8 (3) 4 (4) Missing 0.419

% Marrow Blasts, mean (SD) 4 3.3 (6) 0.1 (0.1) 7.6 (6) 10.1 (7.7) <0.001

Progression to AML (%) 0 170 (33) 111 (34) 31 (31) 28 (31) 0.757

IPSS-R cytogenetic score 17 0.023

0 12 (2) 9 (3) 1 (1) 2 (2)

1 260 (51) 183 (56) 51 (51) 26 (29)

2 77 (15) 49 (15) 12 (12) 16 (18)

3 148 (29) 83 (26) 35 (35) 30 (33)

Missing 17 (3) 0 (0) 1 (1) 16 (18)

IPSS-R category 17 <0.001

Very Low 21 (4) 19 (6) 1 (1) 1 (1)

Low 124 (24) 101 (31) 21 (21) 2 (2)

Intermediate 105 (20) 74 (23) 19 (19) 12 (13)

High 110 (21) 64 (20) 21 (21) 25 (28)

Very High 137 (27) 66 (20) 37 (37) 34 (38)

Missing 17 (3) 0 (0) 1 (1) 16 (18)

Sub-type 0 <0.001

CMML 59 (12) 47 (15) 3 (3) 9 (10)

MDS-5q 7 (1) 5 (2) 0 (0) 2 (2)

MDS-NOS 71 (14) 56 (17) 4 (4) 11 (12)

MDS-U 12 (2) 10 (3) 2 (2) 0

RARS 36 (7) 22 (7) 12 (12) 2 (2)

MDS-EB1 91 (18) 49 (15) 23 (23) 19 (21)

MDS-EB2 133 (26) 68 (21) 34 (34) 32 (36)

RCMD 100 (20) 63 (19) 22 (22) 15 (17)

RCUD 5 (1) 4 (1) 0 1 (1)

Continuous variables are compared between cohorts using an ANOVA test, and categorical variables are compared using

the chi-squared test.
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The model demonstrated the ability to reliably predict HMA response after three months in the train/test

cohort and retained its ability to do so when tested on an independent validation cohort, suggesting good

external validity. Assessing the usefulness of a model based on its AUROC is highly contextual. However, in

the setting of trying to predict future events, we believe these models would be of benefit for clinicians,

especially in the case of predictions where the model had a high level of certainty about the likelihood

of response. Despite concordance between the train/test and validation cohorts’ performance as

measured by AUROC and PR-AUROC, there was a marked discrepancy in the cohorts’ pseudo R^2 values

when a continuous risk-stratification approach was used. We interpret this as evidence that while themodel

performs well in the aggregate, it is less reliable for stratifying the likelihood of response between patients

with similar risks of treatment failure (e.g., it may reliably identify high- and low-risk patients, but may have

trouble discriminating between two high-risk patients’ likelihood of treatment failure).

Unsurprisingly, hemoglobin and platelets were important predictors of response, although we should

highlight that the only data used were those preceding patients’ having met clinical endpoints for

response. The predictive value of absolute platelet count early in treatment is concordant with previous

findings (Stomper et al., 2017, 2019). Beyond this, the model identified several other predictive factors

such as RDW andmonocyte count which are not typically considered when assessing HMA response. Incor-

porating these factors into the model resulted in more robust predictions than could be made by exam-

ining three CBC parameters alone. These changes might represent sentinel events in the resumption of

normal hematopoiesis and an early indicator of which patients are likely to benefit from continuing therapy.

A reliable, personalized model for HMA response has several potential uses. Although our model does not

assist in the upfront decision about whether to initiate HMA therapy, it does provide a means for making

more prompt, data-driven decisions about treatment duration. Similar precedents exist for other

Figure 1. Global feature importance, determined by Shapley values

Bar plots shown depict the relative importance of different laboratory values for predicting HMA response in the model,

with bar length corresponding to the relative importance of a given feature.

Figure 2. Feature importance by time point

The heatmaps shown depict different laboratory values in rows, with individual columns corresponding to groups of ten

days. Tile color corresponds to relative feature importance as calculated by Shapley values.
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hematologic malignancies; in Hodgkin lymphoma, where high cure rates need to be balanced against life-

long toxicity, response-adapted therapy with fluorodeoxyglucose-positron emission tomography (FDG-

PET) imaging has emerged as a means for balancing toxicity and efficacy (Broadfoot and Johnson, 2017;

Barrington et al., 2016). Conversely, in multiple myeloma, recent work has focused on selecting patients

for treatment intensification in those at risk for treatment failure (Jackson et al., 2019). In this case, an elec-

tronic health record-integrated model could aid decision-making about HMA treatment via automated

queries of laboratory data in a manner similar to decision aids such as statin support tools.

