
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Cancer Biology Faculty Papers Department of Cancer Biology 

12-21-2022 

Stabilized COre Gene and Pathway Election Uncovers Pan-Cancer Stabilized COre Gene and Pathway Election Uncovers Pan-Cancer 

Shared Pathways and a Cancer-Specific Driver Shared Pathways and a Cancer-Specific Driver 

Pathum Kossinna 
University of Calgary 

Weijia Cai 
Thomas Jefferson University 

Xuewen Lu 
University of Calgary 

Carrie S Shemanko 
University of Calgary 

Qingrun Zhang 
University of Calgary 

Follow this and additional works at: https://jdc.jefferson.edu/cbfp 

 Part of the Medical Molecular Biology Commons, and the Oncology Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Kossinna, Pathum; Cai, Weijia; Lu, Xuewen; Shemanko, Carrie S; and Zhang, Qingrun, "Stabilized COre 
Gene and Pathway Election Uncovers Pan-Cancer Shared Pathways and a Cancer-Specific Driver" (2022). 
Department of Cancer Biology Faculty Papers. Paper 197. 
https://jdc.jefferson.edu/cbfp/197 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Cancer Biology Faculty Papers by an authorized administrator of the 
Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/cbfp
https://jdc.jefferson.edu/cb
https://jdc.jefferson.edu/cbfp?utm_source=jdc.jefferson.edu%2Fcbfp%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/673?utm_source=jdc.jefferson.edu%2Fcbfp%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/694?utm_source=jdc.jefferson.edu%2Fcbfp%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


COMPUTER SC I ENCE

Stabilized COre gene and Pathway Election uncovers
pan-cancer shared pathways and a cancer-
specific driver
Pathum Kossinna1,2†, Weijia Cai3†‡, Xuewen Lu4, Carrie S. Shemanko5,6, Qingrun Zhang1,4,2*

Approaches systematically characterizing interactions via transcriptomic data usually follow two systems: (i) co-
expression network analyses focusing on correlations between genes and (ii) linear regressions (usually regu-
larized) to select multiple genes jointly. Both suffer from the problem of stability: A slight change of
parameterization or dataset could lead to marked alterations of outcomes. Here, we propose Stabilized COre
gene and Pathway Election (SCOPE), a tool integrating bootstrapped least absolute shrinkage and selection op-
erator and coexpression analysis, leading to robust outcomes insensitive to variations in data. By applying
SCOPE to six cancer expression datasets (BRCA, COAD, KIRC, LUAD, PRAD, and THCA) in The Cancer Genome
Atlas, we identified core genes capturing interaction effects in crucial pan-cancer pathways related to
genome instability and DNA damage response. Moreover, we highlighted the pivotal role of CD63 as an onco-
genic driver and a potential therapeutic target in kidney cancer. SCOPE enables stabilized investigations toward
complex interactions using transcriptome data.
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INTRODUCTION
Understanding the process of pathogenesis and discovering previ-
ously unidentified therapeutic targets require discovery of the un-
derlying driver genes in relevant pathways (1–3). However,
determination of the “driver” role of a gene through experimental
investigation has only been possible for a handful of genes because
of the time-consuming and expensive nature of such experiments.
Thus, in silico analysis to narrow down candidates of potential
genes is vital. Current methods of identifying driver genes involve
multiomics data (4) and often use known biological pathways (5).
Among multiomics data, transcriptomes, i.e., gene expression data,
play a pivotal role in biological processes and are the most available
form of omics data for many diseases including cancers. As such,
analyzing transcriptomic data is usually the first step in omics-di-
rected characterization of diseases.
In practice, selecting differentially expressed (DE) genes by con-

trasting expression levels in disease and control tissues has been
broadly used for the exploration of biological mechanisms of
various diseases. Largely because of its simplicity, single-gene-
based DE analysis is the most popular method adapted by many re-
searchers (6). From the perspective of systems biology, it is natural
to expect that advanced models analyzing multiple genes jointly
should lead to additional in-depth understanding of disease
pathology.

