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Abstract: Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or func-
tional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually
myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the
development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad
spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary
artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note,
the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Im-
portantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis
of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological
mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD
and CVDs.

Keywords: coronary microvascular dysfunction; endothelial cell; autophagy; cardiovascular disease

1. Introduction

The term “coronary microvascular dysfunction” (CMD) refers to a subset of structural
and/or functional disorders of coronary microcirculation that lead to impaired coronary
blood flow (CBF) and ultimately result in myocardial ischemia [1–3] (Figure 1B). With recent
advances in the knowledge of the pathophysiological mechanisms and the development
of more sophisticated tools for assessment, CMD has emerged as a prevalent cause of
microvascular angina (MVA), a condition where patients present angina and myocardial
ischemia but without evidence of obstructive coronary artery disease (CAD). CMD has also
been linked to multiple other diseases, such as obstructive CAD, diabetic cardiomyopathy
(DCM), primary cardiomyopathies, myocarditis, and heart failure (HF), particularly heart
failure with preserved ejection fraction (HFpEF) [4] (Figure 1C). Even subjects without
clinical manifestations of heart diseases but with classic risk factors (e.g., smoking, hyperc-
holesterolemia, hypertension, and obesity) or chronic inflammatory vessel disease present
CMD [5–7]. Autophagy is a critical regulator of cardiac metabolism and homeostasis [8–10].
Deficient or uncontrolled activation of endothelial autophagy is associated with the on-
set and development of diverse cardiovascular diseases (CVDs), including CMD [9–16].
Understanding the molecular basis of endothelial autophagy in CMD is crucial for the
discovery of novel regulatory mechanisms and the identification of new diagnostic and
therapeutic targets. This review aims to summarize the pathophysiological mechanisms
of autophagy in coronary endothelial cells (ECs) and explore their potential role in CMD
and CVDs.
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Figure 1. The coronary microvasculature in the heart. (A) Normal structure of the coronary 
vasculature. (B) Mechanisms of coronary microvascular dysfunction (CMD). (C) Role of CMD 
across different cardiovascular diseases (CVDs). Abbreviations: VSMCs, vascular smooth muscle 
cells; HFpEF, heart failure with preserved ejection fraction; ACS, acute coronary syndrome; INOCA, 
ischemia with nonobstructive coronary arteries; MINOCA, myocardial infarction with 
nonobstructive coronary arteries; CAD, coronary artery disease. 

2. The Coronary Microvasculature and Endothelium in the Heart 
The coronary arterial system is a continuous network with a decreasing size and 

distinct functions [1,3,17,18], which dynamically delivers oxygen, nutrients, and 
hormones to the myocardium and removes metabolic end-products [19,20]. The human 
coronary vasculature consists of the proximal large epicardial coronary arteries (>400 µm), 
small pre-arterioles (100 to 400 µm), smaller intramural arterioles (<100 µm), and the 
coronary capillary bed (<10 µm) [1,18] (Figure 1A). The proximal large epicardial 
coronaries serve as conductance vessels and present limited resistance to CBF; they 
change their diameters with shear stress and endothelial function [21]. Conversely, the 
pre-arterioles and arterioles exhibit remarkable resistance to CBF and maintain the 
pressure within a narrow range along with the perfusion pressure or flow variations 
[3,17,18]. Smaller intramural arterioles function to match the myocardial blood supply 
with the oxygen consumption [20,22] and contribute to the largest proportion of the entire 
coronary vascular resistance. Pre-arterioles, intramural arterioles, and capillaries make up 
the coronary microcirculation. 

The subset of disorders including structural and/or functional abnormalities in the 
coronary microcirculation leading to an impaired coronary blood supply is called CMD 
(Figure 1B). Examples of structural abnormalities and microvascular remodeling in CMD 
include intramural arteriole stenosis, perivascular fibrosis, and capillary rarefaction (often 
in the context of increased left ventricular mass) [3], particularly in patients with CAD risk 
factors or underlying cardiomyopathies. Of note, the functional abnormalities present as 
impaired dilations (vasodilator abnormalities) and/or increased constriction of the 
coronary microvessels (i.e., microvascular spasms) [1] are mediated by EC-dependent 

Figure 1. The coronary microvasculature in the heart. (A) Normal structure of the coronary vascula-
ture. (B) Mechanisms of coronary microvascular dysfunction (CMD). (C) Role of CMD across different
cardiovascular diseases (CVDs). Abbreviations: VSMCs, vascular smooth muscle cells; HFpEF, heart
failure with preserved ejection fraction; ACS, acute coronary syndrome; INOCA, ischemia with
nonobstructive coronary arteries; MINOCA, myocardial infarction with nonobstructive coronary
arteries; CAD, coronary artery disease.

