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Abstract

Reactive oxygen species (ROS) are mutagenic and may thereby promote cancer1. Normally, ROS 

levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors 

and is predominantly regulated by the transcription factor Nrf2 and its repressor protein Keap12-5. 

In contrast to the acute physiological regulation of Nrf2, in neoplasia there is evidence for 

increased basal activation of Nrf2. Indeed, somatic mutations that disrupt the Nrf2-Keap1 

interaction to stabilize Nrf2 and increase the constitutive transcription of Nrf2 target genes were 

recently identified, suggesting that enhanced ROS detoxification and additional Nrf2 functions 

may in fact be pro-tumorigenic6. Here, we investigated ROS metabolism in primary murine cells 
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following the expression of endogenous oncogenic alleles of K-Ras, B-Raf and Myc, and find that 

ROS are actively suppressed by these oncogenes. K-RasG12D, B-RafV619E and MycERT2 each 

increased the transcription of Nrf2 to stably elevate the basal Nrf2 antioxidant program and 

thereby lower intracellular ROS and confer a more reduced intracellular environment. Oncogene-

directed increased expression of Nrf2 is a novel mechanism for the activation of the Nrf2 

antioxidant program, and is evident in primary cells and tissues of mice expressing K-RasG12D and 

B-RafV619E, and in human pancreatic cancer. Furthermore, genetic targeting of the Nrf2 pathway 

impairs K-RasG12D-induced proliferation and tumorigenesis in vivo. Thus, the Nrf2 antioxidant 

and cellular detoxification program represents a previously unappreciated mediator of 

oncogenesis.

To examine the role of ROS in cellular transformation and tumorigenesis, we utilized an 

endogenous and conditional oncogenic LSL-K-RasG12D allele7. K-RasG12D/+ and K-

RasLSL/+ MEFs were compared to MEFs and NIH3T3 fibroblasts (NIH3T3s) transduced 

with K-Ras4BG12D and H-RasV12 (Fig. 1a), since ectopic Ras introduction was previously 

reported to increase ROS production8. In contrast to ectopic overexpression of oncogenic 

Ras, K-RasG12D/+ MEFs demonstrated lower levels of hydrogen peroxide, superoxide, and 

mitochondrial ROS compared to K-RasLSL/+ MEFs (Fig. 1a, Supplementary Fig. 2a,b). 

Accordingly, the level of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dGuo), one of the 

major products of DNA oxidation, was decreased in MEFs expressing endogenous K-

RasG12D/+, but increased by ectopic oncogenic Ras (Fig. 1b). The levels of ROS and 8-oxo-

dGuo were also lower in p53-/-; K-RasG12D/+ MEFs compared to p53-/-; K-RasLSL/+ MEFs 

(Supplementary Fig. 2c,d), supporting that these differences are not due to differential 

activation of a senescence program and demonstrating that increased ROS production is not 

required for full transformation7,9.

Because alterations of ROS can affect the intracellular redox state10, the ratio of reduced/

oxidized glutathione (GSH/GSSG) was examined in cells expressing ectopic and 

endogenous K-RasG12D. While both elevated the level of total glutathione (Fig. 1d,f and ref. 

11), only the endogenous expression of K-RasG12D elevated the GSH/GSSG ratio to 

promote a more reduced intracellular environment (Fig. 1c,e). The production of ROS by 

ectopic oncogenic Ras is chiefly regulated by NADPH-oxidase (Nox)12. Only the ectopic 

overexpression of oncogenic Ras increased Nox activity and mRNA, providing a 

mechanistic explanation for these differing results (Supplementary Fig. 3). Similar to 

oncogenic Ras, ectopic expression of Myc has also been shown to increase the production of 

ROS in NIH3T3 fibroblasts13 and accordingly we sought to determine whether near-

physiological expression of this oncogene had a similar effect. Treatment of R26MER/MER 

MEFs, which express a homozygous MycERT2 allele under the control of the Rosa26 

promoter14, with 4-OHT resulted in a substantial reduction of ROS (Fig. 1g). However, this 

was not a characteristic feature of all oncogenic stimuli as expression of activated Notch1 

and β-catenin did not lower ROS (Supplementary Fig. 4). Therefore, endogenous expression 

of oncogenic K-Ras or MycERT2 lowers the level of cellular ROS, in contrast to the ectopic 

overexpression of these oncogenes.
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As the intracellular redox state is chiefly regulated by Nrf2, we examined Nrf2 protein levels 

and activity in K-RasLSL/+ and K-RasG12D/+ MEFs by western blot, reporter assay and 

chromatin immunoprecipitation analysis of the Nrf2 target genes Hmox1 and Nqo1. 