In addition to clinician-level decision-making, a reliable means for promptly appraising HMA response has

implications for clinical trial design. HMAs are widely used for higher-risk MDS and for ethical and

Figure 3. Personalized predictions of HMA response

The pairs of graphs shown depict patients’ hemoglobin, platelet, and ANC values in line graphs during the first 90 days of treatment, and the factors

contributing to model predictions in the corresponding heatmaps. Heatmap tiles in blue represent factors making response less likely; red tiles represent

factors favoring a response.

Figure 4. Estimated HMA response rates (logistic regression) versus percentile of predicted response likelihood

Individual patients are arranged along the x axis in order of predicted likelihood of response from those predicted least

likely to respond to those predicted most likely to respond. Response rates as estimated by logistic regression are shown

on the y axis.
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regulatory reasons, trials of new therapies are typically conducted either alongside HMA therapy or after

HMA failure. This increases the likelihood of unacceptable toxicities or of poorer performance status

and more advanced disease in the setting of HMA failure. Identifying likely non-responders to HMA ther-

apy early would allow patients to enroll in trials earlier and impact the clinical trial design of HMA backbone

combination therapies; trials in patients with better performance status and less advanced disease would

be more likely to identify potentially beneficial novel agents.

Limitations of the study

Certain factors of our model require further study. Because of the data requirements of our model, all of the

patients used to train and validate come from MDS referral centers rather than the community setting. The

exclusion of such patients might have skewed our training data toward MDS patients with more aggressive

disease, greater numbers of comorbidities, or other adverse prognostic indicators. Conversely, the inclu-

sion of patients in clinical trials might select fitter patients. In either case, an important future focus will be

validating the model in other practice settings. Time from diagnosis to treatment initiation, which has been

associated with lower response rates, was also not factored into this model (Komrokji et al., 2021). Addition-

ally, because transfusion records were not available, the model does not directly account for transfusion

requirements, although it may do so implicitly based on platelet and hemoglobin values. Models that

explicitly consider transfusion requirementsmay be able tomore accurately predict HMA success or failure.

Factors such as changing transfusion requirements may also be more apparent to clinicians than to statis-

tical models. Finally, while the number of cycles was provided and all patients’ inclusion was contingent on

having met inclusion criteria for both minimum number of cycles received and lack of treatment interrup-

tions, the precise timing of HMA administration was not available in our dataset. Thus, the effect of treat-

ment timing could not be assessed with the data available.

It should be noted that our model was developed specifically in patients receiving 28-day cycles of paren-

teral HMA, the standard of care for the last two decades. It is unknown how our model would translate to

other dosing schedules, routes of delivery, or combination therapies. Specifically, orally bioavailable HMA

are being actively studied in MDS and AML (Garcia-Manero et al., 2020). The pharmacokinetics of oral HMA

may differ from parenteral, and the convenience of oral therapy might lead to alternative dosing schedules

or even continuous therapy. There is also increasing interest in using venetoclax in the treatment of MDS

and AML (Garcia, 2020). No patients in our study received oral HMA or venetoclax, so it is unknown howwell

a model developed for parenteral HMA monotherapy would translate. The timing and trajectory of CBC

changes in either of these scenarios might necessitate the development of alternative models.

Finally, it should be noted that while next-generation sequencing (NGS) data were available for a small

number of patients in our cohorts, sub-analyses examining the utility of NGS data in predicting HMA

responsiveness did not add predictive value to our model. Therefore, NGS data were excluded in favor

of having a larger sample with which to develop ourmodel. CBC values likely serve as a proxy for underlying

disease biology, and as such it is appealing to enrich existing models with genomic data, which are more

proximal to underlying drivers of MDS. Sample size (given the low incidence of most mutations, only a

Figure 5. HMA response rates by quintile likelihood of response

Bar graphs depict the proportion of patients achieving a response when patients are sorted according to model

predictions of response likelihood. p-values between adjacent quintiles are obtained via the chi-squared test.
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handful of which are represented in a sample of hundreds of patients) is a limiting factor in integrating such

data, and larger, multi-institutional datasets are likely needed, as prior work has, indeed, demonstrated

predictive utility for genomic data (Stomper et al., 2017).

Conclusion

Wedeveloped amachine learningmodel to accurately assess HMA response in patients with MDS. By sam-

pling serial CBC information every 1-2 weeks during the first 90 days of treatment and considering both

absolute laboratory values and changes in those values compared to baseline, the model makes accurate,

interpretable predictions about which patients are likely to benefit from continued HMA administration,

and which ones should consider the cessation of therapy or an investigational agent. Future work should

focus on the refinement and validation of this approach in community oncology settings, and the integra-

tion of next-generation sequencing data in order to develop models that more directly reflect disease

biology.
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