2. The Coronary Microvasculature and Endothelium in the Heart

The coronary arterial system is a continuous network with a decreasing size and
distinct functions [1,3,17,18], which dynamically delivers oxygen, nutrients, and hormones
to the myocardium and removes metabolic end-products [19,20]. The human coronary
vasculature consists of the proximal large epicardial coronary arteries (>400 µm), small
pre-arterioles (100 to 400 µm), smaller intramural arterioles (<100 µm), and the coronary
capillary bed (<10 µm) [1,18] (Figure 1A). The proximal large epicardial coronaries serve
as conductance vessels and present limited resistance to CBF; they change their diameters
with shear stress and endothelial function [21]. Conversely, the pre-arterioles and arterioles
exhibit remarkable resistance to CBF and maintain the pressure within a narrow range
along with the perfusion pressure or flow variations [3,17,18]. Smaller intramural arterioles
function to match the myocardial blood supply with the oxygen consumption [20,22] and
contribute to the largest proportion of the entire coronary vascular resistance. Pre-arterioles,
intramural arterioles, and capillaries make up the coronary microcirculation.

The subset of disorders including structural and/or functional abnormalities in the
coronary microcirculation leading to an impaired coronary blood supply is called CMD
(Figure 1B). Examples of structural abnormalities and microvascular remodeling in CMD
include intramural arteriole stenosis, perivascular fibrosis, and capillary rarefaction (often
in the context of increased left ventricular mass) [3], particularly in patients with CAD risk
factors or underlying cardiomyopathies. Of note, the functional abnormalities present as
impaired dilations (vasodilator abnormalities) and/or increased constriction of the coro-
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nary microvessels (i.e., microvascular spasms) [1] are mediated by EC-dependent and/or
EC-independent mechanisms [2–4,23]. In particular, the vascular ECs play a pivotal role
in modulating vasomotor activity by releasing vasoactive substances [24]. Important EC-
derived vasodilators are nitric oxide (NO), prostacyclin, bradykinin, and the EC-derived hy-
perpolarizing factor (EDHF) [24–29]. The EC-derived vasoconstrictors include endothelin-1
(ET-1), prostaglandin H2, thromboxane A2, and superoxide anions [30,31]. Moreover,
EC-derived vasodilators, such as nitric oxide, could retard cellular growth/migration and
exhibit potent antiatherogenic/thromboresistant properties by inhibiting platelet aggrega-
tion and cell adhesion [23], whereas EC-derived vasoconstrictors display counterbalanced
effects within a given vascular segment [23].

Endothelial dysfunction in resistant coronary vessels has proved to be an essential con-
tributor to CMD [32–34]. Endothelial dysfunction is identified as a disturbed vasodilatory
or hyperactivated vasoconstrictive reaction to the EC-dependent vasodilator Ach [32,33]
along with augmented oxidative stress, increased reactive oxygen species (ROS) and/or
vasoconstrictors production, and gradually decreased endothelial NO availability. Further-
more, endothelial dysfunction also includes the transformation from a quiescent state to an
activated pro-inflammatory state, causing promoted chemokine and adhesion molecule ex-
pression and enhanced consecutive interaction with platelets and leukocytes [35–37], which
ultimately results in microvascular structural remodeling and contributes to myocardial
perfusion defects.

3. Brief Overview of Autophagy

Autophagy is a highly conserved process in which obsolete and dysfunctional cy-
toplasmic components (such as unfolded proteins, lipids, and damaged organelles) are
degraded and recycled, and infectious organisms are removed by lysosomes [10,11,38,39].
Autophagy is stimulated by different stresses (i.e., nutrient deprivation and hypoxia) and
functions primarily as a cell survival mechanism [40–43]. However, it switches to promot-
ing cell death under insurmountable lethal stress, which is known as autophagic (type II)
cell death [44,45]. Three classes of autophagy are identified as follows: chaperone-required
autophagy, microautophagy, and macroautophagy [46–48]. Chaperone-required autophagy
is the selective degradation of proteins with a KFERQ-like motif. During the process,
targeted proteins are transferred to the lysosomes with the company of the chaperone
HSC70 and co-chaperones, subsequently internalized into the lysosomes via an interaction
with the lysosome-associated membrane protein type 2A (LAMP2A) [49]. In microau-
tophagy, the cargo, alone or in a complex with chaperones, can be directly engulfed by
the lysosome and late endosomes through invagination at the lysosomal membrane via
electrostatic forces [50–52]. Macroautophagy (hereafter referred to as autophagy) is the
most well studied and the major type of autophagy. The macroautophagy pathway is
characterized by the formation of autophagosomes, within which cytoplasmic components
are insulated and subsequently degraded by fusing with the lysosomes [12,45,53,54]. The
process of autophagy can be dissected into the following sequential steps: induction of
a phagophore assembly site, nucleation of an autophagosome precursor (known as the
phagophore), membrane expansion and maturation of the autophagosome (a double mem-
brane vesicle), fusion with the lysosome for degradation, and lastly, recycling the degraded
cargo [10,11,55,56].