Expression of K-RasG12D resulted in an approximately two-fold increase in Nrf2 protein and 

binding activity compared to control MEFs (Fig. 2a,b, Supplementary Fig. 5a), which was 

not attributable to altered regulation by Keap12 (Supplementary Fig. 6). K-RasG12D/+ MEFs 

demonstrated increased Nrf2 mRNA and increased expression of Hmox1, Nqo1, Gclc, Gclm 

and Ggt1 mRNA and protein (Fig. 2c, Supplementary Fig. 5b). Increased expression of Nrf2 

and its target genes was also observed following K-RasG12D expression in p53-/- MEFs, and 

following ectopic expression of K-RasG12D and H-RasV12 in primary MEFs, but not 

following expression of activated Notch1 or β-catenin (Supplementary Figs. 5c-g). 

However, expression of K-RasG12D in Nrf2-deficient MEFs failed to elevate total 

glutathione and resulted in a more oxidized intracellular environment (Fig. 2d,e). Neither the 

cell culture conditions employed to express K-RasG12D nor the gene dosage of wild-type K-

Ras affected the expression of Nrf2 target genes (Supplementary Fig. 7a,b). Additionally, 

ROS metabolism in wild-type MEFs was sensitive to acute changes in the levels of Keap1 

and Nrf2, further supporting a causal relationship between Nrf2 and ROS (Supplementary 

Fig. 7c-e). Furthermore, acute knockdown of Nrf2 attenuated the reduction in ROS by K-

RasG12D (Fig. 2f), and the effects of Nrf2 depletion on ROS were dosage-dependent, 

supporting the importance of the level of Nrf2 mRNA for ROS control (Supplementary Fig. 

7f,g). Similar to K-RasG12D, activation of c-MycERT2 (with 4-OHT) promoted an increase in 

the mRNA and protein levels of Nrf2 and its target genes (Fig. 2g,h, Supplementary Fig. 

7h). Furthermore, ChIP-seq data from the ENCODE consortium demonstrated direct binding 

of Myc to the Nrf2 locus (Supplementary Fig. 8a)15. Therefore, the K-Ras and Myc 

oncogenes can constitutively increase the transcription of Nrf2 to elevate the basal activity 

of the antioxidant and cellular detoxification program.

To investigate the mechanism of Nrf2 activation by K-RasG12D, the roles of the 

Raf/MEK/ERK and p38alpha MAPK pathways were investigated. First, cells were treated 

with a potent and specific inhibitor of MEK, AZD6244 (ARRY-142886) (Supplementary 

Fig. 9a-c), which restored the ROS level of K-RasG12D/+ cells nearly to the level of K-

RasLSL/+ cells (Fig. 3a). Additionally, AZD6244 treatment resulted in decreased induction 

of Nrf2 and its target genes (Fig. 3b). Furthermore, endogenous expression of B-RafV619E 

(corresponding to human B-RafV600E)16 resulted in increased phospho-ERK levels, a 

decrease in ROS, and an increase in Nrf2 mRNA and antioxidant gene expression 

(Supplementary Fig. 9d-f). As previously reported17, we found that p38alpha MAPK kinase 

did not activate Nrf2 (Supplementary Fig. 9g-i). To determine the mechanism of increased 

Nrf2 expression, transcription factors downstream of MAPK signaling were examined. 

Accordingly, knockdown of Jun, Fra1, and Myc, but not JunD or Elk1, decreased the Nrf2 

mRNA in K-RasG12D/+ cells, with almost complete rescue achieved with Jun (Fig. 3c). 

siRNA efficiency was confirmed by real-time PCR and western blot (Supplementary Fig. 