Unfortunately, instability of such complex models involving
multiple genes appears to be a serious problem; in many situations,
current methods do not generate consistent results. For instance, in
a typical coexpression network–based analysis, a gene network is
built with its nodes representing genes and edges based on their co-
expression. The genes that are highly connected with other genes in
the network, called “hub” genes, are expected to be important in pa-
thology (7). As such, many pipelines discovering driver genes incor-
porate information from coexpression networks and these hub
genes into the next phase of multiomics approaches (8–10). It
has, however, been noted that hub genes are not stable, and they
are not guaranteed to be driver genes (11).
Regularized multiple regressionmethods, which optimize an ob-

jective function by adding a regularization term to a likelihood, are
widely used in many domains (12–14) including biomarker selec-
tion using transcriptomic data. LASSO (least absolute shrinkage
and selection operator) and ridge regression are two representative
methods of this nature (15, 16). The choice of regularization plays a
notable role in the information supplied by the final model: Ridge
regression will lead to a model containing a large number of genes
(15), which may confer a high predictive power at the cost of little
meaningful information for functional characterization; LASSO, in
contrast, retains fewer genes (16) but is inherently unstable in the
presence of highly correlated variables (17, 18), which is unfortu-
nately the case of transcriptome data. While a logistic LASSO re-
gression can usually identify significant variables in determining
case and control, it also tends to provide completely different out-
comes with different parameterizations or, even by running a sim-
ilarly parameterized model multiple times over, slightly different
data (17, 19). That is why, historically, as far as we understand,
there have been few efforts using such feature selection methods
in identifying underlying genes from transcriptomic data.
Coexpression network analyses and regularized multiple regres-

sions form disconnected fields, which are by themselves unable to
produce stable results offering insights into disease pathology. We
propose the Stabilized COre gene and Pathway Election (SCOPE), a
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new tool to reliably discover candidate genes and pathways using
transcriptomic data. The new framework represents a synergy
between coexpression network analysis and regularized multiple re-
gressions, with two layers of stabilization integrated.
To assess the theoretical properties of SCOPE, we first conducted

a simulation study where various scenarios of signal-to-noise ratio,
nonlinearity, interaction, and coexpression structures are consid-
ered and evaluated. The results showed SCOPE’s advantage in
most configurations over state-of-the-art regularization methods.
As a proof of concept in real data, we applied SCOPE to six

cancer datasets from The Cancer Genome Atlas (TCGA) (20)
[breast invasive carcinoma (BRCA), colon adenocarcinoma
(COAD), kidney renal clear cell carcinoma (KIRC), lung adenocar-
cinoma (LUAD), prostate adenocarcinoma (PRAD), and thyroid
carcinoma (THCA) with 1,041-111, 480-70, 483-54, 387-37, 458-
50, and 444-53 “primary tumor”–“normal tissue” samples, respec-
tively] to identify novel core genes and their related pathways. Thor-
ough comparisons were carried out against standard methods
including LASSO (for the selection step only) and differential ex-
pression (DE) analysis as well as differential coexpression (Diff-
CoEx) analysis. As expected, the core genes selected by SCOPE-
Stabilized LASSO are stable with respect to small changes of the
input datasets. Despite being significantly fewer than the typical
set of genes identified by a standard LASSO, the SCOPE-identified
core genes remain highly predictive. Notably, as another line of ev-
idence at the pathway level, pathways identified by SCOPE show sig-
nificant within- and pan-cancer overlap. In contrast, standard
DiffCoEx analysis led to significantly lower overlaps across and
within cancers. Moreover, as a confirmation by using connectivity
analysis, we found that the core genes play central roles in the shared
pathways.
To discover previously unknown insights into cancer pathology

based on the stably identified core genes and pathways, we have
carefully annotated the data based on our insights into cancers
and from the literature. Notably, we shed light on the critical role
of CD63 in the Von Hippel–Lindau tumor suppressor (VHL)–
hypoxia-inducible factor 1 subunit α (HIF1A)/hypoxia-inducible
factor 2α (HIF2A)–vascular endothelial growth factor A (VEGFA)
protein (VHL-HIF-VEGF/VEGFR) axis (21), a putative key driver
that governs tumorigenesis in kidney cancer. These discoveries
may provide interesting insights into the mechanism of cancer,
identifying concrete targets for further experimental follow-ups.