The process of autophagy is sequentially regulated by multiple mechanisms (Figure 2).
(1) First, initiation of the phagophore assembly begins with the formation of a preinitiation
complex, which is composed of the unc-51-like kinase (ULK1/2), autophagy-related pro-
tein 13 (ATG13), and the non-catalytic focal adhesion kinase-family interacting protein of
200 kD (FIP200) [45,57,58]. The activity of this kinase complex is negatively inhibited by
the mammalian target of the rapamycin complex 1 (mTORC1) and the positively activated
AMP-activated protein kinase (AMPK) [59,60]. (2) Further nucleation involves the recruit-
ment and activation of the initiation complex, which is composed of the vacuolar protein
sorting protein 15 (VPS15), a class III PI3K (VPS34), and Beclin 1 [61,62]. The activity of
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the initiation complex is downregulated by several independent signaling pathways, such
as the PI3K-AKT pathway, and the Bcl2 and Bcl-xL pathway [63,64]. Conversely, starva-
tion or exercise-induced autophagy activation is carried out by the JNK family [65,66].
(3) Next, the phagophore elongation and closure require two distinct but complemen-
tary ubiquitin-like protein conjugation systems—the ATG12/ATG5/ATG16L1 complex
and the microtubule-associated protein 1-light chain 3 (LC3)-phosphatidylethanolamine
(PE) machinery [45]. (4) Finally, the fusion of the autophagosomes with the lysosomes
requires the syntaxin17 (Stx17) synaptosome-associated protein 29 (SNAP29), the vesicle-
associated membrane protein 8 (VAMP8), and the lysosomal-associated membrane protein
1/2 (LAMP1/2) [67–70].

Cells 2022, 11, x FOR PEER REVIEW 4 of 20 
 

 

signaling pathways, such as the PI3K-AKT pathway, and the Bcl2 and Bcl-xL pathway 
[63,64]. Conversely, starvation or exercise-induced autophagy activation is carried out by 
the JNK family [65,66]. (3) Next, the phagophore elongation and closure require two 
distinct but complementary ubiquitin-like protein conjugation systems—the 
ATG12/ATG5/ATG16L1 complex and the microtubule-associated protein 1-light chain 3 
(LC3)-phosphatidylethanolamine (PE) machinery [45]. (4) Finally, the fusion of the 
autophagosomes with the lysosomes requires the syntaxin17 (Stx17) synaptosome-
associated protein 29 (SNAP29), the vesicle-associated membrane protein 8 (VAMP8), and 
the lysosomal-associated membrane protein 1/2 (LAMP1/2) [67–70]. 

 
Figure 2. The process of autophagy in mammalian cells. The process of autophagy is sequentially 
dissected into several phases, including initiation, nucleation, phagophore elongation/closure, and 
autophagosome–lysosome fusion. (1) First, upon metabolic insults, the AMPK activation and/or 
mTORC1 inhibition result in the initiation of the preinitiation complex (ULK1/2, ATG13, and 
FIP200). (2) Further nucleation involves the recruiting and activating of the initiation complex 
(VPS15, VPS34, and Beclin 1), which is downregulated by the Bcl2/Bcl-xL pathways and upregulated 
by the JNK family. (3) Next, phagophore elongation and closure require the ATG12/ATG5/ATG16L1 
complex and the LC3-PE machinery. (4) Finally, the fusion of the autophagosomes with the 
lysosomes requires Stx17, SNAP29, VAMP8, and LAMP1/2. Abbreviations: AMPK, AMP-activated 
protein kinase; mTORC1, mammalian target of rapamycin complex 1; ULK1/2, unc-51-like kinase 
1/2; ATG, autophagy-related protein; FIP200, the non-catalytic focal adhesion kinase-family 
interacting protein of 200 kD; VPS, vacuolar protein sorting; LC3, microtubule-associated protein 1-
light chain 3; PE, phosphatidylethanolamine; Stx17, syntaxin 17; SNAP29, synaptosome-associated 
protein 29; VAMP8, vesicle-associated membrane protein 8; LAMP1/2, lysosomal-associated 
membrane protein 1/2. 

The selective sequestration of the dysfunctional mitochondria by the 
autophagosomes and the subsequent degradation by the lysosomes are termed 
"mitophagy” [12] (Figure 3). There are two distinct signaling pathways for mitophagy, 
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kinase 1 (PINK1)–Parkin-dependent pathway and the mitophagy receptor-required 
pathway [71,72]. To date, multiple mitophagy receptors have been recognized in 
mammals, including the BCL2/adenovirus E1B 19kDa-interacting protein 3 (BNIP3) [73], 
NIP3-like protein X (NIX, also called the BNIP3-like protein (BNIP3L)) [74–76], FUN14 
domain-containing protein 1 (FUNDC1) [77], B-cell lymphoma-2-like 13 (BCL2L13) [78], 
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Figure 2. The process of autophagy in mammalian cells. The process of autophagy is sequentially
dissected into several phases, including initiation, nucleation, phagophore elongation/closure, and
autophagosome–lysosome fusion. (1) First, upon metabolic insults, the AMPK activation and/or
mTORC1 inhibition result in the initiation of the preinitiation complex (ULK1/2, ATG13, and FIP200).
(2) Further nucleation involves the recruiting and activating of the initiation complex (VPS15, VPS34,
and Beclin 1), which is downregulated by the Bcl2/Bcl-xL pathways and upregulated by the JNK
family. (3) Next, phagophore elongation and closure require the ATG12/ATG5/ATG16L1 complex
and the LC3-PE machinery. (4) Finally, the fusion of the autophagosomes with the lysosomes
requires Stx17, SNAP29, VAMP8, and LAMP1/2. Abbreviations: AMPK, AMP-activated protein
kinase; mTORC1, mammalian target of rapamycin complex 1; ULK1/2, unc-51-like kinase 1/2; ATG,
autophagy-related protein; FIP200, the non-catalytic focal adhesion kinase-family interacting protein
of 200 kD; VPS, vacuolar protein sorting; LC3, microtubule-associated protein 1-light chain 3; PE,
phosphatidylethanolamine; Stx17, syntaxin 17; SNAP29, synaptosome-associated protein 29; VAMP8,
vesicle-associated membrane protein 8; LAMP1/2, lysosomal-associated membrane protein 1/2.