10a,b). Importantly, K-RasG12D/+ MEFs and B-RafV619E MEFs demonstrated elevated Jun 

protein levels compared to control MEFs, and the elevated Jun level in K-RasG12D/+ MEFs 

was rescued by treatment with AZD6244 (Fig. 3d). Furthermore, depletion of Jun with 

siRNA prevented the decrease in ROS following expression of K-RasG12D (Fig. 3e, 
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Supplementary Fig. 10c). Our results reinforce a prior finding that antioxidant response 

elements that closely resemble AP-1 sites help regulate the Nrf2 promoter18. Finally, ChIP-

seq revealed that the transcriptional start site of the Nrf2 locus is a direct binding target of 

Jun (Supplementary Fig. 8b)15. Thus, K-RasG12D and B-RafV619E stimulate transcription of 

Nrf2 via Jun and Myc.

We next examined whether these oncogenes promote activation of the Nrf2 antioxidant and 

cellular detoxification program in vivo. Elevated protein expression of the Nrf2 target gene 

Nqo1 and decreased immunoreactivity for 8-oxo-dGuo were evident in K-Ras mutant 

murine19 and human preinvasive pancreatic intraepithelial neoplasia (PanIN) and pancreatic 

ductal adenocarcinoma (PDA), and in murine lung adenomas expressing B-RafV619E (Fig. 

4a, Supplementary Figs. 11a, 12, 13, 14a). PanIN also demonstrated reduced 

immunoreactivity for the lipid peroxidation adduct malondialdehyde (MDA) 

(Supplementary Fig. 11b). Furthermore, K-RasG12D/+ pancreatic epithelial cells 

demonstrated activation of Nrf2 and decreased ROS compared to K-RasLSL/+, while 

treatment of human PDA tumor lines with K-Ras siRNA resulted in decreased Nrf2 and 

Nqo1 mRNA and an increase in ROS (Supplementary Fig. 15). The activation of Nrf2 in 

human pancreatic cancer could not be explained by somatic mutations in NRF2 or KEAP1; 

we sequenced over 100 samples of human PDA and identified only one case with a 

concomitant KEAP1 and K-RAS mutation (Supplemental material and Supplementary Fig. 

14b). Importantly, Nrf2-deficient murine PanIN were negative for Nqo1 and demonstrated 

similar levels of 8-oxo-dGuo and MDA in PanIN compared to neighboring morphologically 

normal ductal cells, supporting a role for Nrf2 in ROS detoxification in vivo (Fig. 4b, 

Supplementary Fig. 11b,c). Nrf2-deficient salivary gland did not demonstrate elevated 8-

oxo-dGuo immunoreactivity, suggesting that K-RasG12D-expressing cells are more reliant 

on Nrf2 for ROS detoxification (Supplementary Fig. 16a). Therefore, an antioxidant 

program is operant during tumorigenesis, consistent with our findings that link oncogenic K-

Ras and B-Raf expression with the activation of Nrf2.

To investigate whether activation of Nrf2 promotes K-RasG12D–initiated carcinomas, the 

effects of Nrf2 ablation were examined in established mouse models of pancreatic and lung 

cancer. Nrf2-deficient pancreata were noted to contain fewer PanIN (Fig. 4c). While the 

proliferation of the salivary gland was unchanged (Supplementary Fig. 16b), PanIN from 

Nrf2-deficient mice were significantly less proliferative and demonstrated an increased 

content of cells exhibiting senescence-associated β-galactosidase activity (Fig. 4d, 

Supplementary Fig. 17a). No significant differences were observed in PanIN cell apoptosis 

or DNA damage (Supplementary Fig. 17b,c). Senescence was also observed in K-RasG12D/+ 

MEFs following acute depletion of Nrf2 with siRNA and was dependent on expression of 

p53 (Supplementary Fig. 17d). The Nrf2 dependent proliferation defect noted in PanIN was 

also observed in MEFs, and both could be rescued by the antioxidant N-acetyl cysteine 

(Supplementary Fig. 18a,b). Furthermore, treatment of Nrf2+/+ PanIN mice with a 

glutathione synthesis inhibitor resulted in a significant decrease in the proliferation of PanIN 

but not adjacent acinar cells (Supplementary Fig. 18c-e). Additionally, the role of Nrf2 in 

lung cancer development was investigated. Nrf2 deficiency resulted in a significant 

reduction in disease burden and proliferation, and an increase in median survival 
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(Supplementary Fig. 19). While we cannot exclude the potential involvement of non-cell 

autonomous effects arising from constitutive Nrf2 deficiency, the major impact appeared to 

be restricted to tumor initiation and proliferation of nascent preneoplastic cells. These results 

demonstrate that Nrf2 promotes K-RasG12D-initiated pancreatic and lung tumorigenesis and 

proliferation.