RESULTS
The SCOPE framework
SCOPE begins by conducting multiple regression by using a stabi-
lized extension of LASSO, here termed SCOPE-Stabilized LASSO,
which uses a bootstrap of multiple LASSOmodels (Fig. 1, A and B),
leading to a handful of core genes robust to statistical instability
(Fig. 1C). These core genes differ from hub genes in that they are
not identified because of their interconnectedness but because of
their power in prediction while still being stable across random
samples. These core genes are then used as seed genes for further
coexpression and DiffCoEx analysis (Fig. 1D), constructing core
gene networks (CGNs). These CGNs are then piped into pathway
enrichment analysis (Fig. 1E). The pathways learned from each
CGN are lastly intersected to provide another level of stabilization
(Fig. 1E). A high-level pseudo-code is included in Fig. 1F, and the

detailed algorithms and design considerations are provided in Ma-
terials and Methods and the Supplementary Materials. This frame-
work incorporates both optimizations brought by multiple
regressions and gene-gene interactions identified by coexpression
analysis while retaining stability in large part due to two levels of
stabilization.

SCOPE’s outcome is robust to its most key tuning
parameters
The SCOPE framework uses several parameters that may be tuned
to produce biologically relevant results. θthr ( ∈ [0,1]) determines
the number of core genes identified by SCOPE, with higher
values reducing the number of core genes selected. rthr ( ∈ [0,1])
and rDthr ð[ ½0; 1�Þ, which are the coexpression and DiffCoEx per-
centile thresholds, respectively, are used to determine the cutoff
of significance of secondary genes used to construct CGNs. The
number of iterations niter(∈ Zþ) and the sample split proportion
sprop ( ∈ [0,1]) are the parameters relevant to the SCOPE-Stabilized
LASSO step of the framework.The outcome of SCOPE is highly
robust to reasonable changes in its parameters’ values. Figure S1
gives a visual indication of the influence of these parameters on
the overall pathway overlap score (POS; a measure of the scale of
shared pathway enrichment across multiple datasets ranging from
0 to the number of datasets) across the six cancers studied in the
TCGA database. Evidently, the maximum POS remains robust
throughout changes in all parameters (fig. S1, A to D), except for
θthr where stringent values lower the POS lightly but with an observ-
able trend (fig. S1E). Thus, θthr may be tuned on the basis of the
situation and upon observing the frequency distribution of the se-
lected genes and upon the feasibility of experimental follow-up.

Simulation study unveils the performance of SCOPE in
identifying core genes and related pathways in simulations
The main simulations were conducted using 670 samples of whole-
blood tissue expression from the Genotype-Tissue Expression
(GTEx) Consortium (22) to compare the performance of SCOPE,
Adaptive Elastic-Net (23), and randomized LASSO (17). Overall,
simulations uncovered SCOPE’s distinct competitive advantage
over other methods in discovering core genes and their related path-
ways. Simulations were conducted under a variety of scenarios sim-
ulating noise-to-signal ratios, linear and nonlinear phenotypes, and
correlation structures, which are detailed further in Materials and
Methods. In each simulation, we first set up “gold-standard” core
pathways and then selected core genes related to these pathways
that are either (i) highly or (ii) lowly correlated with these pathways
(Materials and Methods). These core genes and a few randomly se-
lected additional genes were then deemed as “causal genes,” which
were used to generate a binary phenotype through both linear and
nonlinear models consisting of interactions. The three methods are
then evaluated on their ability to identify both causal genes and core
pathways in terms of F1 scores. We present the results using two
different cutoffs: The first is based on the top 10 pathways that
may reflect the practice of looking at the top pathways for experi-
mental validations (Fig. 2 with a breakdown of prediction metrics
provided in tables S1 and S2); the second is based on pathways iden-
tified with false discovery rate (FDR) < 0.05 that may be statistically
rigorous (fig. S2 with a further breakdown in table S3). Since the
above comparisons focus on the performance measured only by
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the final outcome (causal genes and core pathways), to characterize
the contribution of multiple steps, we also analyzed the ability in
identifying core genes, the intermediate outcome (fig. S3 with a
further breakdown in table S4). Simulations were also run on
smaller random subsets of the data as 500 samples (figs. S4 to S6