The selective sequestration of the dysfunctional mitochondria by the autophagosomes
and the subsequent degradation by the lysosomes are termed "mitophagy” [12] (Figure 3).
There are two distinct signaling pathways for mitophagy, which are as follows: the phos-
phatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)–Parkin-dependent
pathway and the mitophagy receptor-required pathway [71,72]. To date, multiple mi-
tophagy receptors have been recognized in mammals, including the BCL2/adenovirus
E1B 19kDa-interacting protein 3 (BNIP3) [73], NIP3-like protein X (NIX, also called the
BNIP3-like protein (BNIP3L)) [74–76], FUN14 domain-containing protein 1 (FUNDC1) [77],
B-cell lymphoma-2-like 13 (BCL2L13) [78], and FK506-binding protein 8 (FKBP8) [79].
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Figure 3. The mechanism of mitophagy. Mitophagy is induced by ROS, hypoxia, ischemia, and other
stimuli. There are two distinct signaling pathways for mitophagy, which are as follows: (1) The
PINK1–Parkin pathway of mitophagy. Following stress, PINK1 accumulates on the outer membrane
of the mitochondria (OMM), promoting Parkin recruitment to ubiquitinate several OMM components.
Poly-Ub chains are subsequently recognized by adaptor proteins (p62, OPTN, and NDP52) and
further initiate autophagosome formations through binding with LC3. (2) The mitophagy receptor-
mediated pathway. The BNIP3, NIX, FUNDC1, BCL2L13, and FKBP8 mitophagy receptors localize to
the OMM and directly bind with LC3 to mediate mitochondrial elimination. Abbreviations: PINK1,
PTEN-induced putative kinase 1; Parkin, Parkin RBR E3 ubiquitin-protein ligase; ub, ubiquitination;
p62/SQSTM1, sequestosome 1; OPTN, optineurin; NDP52/CALCOCO2, calcium binding and coiled-
coil domain 2; LC3, microtubule-associated protein 1A/1B-light chain 3; BNIP3, BCL2/adenovirus
E1B 19 kDa-interacting protein 3; NIX, NIP3-like protein X; FUNDC1, FUN14 domain-containing 1;
BCL2L13, B-cell lymphoma-2-like 13; FKBP8, FK506-binding protein 8.

4. Coronary Endothelial Autophagy in CVDs

In the past, autophagy (including mitophagy) in cardiomyocytes was thought to
play a predominant role in heart injuries. With the increasing recognition of the crucial
contributions of CMD to CVDs, the role of autophagy (including mitophagy) in non-
myocytes, particularly in coronary ECs, has attracted great interest. Emerging evidence
unravels that autophagy is required for multiple EC functions, such as secretion of adhesion
molecules [80,81], EC nitric oxide synthase (eNOS)-derived NO bioavailability [82–84],
expression of ET-1 [85,86], ROS production [83,87], and inflammatory cytokines produc-
tion [83], which participate in a wide range of cellular events, including endothelial pro-
liferation [86], senescence [87–89], and apoptosis [88,90–92]. EC-intrinsic autophagy is
suggested to enable ECs to adjust plastically to various insulting stressors [85,90,93] and
leads to autophagic cell death in severely damaged ECs [94–96]. Indeed, various studies
have suggested that the EC-autophagic flux facilitates the pathogenesis of CMD in diverse
CVDs, including ischemic heart disease, DCM, hypertrophy cardiomyopathy, heart fail-
ure, and inflammatory disorders [9,10,12–16]. However, the detailed role of autophagy in
adjusting EC reactions is still controversial and seems to depend on the particular type of
metabolic insults or the disease-associated microenvironment. Here, we will discuss the
specific role of coronary endothelial autophagy (including mitophagy) in CVDs in detail
(summarized in Supplementary Table S1).
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4.1. Coronary Endothelial Autophagy in Obstructive CAD (Stable CAD and Acute
Coronary Syndromes)