ROS can stimulate tumorigenesis through the oxidation of DNA and subsequent mutation of 

genes that promote carcinogenesis. In contrast, we found that activating an ROS-

detoxification program contributed to tumorigenesis, although our study does not exclude a 

role for other Nrf2 targets such as drug-metabolizing enzymes and efflux pumps, heat shock 

proteins, 26S proteasome subunits, growth factors and receptors6. Future studies will be 

necessary to determine the role of these Nrf2 functions in tumors with activated Nrf2. 

Increased expression of Nrf2 target genes and increased stability of Nrf2 caused by somatic 

mutations in Nrf2 and Keap1 are well documented in human cancer, providing one 

mechanism for enhanced Nrf2 activity during tumorigenesis. Our work describes oncogenic 

signaling as an alternative mechanism to activate Nrf2 transcription during tumorigenesis 

(Supplementary Fig. 1), and suggests that modulation of the redox state is uniformly 

important in cancer and may therefore represent a therapeutic opportunity. Thus, 

constitutively elevated Nrf2 activity in cancer cells occurs through two distinct mechanisms: 

diminished Nrf2 turnover and augmented Nrf2 mRNA levels.

Methods

Chromatin Immunoprecipitation

Chromatin Immunoprecipitation was performed as described25. 5×106 cells were fixed at 

37°C in DMEM + 1% Formaldehyde for 10 minutes and lysed in 1% SDS, 10mM EDTA, 

50 mM Tris-HCl pH 8.1 plus protease inhibitors and sonicated for 20 minutes in a cold 

water bath until DNA was an average size of 1Kb. Input was saved and lysate was diluted in 

IP buffer (1% Triton, 2mM EDTA, 150mM NaCl, 20 mM Tris-HCl pH 8.1) and mixed with 

beads (Dynal Protein A, Invitrogen) that were pre-bound overnight with Nrf2 antibody 

(H-300, Santa Cruz). Chromatin was immunoprecipitated overnight, and beads were washed 

6 times with RIPA buffer (50mM HEPES pH 7.6, 1mM EDTA, 0.7% Na deoxycholate, 1% 

NP-40, 0.5M LiCl) and twice with TE. Beads were incubated with 1% SDS, 0.1M NaHCO3 

for 30 minutes at room temperature, and then crosslinks were reversed on both the input and 

the IP by heating overnight in a 65°C water bath. DNA was purified with a QIAquick spin 

kit (Qiagen) and Q-PCR was performed in triplicate with power sybr mastermix (Applied 

Biosystems) on an Applied Biosystems 7900HT with the following primers26,27: Nqo1-F 5′-

GCAGTTTCTAAGAGCAGAAC-3′, Nqo1-R 5′-GTAGATTAGTCCTCACTCAGCCG-3′, 

Nqo1 Non-specific-F 5′-AGGAGATGGAAGGCAGGAAG-3′, Nqo1 Non-specific-R 5′-

GGGCGCACTATTGTCATCTT-3′, Hmox-1-F 5′-GGGCTAGCATGCGAAGTGAG-3′, 

Hmox-1-R 5′-AGACTCCGCCCTAAGGGTTC-3′, Hmox-1 Non-specific-F 5′-

GGCAGGTATGGACCTTCAAA-3′, Hmox-1 Non-specific-R 5-

AAAGGAGTCAGGGAGGGAGA-3′.

DeNicola et al. Page 5

Nature. Author manuscript; available in PMC 2012 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ChIP-seq (ENCODE)

These data were generated and analyzed by the labs of Michael Snyder, Mark Gerstein and 

Sherman Weissman at Yale University; Peggy Farnham at UC Davis; and Kevin Struhl at 

Harvard using the K562 cell line. The following antibodies were used: c-Jun (sc-1694, Santa 

Cruz), c-Myc (sc-764, Santa Cruz). The data can be accessed at http://genome.ucsc.edu/

ENCODE/

Human pancreatic cancer cell culture

MiaPaCa2 and Hs766T cells were obtained from CRUK Clare Hall Laboratories. Both lines 

were grown in DMEM + 10% FBS. siRNA transfections were performed with 

DharmaFECT 1.