and tables S5 to S8) and 250 samples (figs. S7 to S9 and tables S9
to S12).
Under both the linear and nonlinear models, SCOPE-Stabilized

LASSO was able to consistently perform competitively with the
other methods and had a distinct advantage in identifying causal
genes in the presence of highly correlated core genes (Fig. 2, A

Fig. 1. Overview of SCOPE framework. (A) Expression data are split multiple times randomly into typical training/test splits with a consistent phenotype ratio as in the
original data. (B) LASSO models are trained on each of the splits, and the genes selected in each split are recorded. (C) Selected genes are ordered by the frequency of
occurrence in the splits. On the basis of a cutoff θthr (dashed green line), core genes are identified and used to identify the CGNs in (D). (D) CGNs are identified, indicated by
genes circled in orange and blue dashed lines. Null distributions of both DiffCoEx and coexpression are used to identify genes significantly interacting with the identified
core genes. (E) Pathway enrichment analysis is conducted for each CGN, and the overlap between CGN-directed pathways will be identified. Last, substantially overlapped
pathways and core genes will be the output. (F) The algorithm in a simplified high-level pseudo-code. The full version of the algorithm is presented in the Supplementary
Materials.
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and B). By inspecting the corresponding performance for core genes
(fig. S3), especially in the case of highly correlated core genes, one
can see that the performance of all models is lowered. Evidently,
SCOPE can better identify highly correlated core genes in contrast
to other methods, which gain power more through the discovery of
causal genes that are not core genes. While randomized LASSO

performs similarly to SCOPE-Stabilized LASSO in the low-correla-
tion scenario and the Adaptive Elastic-Net performs relatively well
in the presence of a nonlinear phenotypewith highly correlated core
genes, SCOPE-Stabilized LASSO performs the best, on average,
across all scenarios. In real data analysis, one is unaware of the

Fig. 2. Simulations comparing the performance of SCOPE, Adaptive Elastic-Net, and randomized LASSO. F1 score {= TP/[TP + 0.5 × (FP+ FN)]} calculated for the
accuracy of Adaptive Elastic-Net, randomized LASSO, and SCOPE models in identifying causal genes and pathways simulated in the gene expression data with 670
samples. (A) and (B) indicate the ability of SCOPE to identify causal genes with better accuracy, particularly in scenarios with higher correlations of the core genes in
both linear and nonlinear phenotypes, respectively. (C) and (D) demonstrate the ability of SCOPE to identify core pathways among the top 10 pathways enriched using
eachmethodwith higher accuracy. Note that in the nonlinear model, we assumed that the genes participating in interactions are known as a priori; otherwise, the powers
of all three methods are close to zero. Please see detailed justifications in Materials and Methods.
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level of correlations and the linearity of the phenotype; therefore,
SCOPE-Stabilized LASSO would be the best tool of choice.
Pathway enrichment revealed that SCOPE was able to better

identify core pathways (Fig. 2, C and D) when considering the
top pathways enriched. In this scenario, randomized LASSO per-
forms the poorest because of the lower number of genes identified
in comparison to the Adaptive Elastic-Net and SCOPE. However,
the larger number of genes identified by Adaptive Elastic-Net,
which led to the larger number of false-positive causal genes
(thus a lower F1 score in identifying the same), enabled Adaptive
Elastic-Net to achieve a similar performance to SCOPE in the
linear model (Fig. 2C) but still provided an edge to the more com-
prehensive coexpression network analysis of SCOPE in the nonlin-
ear scenario (Fig. 2D).