In the hearts of obstructive CAD patients, CMD probably coexists and plays a role
in causing myocardial ischemia in regions perfused by arteries both with and without
stenosis. Thus, CMD has important diagnostic, prognostic, and management implica-
tions [1,18,97,98]. In regions distal to arterial stenosis, the chronic modulation of coronary
microcirculation to limited perfusion pressure may negatively impact the microvascular re-
modeling and the maximal capacity of vasodilation after restoring to normal CBF [99]. The
most severe form of CMD is microvascular obstruction (MVO), which refers to a capillary
destruction with a no-reflow phenomenon, despite recanalization of the epicardial coronary
artery [100–102]. The pathogenic mechanisms underlying CMD in obstructive CAD include
coronary microvascular EC injuries, which may occur much earlier and with much more
severe damage than cardiomyocyte injuries. Emerging evidence shows that autophagy
plays a fundamental role in this process [103,104]. However, the underlying mechanisms
remain controversial. Upon oxidative stress, Wang et al. reported that microRNA-103
could protect the human coronary artery ECs (HCAECs) against H2O2-induced injuries
by preventing the Bcl-2/BNIP3-mediated suppression of end-stage autophagy [105]. Fur-
thermore, by using mice with EC-specific NADPH oxidase 2 (Nox2)/gp91 overexpression,
Shafique et al. demonstrated that endogenous ROS oxidative stress protected mouse
heart ECs from oxidant-induced cell death by increasing the AMPK-mTOR-mediated
autophagy and through improving the AMPK-eNOS-mediated EC-dependent-coronary
vasodilatation [106]. Autophagy can also be induced by hypoxia stress [107]. Wang et al.
identified that forkhead box O3 alpha (foxO3α)-dependent autophagy aggravated hypoxia-
induced rat cardiac microvascular endothelial cell (CMEC) dysfunction and apoptosis [108].
However, according to Sun’s study, the mitophagy induced by the Rcan1-1L (regulator of
calcineurin 1-1L) overexpression contributed to cell survival under hypoxic conditions [109].
During an oxygen–glucose deprivation and reoxygenation (OGD/R) injury, Shao et al.
reported that dexmedetomidine could protect the CMECs by activating the peroxisome
proliferator-activated receptors (PPARδ)-AMPK-PGC-1α pathway-dependent autophagy,
effectively causing a decrease in ROS production and an increase in cell viability [110].
Nevertheless, inhibited autophagy participated in the beneficial role of polysaccharides
from Enteromorpha Prolifera (PEP) in OGD-induced human CMEC injury by promoting
the mTOR pathway [111].

Notably, the role of endothelial autophagy in hypoxia/reoxygenation (H/R) or is-
chemia/reperfusion (I/R)-induced injury is much more complex. Generally, autophagy is a
protective mechanism against cardiac H/R or I/R injury [112]. Its protective role is driven
by inducing the mitogen-activated protein kinase (MEK)/extracellular signal-regulated
kinase (ERK) pathway [113] or via activating and promoting the transcription factor EB
(TFEB) translocating from the lysosomes to the nuclei [114]. Furthermore, mitophagy was
usually referred to as a pro-survival regulator to I/R or H/R injury [115]. Inhibition of the
FUNDC1-mediated mitophagy in CMECs by the nuclear receptor subfamily 4 group A
member 1 (NR4A1) [116] or receptor-interacting protein kinase 3 (Ripk3) [117] exhibited
the disturbed mitochondrial homeostasis, upregulated the expression of EC-derived pro-
inflammatory and adhesive factors, enhanced endothelial apoptosis, and provoked CMD
in cardiac I/R injuries. In addition, enhancing autophagy through Beclin1 overexpression
in CMECs exhibited suppressed NACHT, LRR, and PYD domain-containing protein 3
(NLRP3) inflammasome activation by promoting tumor necrosis factor-alpha-induced
protein 3 (TNFAIP3) [118] and inhibited caspase-4 inflammasome activation [119]. Thus,
it resulted in a reduced IL-1β level and an increased animal survival upon myocardial
I/R injuries. In addition, the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA)
overexpression [120] and miR-92a-3p inhibition [121] could protect the CMECs against
myocardial I/R injuries by preserving the EC mitophagy. However, hyperautophagy is
linked to I/R or H/R injury-induced mitochondria and EC apoptosis. The inhibition of au-
tophagy contributed to the anti-apoptosis effects of glycyrrhizic acid (GA) in H/R-induced
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CMEC injury [122]. Melatonin was reported to play a beneficial role in CMECs against
I/R injury through directly suppressing autophagy via the AMPK/mTOR pathway [123]
or by inhibiting the mitophagy-mediated cell death via the dynamin-related protein 1
(Drp1)-voltage-dependent anion channel 1 (VDAC1)-hexokinase 2 (HK2)-mitochondrial
permeability transition pore (mPTP)-PINK1/Parkin axis in an AMPKα-dependent man-
ner [124]. Furthermore, neuregulin-1β (Nrg1β) protected the cardiac ECs against I/R injury
by preventing ATG5-required autophagy-induced Trx2 (thioredoxin) degradation and res-
cuing eNOS function via upregulating the Erb-B2 receptor tyrosine kinase 2 (ErbB2) [125].
In addition, Diao et al. found that a long noncoding RNA (LncRNA) UCA1 transferred
from human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-ex) pro-
tected the CMECs against H/R injury by inhibiting autophagy via damaging the miR-143-
mediated degradation of Bcl-2 [126]. Importantly, ischemia and I/R injury also evoke a
dramatic autophagic flux in cardiomyocytes, which could either serve as a pro-survival
mechanism to meet metabolic demands and eliminate damaged cellular components and
organelles, or function as a pro-death mechanism to initiate apoptosis. The crosstalk be-
tween endothelial and cardiac autophagy is of great interest but poorly understood. Further
investigation is urgently needed.