Immunohistochemistry

Human tissue was donated for research purposes by patients undergoing pancreatic surgery 

at a tertiary hepatopancreaticobiliary referral center (Addenbrookes Teaching Hospitals 

NHS Trust, Cambridge, UK). Ethical approval was granted by the local research and ethics 

committee (LREC Number: 08/H0306/32). Paraffin embedded mouse and human specimens 

were deparaffinized and rehydrated, followed by antigen retrieval in boiling citrate buffer. 

The following primary antibodies were used: Ki-67 (SP-6, Neomarkers), Nqo1 (Abcam, 

Sigma Aldrich), 8-oxo-dGuo ([N45.1], Abcam), γ -H2AX (Millipore), Cleaved caspase 3 

(Cell Signaling), anti-Malondialdehyde (Abcam). HRP-based detection reagents were used 

for all IHC except 8-oxo-dGuo, for which AP-based reagents were used. 8-oxo-dGuo 

specificity was verified by treating sections for 1 hour with 1U/ml DNase at 37°C. For 

quantification of 8-oxo-dGuo, mean signal intensity was calculated using Adobe Photoshop 

CS. Immunohistochemistry images were converted to grayscale images, inverted, and mean 

pixel 8-oxo-dGuo intensity analyzed. For murine Nqo1 IHC, the Sigma Aldrich anti-Nqo1 

antibody was used, and the staining pattern was confirmed to be reproducible with the 

Abcam antibody (not shown). The Abcam Nqo1 antibody was used for human tissue.

Luciferase assay

LSL-K-RasG12D and Nrf2-/-; K-RasG12D MEFs were plated in 12 well dishes at a density of 

5 × 104 cells/well and infected with a Cignal Lenti ARE Reporter (Qiagen) at an MOI of 10. 

After 6 hours the cells were split 1:2 and infected the next day with Ad-mock and Ad-cre. 

After 4 days the cells were plated at 70% confluence and analyzed for luciferase activity 

using the Dual-Luciferase Reporter Assay System (Promega) with a luminometer. Lysates 

were analyzed in duplicate and cells lacking the ARE reporter were included as a control.

Mitochondrial ROS

Cells were incubated in serum- and phenol red-free DMEM with 5uM MitoSOX or 100nM 

Mitotracker Green FM (both Invitrogen) for 30 minutes and analyzed by flow cytometry. 

Mitochondrial ROS was plotted as the mitochondrial ROS signal (MitoSOX) normalized to 

mitochondrial mass (Mitotracker Green FM).
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Nox Activity assay

Cells were washed twice with ice cold PBS, scraped in PBS, and centrifuged to obtain a cell 

pellet. The pellet was dounce homogenized in PBS + 1mM MgCl2 + 1mM EGTA + 

protease inhibitors and 100ul of homogenate was added to 100ul of 2× reaction buffer (PBS 

+ 1mM MgCl2 + 1mM EGTA + 300mM sucrose + 10uM lucigenin [Sigma Aldrich] + 

200uM NADPH [Sigma Aldrich]) and relative light units were measured with a 

luminometer every minute for 10 minutes. Specificity was confirmed by adding the specific 

Nox inhibitor diphenylene iodonium (10uM, Sigma Aldrich). Graphs show one 

representative measurement in the linear range (2-3 minutes) and are expressed as relative 

light units per μg protein.

Nrf2 stability

MEFs were treated with 25ug/ml cycloheximide (Acros Organics) for indicated time points 

and total cell lysates extracted and separated by SDS-PAGE. Gels were transferred to 

nitrocellulose (Biorad), and membranes were probed with Anti-Nrf2 antibody, affinity 

purified as described.28

Quantification of proliferation and neoplasms

Values for proliferation were obtained by counting at least 5 fields of greater than 50 cells. 

For PanIN studies, only cells contained in PanIN-1a were included in the analysis 

(surrounding stromal, acinar or immune cells were all excluded). Proliferation is determined 

as a percentage and therefore represents the number of Ki-67 positive PanIN-1a cells /total 

PanIN-1a cells. For quantification of lung disease burden, total lung areas and neoplasm 

areas were calculated using Image J29 and disease burden was represented as a percent of 

total area. For characterization of individual neoplasms, data was represented as neoplasms/

lung area. For quantification of PanIN per mouse, paraffin embedded pancreata were 

sectioned at 100 micron intervals and individual PanIN were counted.