SCOPE stably selected considerably fewer core genes while
retaining predictive power
SCOPE-Stabilized LASSO identified significantly fewer genes
among different splits of the data (Fig. 3A, vertical red dashed
lines). The consistently selected genes are named in Fig. 3A with
details in table S13. In contrast, on the same data, genes selected
by a standard LASSO are much more numerous and vary widely
from around 10 to 45 genes (Fig. 3A, colored distributions), docu-
menting the instability of gene selection by standard LASSO.
Despite being much smaller in number, the predictive power (in

predicting normal/tumor phenotypes) of SCOPE-selected core
genes is close to that obtained by standard LASSO. In-sample vali-
dation shows that the few genes identified by SCOPE confer almost
the same, and sometimes even higher, predictive power compared
with themany genes selected by standard LASSO (Fig. 3B). Restrict-
ing the LASSO to use the top (indicated by the highest absolute co-
efficients) genes, equal in number to the number of genes used by
SCOPE, reveals poorer predictive power in comparison with both
the standard LASSO and SCOPE-Stabilized LASSO.
We also resorted to external data validation using two microar-

ray datasets (24, 25) based on the set of core genes identified by
SCOPE-Stabilized LASSO (listed in table S13) and the multiple
runs of standard LASSO (mirroring in practice the range that dif-
ferent people might achieve on the basis of the genes that they ended
up identifying) as well as the top genes identified in each of the stan-
dard LASSO runs. Evidently, the predictive accuracy remains close
to one using standard LASSO (Fig. 3C) and higher in accuracy than
using the top genes identified by any single LASSO model. Internal
and external validation highlighted the ability of SCOPE-Stabilized
LASSO to identify a highly predictive handful of genes that are com-
parable in prediction accuracy to the many-fold larger number of
genes selected by a standard LASSO model. The small margin
also indicates that, while models including more genes may be
slightly more predictive, they may not all be vital to tumorigenesis.
Furthermore, such a large number of genes could be extremely
costly to experimentally validate and thus are not an ideal
outcome of in silico methods, a problem relieved by SCOPE-Stabi-
lized LASSO selection.
The consistency and stability of SCOPE-Stabilized LASSO over

standard LASSO were demonstrated by looking at the replicability
over multiple runs on the same data (with different splits of train-
ing/testing samples). The comparison was conducted by randomly
splitting the data into training and testing samples 100 times, using
a different random seed for each split. This reflects the effect of

choosing a different training sample in a typical usage scenario. Pro-
portions of runs in which genes were selected are shown in table
S14, illustrating the high level of stability obtained by SCOPE-Sta-
bilized LASSO over standard LASSO.

SCOPE identified pan-cancer pathways, focusing on DNA
replication and repair
Via standard coexpression analysis of gene networks, the core genes
selected by the SCOPE-Stabilized LASSO were used to form their
corresponding CGNs, which, in turn, were used to identify path-
ways based on pathway enrichment analysis (Materials and
Methods). The pathways that are identified by multiple CGNs are
the output of SCOPE (table S15). Many of these pathways fall
into the categories of “cell growth and death,” “replication and
repair,” and “folding, sorting, and degradation.” These pathways
are highly related to cancer cell immortality and cancer genome
damage response. A similar protocol was also conducted using Diff-
CoEx analysis by looking at pathways identified by multiple
modules (table S16).
To further assess the stability of SCOPE, we analyzed the sharing

of core genes between cancers. At the gene level,MT-CO2was iden-
tified as a core gene by SCOPE in four of the six cancers. This gene
produces the cytochrome c oxidase subunit 2 protein, which is es-
sential in a mitochondrial process associated with oxidative phos-
phorylation. BesidesMT-CO2, no other core gene is shared among
cancers, indicating that different cancers may have different core
genes if one does not look at higher levels such as pathways.
We then characterized the sharing of pathways across cancers.