Autophagy in Percutaneous Coronary Intervention (PCI)-Associated Coronary EC Injury

Accumulative evidence suggests that coronary endothelial autophagy associated with
drug-eluting stents (DESs) underlies PCI-associated complications, such as early/late
stent thrombosis, MI, in-stent restenosis (ISR), and mortality [127–129]. Shin-ichiro et al.
showed that endothelial autophagy differentially induced by sirolimus and paclitaxel
via regulating LC3B, Bcl-2, and p53 was one of the potential mechanisms in suppressing
re-endothelialization and revascularization, as well as NO production in human aortic
ECs [130]. In addition, epigallocatechin-3-gallate (EGCG) and nickel-containing austenitic
316L stainless steel (316L SS) were reported to inhibit human umbilical vein EC (HUVECs)
proliferation by upregulating the autophagic genes ATG 5/7/12 and the cell apoptosis
genes caspase 3/8/9 and Fas to suppress the occurrence of ISR [131,132]. Moreover,
autophagy-dependent endothelial membrane remodeling is crucial for rapamycin-eluting
stent-induced stent thrombosis [133]. In sum, autophagy-targeted drugs may serve as
promising preventive targets for PCI-associated complications.

4.2. Coronary Endothelial Autophagy in HFpEF

HFpEF is recognized as a clinically heterogeneous syndrome, in which patients present
classic symptoms and signs of HF but exhibit a normal or near-normal EF [134,135].
CMD is hypothesized to play a fundamental role in the pathophysiological process of
HFpEF [136–139]. Up to 75% of HFpEF patients exhibit impaired CFR in spite of the
absence of obstructive CAD [140]. Diabetes mellitus (DM), metabolic syndrome, hyperten-
sion, and obesity are prevalent cardiovascular risk factors for HFpEF [134,136,141]; they
aggravate cardiac dysfunction and remodeling through CMD [142]. The basic mechanisms
that mediate the progression of HFpEF include myocyte hypertrophy, energetic imbalance,
mitochondrial dysfunction, EC dysfunction, increased oxidative stress, inflammation, in-
terstitial fibrosis, and damaged angiogenesis [143–146]. The pathophysiological role of
autophagy in HFpEF onset and progression has just begun to be acknowledged. Here, we
mainly focus on the impact of autophagy on cardiac angiogenesis and fibrosis, two critical
events associated with the progression of HFpEF.

4.2.1. Coronary Endothelial Autophagy in Angiogenesis

Coronary microvascular rarefaction is consistently linked to most heart diseases, partic-
ularly in hypertrophic cardiomyopathy and HFpEF [137,142]. Angiogenesis, known as the
development of new blood vessels and vascular circuits from pre-existing vessels [147,148],
is a potent mechanism to reverse rarefaction. Autophagy is suggested to promote angiogen-
esis and play a crucial role in maintaining vessel wall homeostasis [149–154]. In a mouse
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model of acute myocardial infarction (AMI), VEGF-A proved to improve angiogenesis after
AMI by promoting ROS production and increasing ER stress-induced autophagy [151]. In
addition, AGGF1 (angiogenic factor with G-patch and FHA domain 1) was recognized as an
autophagy initiation inducer in ECs through the activation of JNK, which resulted in Vps34
lipid kinase activation and increased Beclin1-Vps34-ATG14 complex assembly [93]. In the
MI model, AGGF1 KO mice showed downregulated autophagy and inhibited angiogenesis
with larger infarct areas and severe contractile dysfunction [93]. Furthermore, in a mouse
model of TAC, an EC leptin receptor deletion was shown to promote cardiac angiogenesis
by enhancing autophagosome formation by suppressing AKT/mTOR signaling, leading
to reduced cardiac inflammation and fibrosis and improved left ventricular function [152].
In addition, a sirtuin 3 (Sirt3) deletion was found to aggravate angiotensin II-induced
PINK1/Parkin acetylation aberrance, resulting in impaired mitophagy, excessive mtROS
generation, and damaged angiogenic capacity of primary mouse CMECs [153]. Moreover,
reduced trichoplein (TCHP, a centriolar satellites protein) and high p62 levels were detected
in primary ECs from patients with CAD [154]. The TCHP knockout (KO) mice had im-
paired autophagosome maturation, accumulated p62 in the heart and cardiac vessels, and
damaged cardiac vascularization [154]. Of note, TFEB was reported as a positive regulator
of angiogenesis through the activation of AMPKα and autophagy via the TFEB-dependent
transcriptional upregulation of MCOLN1 (mucolipin-1) in the mouse hindlimb ischemia
model [155], which implies its potential cardioprotective role in ischemic heart disease.
However, some opposite evidence supports the anti-angiogenic effect of autophagy in
certain situations. Liu et al. reported that MGO (methylglyoxal), a metabolite of glycolysis,
which was upregulated in diabetic patients, exhibited reduced endothelial angiogenesis
through the receptor for advanced glycation end products (RAGE)-required, peroxynitrite
(ONOO)-mediated, and autophagy-triggered VEGFR2 degradation, which might represent
a novel mechanism for DM-associated angiogenesis abnormalities [156]. Furthermore,
soluble RAGE exerted a cardioprotective effect through the inhibition of autophagy by
activating the signal transducer and activator of the transcription 3 (STAT3) pathway, caus-
ing increased angiogenesis and reduced cardiomyocyte apoptosis in I/R-injured mice and
OGD/R-insulted CMECs [157,158]. In addition, Pan et al. showed that capsicodendrin
(CPCD), a natural compound isolated from Cinnamosma Macrocarpa, inhibited sprouting
angiogenesis during zebrafish embryonic development by enhancing autophagy in ECs
via inhibiting the VEGFR2/AKT pathway [159]. Moreover, silica nanoparticles (SiNPs),
one of the most widely applied engineered nanomaterials, could enhance the autophagic
activity, disturb EC homeostasis, and impair angiogenesis (via an inhibitory effect on
ICAM-1 and VCAM-1 expression) [160]. To date, besides endovascular intervention, lim-
ited therapeutic options to improve CBF in ischemic hearts are available. Therefore, EC
autophagy, as a significant regulator of angiogenesis, would be a promising therapeutic
target to promote CBF.