Ras-GTP activity assays

Ras-GTP levels were determined according to the manufacturer's instructions (Millipore). 

Membranes were also blotted with anti-Rac antibody (Millipore) as a loading control.

Reagents

4-hydroxy-tamoxifen (4-OHT) was obtained from Sigma Aldrich. AZD6244 

(ARRY-142886) was obtained from Symansis.

Senescence-associated b-galactosidase staining

Cells were fixed in 2% formaldehyde/0.2% glutaraldehyde in PBS for 5 minutes and stained 

in staining solution (Citric acid/Phosphate buffer pH 6.0, 150mM NaCl, 2mM MgCl, 5mM 

Potassium Ferricyanide, 5mM Potassium Ferrocyanide, and 1mg/ml X-gal) overnight at 

37°C. Fields of at least 50 cells were counted, in triplicate. For tissue, fresh pancreas from 

mice harboring PanIN was cut into small pieces (approximately 1-3 mm cubes) and fixed for 

2 hours in 4% PFA in PBS on ice, and incubated in staining solution overnight at 37°C. The 

pieces were then fixed in formalin overnight, followed by a quick processing and embedding 
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in paraffin wax. Sections were cut with a thickness of 10 microns, dewaxed with minimal 

exposure to xylene, and counterstained with nuclear fast red. Five fields of at least 50 cells 

were counted per mouse.

Sequencing of KEAP1 and NRF2 in patient samples

Xenograft enriched pancreatic cancers were created as described previously30. Cell lines 

were obtained from the ATCC (Aspc-1, CAPAN1, CFPAC1, Hs766T, MiaPACA2, Panc-1 

and Su86.86) or from other sources. PK8 and PK9 were kindly provided by Dr. A. Horii31. 

PL11, PL19, PL23, (kindly provided by Dr. E. Jaffee), and XPA1 (kindly provided by Dr. 

A. Maitra) were also used. Genomic DNA from immortalized peripheral blood lymphocytes 

of 29 patients with familial pancreatic cancer were obtained from the National Familial 

Pancreatic Tumor Registry (NFPTR). The acquisition of human tissues from resection 

specimens or the NFPTR was approved by the Institutional Review Board at the Johns 

Hopkins Hospital. The coding sequences of exons 2-6, encompassing the entire coding 

sequence of KEAP1, and exon 2 of NRF2 (official current gene name, NFE2L2), 

encompassing the KEAP1 binding domain, were amplified from genomic DNAs using 

intronic primers flanking each exon. Primers were designed using Primer3 online software 

(http://frodo.wi.mit.edu/primer3). PCR-amplified products were sequenced using nested 

primers and an ABI Prism model 3700 Applied Biosystems, Foster City, CA). Sequence 

analysis employed Sequencher™ version 4.8 software (Gene Codes, Ann Arbor, MI). 

Identified variants were verified by independent PCR amplification and reverse sequencing 

of the amplified products. The somatic or germline nature of each variant was determined by 

comparing their respective sequences to matched normal DNA available from the same 

patients. The following primers were used:

Location Forward Reverse

Keap1 Exon 2 ATCAGGTCGGGGAAGTTTG AGCCCAGAACCTCCTTTTTC

Keap1 Exon 3 GTCAGCGGCAGTGATAAGTTAC TGACAGTCCCCTAAGCATTTC

Keap1 Exon 4 TCCACGAAGGTCAGCTATAATG TCCAGGGCTTCTGTGGTTAC

Keap1 Exon 5 TCTCTCCCCGCTTCATTTC GCAAAAGCAGTCCACAAAAG

Keap1 Exon 6 GACCATCCCTTCTGTTCTTC GCTTTGGACTTCTTTTGAGATG

Nrf2 Exon 2 CCACCATCAACAGTGGCATA AAGGCAAAGCTGGAACTCAA

Statistical Analyses

All data are expressed as the mean ± SEM. Results are representative examples of three or 

more individual experiments. Statistical analyses were performed with the Mann-Whitney U 

test or Student's T-test (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant). Graph Pad 

Prism was used for both analyses.