4.2.2. The Role of Autophagy in Endothelial–Mesenchymal Transition (EndMT)-Mediated
Cardiac Fibrosis

Cardiac fibrosis is a primary consequence of CMD and contributes to nearly all forms
of heart disease. The persistence of fibrosis results in progressive ventricular wall stiffening,
reduced contractility, and cardiac conductance abnormalities, ultimately leading to heart
failure and cardiac death [161–163]. Although activated fibroblasts, named myofibroblasts,
are regarded as the predominant regulator for fibrosis, the contribution of EndMT to the
initiation and progression of fibrosis has been gradually appreciated [164,165]. Recent
research suggests that the inhibition of autophagy to EndMT serves as a critical cardio-
protective mechanism in ameliorating cardiac fibrosis [149,150,166–168]. According to
Ke’s study, restoring the TFEB-mediated autophagic flux could inhibit the transforming
growth factor-β (TGF-β)-meditated EndMT and promote angiogenesis in HCAECs by
triggering TFEB nucleus translocation [166]. Of importance, Takagaki et al. showed that
the disruption of EC autophagy (through an EC-specific ATG5 deletion) evidently induced
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pathological interleukin-6 (IL6)-dependent EndMT and aggravated heart fibrosis [167]. In
addition, the upregulation of autophagy was reported to prevent hypoxia-induced EndMT
and cell apoptosis, while enhancing angiogenesis by inhibiting the NF-κB-Snail signaling
pathway in human CMECs [149,150]. Furthermore, Pan et al. identified that irisin (a
new hormone-like myokine, primarily secreted by cardiomyocytes) treatment significantly
alleviated doxorubicin-initiated cardiac perivascular fibrosis by restraining EndMT via
restoring autophagy in ECs, resulting in reduced ROS accumulation and inhibited NF-
κB-Snail pathway [168]. However, some researchers found that in certain conditions, the
activation of autophagy could induce EndMT and contribute to cardiac fibrosis [169,170].
Zhang’s study implied that the excessive activation of autophagy contributed to transverse
aortic constriction (TAC)-induced cardiac fibrosis through upregulating EndMT, whereas
the suppression of autophagy by inactivating RAGE partly reversed this phenomenon [169].
Moreover, Sasaki et al. showed that inducing autophagy by rapamycin promoted H2O2-
induced EndMT through activating the TGF-β pathway [170]. Though more mechanistic
studies are needed, autophagy-mediated EndMT still emerges as a promising therapeutic
target to prevent the development of cardiac fibrosis.

4.3. Coronary Endothelial Autophagy in DCM

Clinical studies have shown that CMD is an early feature of DCM (even in patients
without obstructive CVDs) [171–173] and this impairment is more pronounced in type 2
DM patients [174–177]. DCM studies in both animals and humans have emphasized the
substantial role of the coronary ECs, particularly in the early stages of damage, in promot-
ing ROS generation, and facilitating the recruitment of inflammatory cells. This ultimately
resulted in myocardial microvascular rarefaction, diminished angiogenesis, and HFpEF
phenotype [178–180]. Insulin signaling impairment, hyperglycemia/glucotoxicity, and
lipotoxicity are predominant pathophysiological causes of DM-related CMD. Dysregulated
autophagy is a key underlying cause in the onset and progression of DCM. A prolonged
exposure of a fetal mouse heart to sugars (sucrose or mannitol) could induce severe lysoso-
mal derangements and prominent autophagy in the ECs [181]. Mst1 (mammalian sterile
20-like kinase 1) is a serine/threonine kinase that functions as a negative regulator of au-
tophagy in the heart by enhancing the binding of Beclin1 to Bcl-2 and promoting apoptosis
by releasing Bcl-2 from Bax [182,183]. Hu et al. showed that Mst1-enriched exosomes
excreted by CMECs were taken up by cardiomyocytes, resulting in inhibited autophagy
and ultimately exacerbated high glucose (HG)-induced apoptosis in cardiomyocytes [184].
Meanwhile, Mst1 directly participated in the pathogenesis of CMD by inhibiting autophagy
and increasing apoptosis in CMECs [185]. Furthermore, the upregulation of autophagy was
reported to rescue HG-induced EC apoptosis through the AKT-mTOR signal pathway [186].
In addition, mitophagy was shown to protect mitochondrial integrity and prevent HG and
palmitate acid (HG/PA)-induced EC apoptosis via the PINK1–Parkin pathway [187,188]
and hinder HG/PA-induced EC senescence via the AMPK pathway [189]. Furthermore,
improving Bnip3-dependent mitophagy could rescue ox-LDL-induced EC damage, result-
ing in a restored mitochondrial respiration complex activation, reduced ROS production,
and an increased EC viability [190]. Interestingly, in certain conditions, the inhibition
of autophagy can be protective. The downregulation of autophagy was reported to re-
lieve HG-induced endothelial impairment via the glioma-associated oncogene homolog 1
(GLI1)-dependent-Hedgehog pathway [191].