Transfections

DNA transfections were performed with Fugene 6 (Roche) or Lipofectamine 2000 

(Invitrogen). siRNA transfections were performed with ON-TARGETplus SMARTpool 
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siRNA using DharmaFECT 1 reagent (both Dharmacon) according to the manufacturer′s 

instructions. The following siRNA sequences were used:

Gene Target sequence (sense strand), pool of 4

Non-targeting 5′-UGGUUUACAUGUCGACUAA-3′ ; 5′-UGGUUUACAUGUUGUGUGA-3′

5′-UGGUUUACAUGUUUUCUGA-3′ ; 5′-UGGUUUACAUGUUUUCCUA-3′

Elk1 5′-GGAAUGAAUACAUGCGCUC-3′ ; 5′-CCAAGGUGGCUUAGCACGA-3′

5′-GGGAUGGUGGUGAGUUCAA-3′ ; 5′-ACCAAAGGGUGCAGGAAUG-3′

Fra1 5′-GAACCGGAAGCACUGCAUA-3′ ; 5′-AGGCGGAGACCGACAAAUU-3′

5′-GAACCUUGCUCCUCCGCUC-3′ ; 5′-GCUAAGUGCAGAAACCGAA-3′

Jun 5′-CCAAGAACGUGACCGACGA-3′ ; 5′-GCAGAGAGGAAGCGCAUGA-3′

5′-GAAACGACUUCUACGACG-3′ ; 5′-GAACAGGUGGCACAGCUUA-3′

JunD 5′-GAACAAACGUUGGUUGCGU-3′ ; 5′-AGCGCAAGCUGGAGCGUAU-3′

5′-CCACAUUCCUGUUCCGUAA-3′; 5′-AAGUCUUCGUUACGCCAAA-3′

Keap1 5′-GCGCCAAUGUUGACACGGA-3′ ; 5′-GAUAUGAGCCAGAGCGGGA-3′

5′-GGAUGAUCACACCGAUGAA-3′ ; 5′-GUUCGAGCCUGCAGCGACU-3′

K-Ras (mouse) 5′-GAACAGUAGACACGAAACA-3′ ; 5′-AGCAAGGAGUUACGGGAUU-3′

5′-GGUUGGAGCUGGUGGCGUA-3′ ; 5′-GGUGUACAGUUAUGUGAAU-3′

K-Ras (human) 5′-GGAGGGCUUUCUUUGUGUA-3′ ; 5′-UCAAAGACAAAGUGUGUAA-3′

5′-GAAGUUAUGGAAUUCCUUU-3′ ; 5′-GAGAUAACACGAUGCGUAU-3′

Myc 5′-GAAACGACGAGAACAGUUG-3′ ; 5′-CCACUCACCAGCACAACUA-3′

5′-GGACACACAACGUCUUGGA-3′ ; 5′-UCGAAACUCUGGUGCAUAA-3′

Nrf2 (1) 5′-ACUCAAAUCCCACCUUAAA-3′ ; (2) 5′-UGGAGUAAGUCGAGAAGUG-3′

(3) 5′-CAUGUUACGUGAUGAGGAU-3′ (4) 5′-GGACAGCAAUUACCAUUUU-3′

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Physiological expression of oncogenes lowers ROS
NIH3T3s and MEFs were transduced with retroviral vectors and evaluated 6 days later: 

control vector (pBabe), pBabe-H-RasG12V (p-Babe-H-Ras), or pBabe-K-RasG12D (p-Babe-

K-Ras). Alternatively, LSL-K-RasG12D MEFs were infected with Ad-mock (K-RasLSL/+) or 

Ad-cre (K-RasG12D/+) and evaluated 4 days later. Wild-type MEFs were infected with Ad-

mock (WT Ad-Mock) or Ad-cre (WT Ad-Cre) and used as controls. a, (Left) Western blot 

of total and GTP-bound Ras in MEFs expressing endogenous and ectopic Ras, with Rac 

used as a loading control. (Right) ROS levels following expression of oncogenic Ras, as 

determined by 2′,7′-dichlorofluorescein diacetate (DCF) staining. b, 8-oxo-dGuo levels 

following ectopic and endogenous expression of K-RasG12D. c-f, Determination of the GSH/

GSSG ratios and total cellular glutathione in cells overexpressing ectopic K-RasG12D (c,d), 

or expressing endogenous K-RasG12D (e,f). g, ROS levels following activation of MycERT2. 