Notably, endothelial autophagy also contributes to the shift of the myocardial
metabolome [192]. In Altamimi’s study, the downregulation of EC autophagy by ATG7
KO impaired cardiac fatty acid stores and repressed the reliance of the heart on fatty acid
oxidation as the primary fuel source both upon insulin insult and during reperfusion of
cardiac ischemia [193]. Of interest, TNF-α-induced endothelial autophagy cooperated with
the NF-κB signaling and resulted in upregulated fatty acid transporter protein 4 (FATP4)
expression in CMECs, which finally facilitated CMEC PA transcytosis and aggravated
insulin resistance [194].
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4.4. Coronary Endothelial Autophagy in Other Heart Diseases

Except for the diseases mentioned above, coronary autophagy was also reported to
participate in many other diseases. Kawasaki’s disease (KD) is a systemic febrile vasculitis
and can lead to abnormalities of the coronary artery in about 25% of untreated cases, which
has been reported as the predominant cause of children’s acquired heart diseases [195,196].
According to Qin’s report, the peripheral blood mononuclear cells (PBMCs) collected from
KD patients with fever could induce autophagy in HCAECs, thus, promoting the secretion
of chemokines and pro-inflammatory factors [197]. Moreover, ginsenoside Rb1 could ef-
fectively alleviate coronary artery lesions in a mouse KD model, possibly by upregulating
the AMPK/mTOR/P70S6 pathway-mediated autophagy to prevent EC injury [198]. Ad-
ditionally, the activation of autophagy was also involved in the anti-inflammatory effects
of resveratrol in TNF-α-treated HCAECs [199]. Furthermore, autophagy was found to be
upregulated during zebrafish heart regeneration and was positively correlated with the
metformin-mediated cardiac regeneration acceleration in zebrafish, including epicardial,
endocardial, and vascular endothelial regeneration [200]. Moreover, recent studies show
that in aged EC compartments, autophagic activities are compromised [89]. Accordingly, in
comparison with ECs in younger mice, ECs from older mice displayed lower levels of vital
proautophagic proteins, such as Beclin1 and LC3 [201].

Notably, after coronary angiography, up to 40% of patients with typical clinical man-
ifestations of myocardial ischemia were found with normal or near-normal appearing
coronary arteries [202–207]. This situation is termed “MVA”, in which CMD is the principal
alteration causing symptoms [202]. In particular, MVA is the disease that fosters the concept
of CMD and draws people’s attention to the role of CMD in nonobstructive heart diseases
for the first time. Unfortunately, to date, there is no animal model for MVA. Mechanistic
research is urgently needed. Given the critical role of autophagy in CMD and diseases
noted above, autophagy is believed to be a promising field for basic research in MVA.

5. Conclusions

CMD encompasses several pathogenetic mechanisms involving structural and func-
tional impairments of the coronary microcirculation. It plays a pathophysiological and
prognostic role among a broad range of CVDs and associated risk factors. However, its
structural, functional, and molecular mechanisms have not been well clarified. To date,
there is no specific CMD-targeted therapeutic intervention validated by large-scale ran-
domized clinical trials. Herein, we provided a contemporary review that summarized the
experimental evidence for the substantial modulatory role of coronary EC autophagy in
CMD and various CVDs, which could be beneficial to basic and clinically oriented studies
and could facilitate the innovation of novel diagnostic strategies for CMD-associated dis-
eases. Of note, mitophagy is pivotal for mitochondrial quality control and plays a dual role
in the progression of diverse CVDs. The emerging role of alternative forms of mitophagy
in CVDs is well summarized in Pedro, Morales, and Li’s studies [13,208,209]. However,
since the current studies are mainly focused on the role of mitophagy in cardiomyocytes,
vascular smooth muscle cells, and ECs in the aorta, their roles in coronary ECs are less
mentioned and further studies are warranted.

In addition, autophagy-targeted pharmacological and nutritional interventions, includ-
ing mTORC1 inhibitors, AMPK activators, caloric restriction, caloric restriction mimetics,
natural compounds, and specific miRNAs, are emerging as potential therapeutic candi-
dates in patients with CVDs [9]. Given that CMD has emerged as a crucial denominator in
diverse CVDs, additional bedside-to-bench studies in this field, particularly in coronary EC
autophagy, are urgently needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11132081/s1, Table S1: Mechanistic studies implicating
endothelial autophagy or mitophagy in cardiovascular diseases [93,105,106,108–126,130–133,149–
160,166–170,181,184–191,193,194,197–200].
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