R26MER/MER MEFs were treated with DMSO or 100nM 4-OHT and assayed after 24 hours. 

Data are representative of 3 or more independent experiments. *p < 0.05, **p < 0.01, ***p < 

0.001 and error bars represent ± SEM here and for all figures.

DeNicola et al. Page 12

Nature. Author manuscript; available in PMC 2012 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Physiological expression of oncogenes activates the Nrf2 antioxidant program
a, Western blot demonstrates a 60% increase in Nrf2 protein following expression of 

endogenous K-RasG12D. Antibody specificity was confirmed using Nrf2-/- MEFs. b, Nrf2 

ChIP followed by q-PCR for the Hmox1 and Nqo1 promoters. Control non-specific primers 

amplified regions of DNA located 50Kb from the Hmox1 and Nqo1 promoters. c, 
Expression of Nrf2 and Nrf2 target genes Nqo1, Hmox1, Gclm, Gclc and Ggt1 upon K-

RasG12D expression in Nrf2+/+ and Nrf2-/- MEFs. Nrf2 mRNA is relatively unstable but still 

detectable at low levels in Nrf2-/- MEFs. d-e, Determination of the GSH/GSSG ratio (d) and 

total glutathione (e) upon K-RasG12D expression in Nrf2-/- MEFs. f, ROS levels following 

Nrf2 depletion with siRNA. LSL-K-RasG12D MEFs were transfected with non-targeting 

(NT) or Nrf2 siRNA, infected with Ad-mock or Ad-cre and assayed after 48 hours for DCF 

oxidation. g, Western blot of Nrf2 protein levels following induction of MycERT2 by 4-OHT. 

Densitometry shows a 2.3-fold increase. h, Analysis of Nrf2 antioxidant program gene 

expression following activation of MycERT2. R26MER/MER MEFs were treated with DMSO 

or 100nM 4-OHT for 24 hours and assayed for antioxidant gene expression. Data is 

representative of 3 independent experiments.
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Figure 3. Activation of Nrf2 by K-RasG12D occurs via the Raf-MEK-ERK-Jun pathway
a, ROS levels following treatment of K-RasG12D/+ MEFs with AZD6244. LSL-K-RasG12D 

MEFs were treated with DMSO or 0.1uM AZD6244, infected with Ad-mock (K-RasLSL/+) 

or Ad-cre (K-RasG12D/+) and assayed after 72 hours. b, Analysis of antioxidant gene 

expression following treatment of K-RasLSL/+ and K-RasG12D/+ MEFs with AZD6244 for 

24 hours. c, Control of Nrf2 transcription by AP-1 family members. K-RasLSL/+ and K-

RasG12D/+ MEFs were transfected with siRNA and assayed for Nrf2 expression after 48 

hours. d, Western blot of Jun and actin protein levels in LSL-K-RasG12D and LSL-B-

RafV619E MEFs. K-RasLSL/+ and K-RasG12D/+ MEFs were treated with DMSO or 0.1uM 

AZD6244 for 24 hours. e, ROS levels following Jun depletion with siRNA. LSL-K-RasG12D 

MEFs were transfected with non-targeting (NT) or Jun siRNA, infected with Ad-mock or 

Ad-cre and assayed after 48 hours for DCF oxidation. Data are representative of 3 

independent experiments.
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Figure 4. Evidence for Nrf2 antioxidant program in pancreatic cancer
a, Immunohistochemical detection of Nqo1 (brown staining) and 8-oxo-dGuo (purple 

staining) in mouse PanIN and PDA (similar patterns observed for 11/11 of cases examined) 

in comparison to morphologically normal ducts. PanIN (arrows), PDA (black arrowheads), 

normal ducts (white arrowheads) here and for all figures. Scale bar = 56 μm. b, 
Immunohistochemical detection of Nqo1 and 8-oxo-dGuo in Nrf2-/- PanIN compared to 

Nrf2+/+ PanIN (similar patterns observed for 5/5 of each genotype examined, PanIN 

outlined by white dashes). Scale bar = 56 μm. c, Nrf2-/- and Nrf2+/+ PanIN-1a incidence. 

Whole pancreata were sectioned at 100-micron intervals and total numbers of PanIN-1a 

were counted. d, Proliferation of PanIN-1a cells in Nrf2-/- and Nrf2+/+ mice, as determined 

by Ki-67 immunostaining.
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