To quantify the extent of sharing, we first formed a within-cancer
statistic, πcancer, which denotes the proportion of genes contained in
CGNs out of the total number of genes in each pathway. Then, the
POSwas calculated as the summation of the πcancer values over all six
cancers. Higher values intuitively indicate higher overlap of the
pathway across cancers. Contrasting the results of the three tools,
namely, SCOPE, DE, and DiffCoEx, despite their substantial
sharing in terms of pathways identified (Fig. 4A), showed quite dif-
ferent landscapes in terms of sharing between cancers. Evidently,
SCOPE identified both cancer-specific and pan-cancer pathways
characterized by its two-spike distribution of POS: The cluster at
the low-POS end stands for cancer specific, while the cluster at
the high-POS end indicates pan-caner pathways (Fig. 4B). In con-
trast, both DE and DiffCoEx distributions have only one spike at the
low-POS spectrum (Fig. 4, C and D). These POS distributions are
further detailed in table S17 for SCOPE, DiffCoEx, and DE, evi-
dencing the potential drawback of DiffCoEx and DE in their inabil-
ity to repetitively identify key pathways that could be universally
vital in cancers. This distinction between SCOPE and standard
methods suggests that SCOPE’s stability in discovering pathways
can reveal key pathways even in different cancers.
We then annotated pathways that were identified by SCOPE to

check whether they were relevant. Investigating pathways related to
the hallmarks of cancer (26) and the proportion of genes in each of
these pathways by each of the three methods (Fig. 5, A to F) reveals
that SCOPE identifies these hallmarks across cancers quite signifi-
cantly. Figure 5G looks at the POS for these hallmark pathways
across the different cancers. SCOPE stands out by identifying the
highest proportion of genes involved in these pathways.
By analyzing the literature further, we realized that the pan-

cancer pathways revealed by SCOPE are biologically meaningful.
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Fig. 3. Comparison of SCOPE to standard LASSO in stability and predictive accuracy. (A) Histograms of the number of genes selected by standard LASSO (colored
distributions) in comparison to SCOPE (vertical red dashed lines) for each cancer. The thresholds chosen for SCOPE-selected core genes were varied: θthr = 0.90 for BRCA
and θthr = 0.75 for KIRC, LUAD, COAD, PRAD, and THCA. These thresholds resulted in 5 to 10 core genes being identified per cancer, identified in the six panels for each
cancer. (B) Prediction metrics for SCOPE (core genes) in comparison to standard LASSO in terms of accuracy = [True Positives (TP) + True Negatives (TN)]/[TP + TN + False
Positives (FP) + False Negatives (FN)], sensitivity, and specificity. (C) Prediction accuracy = (TP + TN)/(TP + TN + FP + FN) for two independent microarray datasets for lung
cancer was obtained. In the case of SCOPE, the same core genes identified and indicated in table S1 were used. For standard LASSO, multiple sets of genes selected by
independent LASSO runs in the TCGA LUAD dataset were used to assess the varied distribution (due to instability), and for top LASSO, the top genes in each standard
LASSO equal in number to those selected by SCOPE-Stabilized LASSO were used. Prediction measures are calculated on the basis of the true labels of the data (tumor/
normal) and the predicted labels on the test data sampled from the original TCGA data.
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Overlapped pathways enriched using overrepresentation analysis on
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database,
excluding any pathways that had no enrichment for one or more
cancers, immediately reveal the high enrichment of pathways
related to regulating the universal level of DNA/RNA/protein
and, notably, the pathways related to DNA repair. The most
notable characteristic of cancer is the unlimited growth of cancer
cells, which also links to the cell cycle pathway (26). Mechanistically,
they need readily available supplies of materials for cell growth and
replication, e.g., more DNA replication, more RNAs transcribed by
RNA polymerase and spliced by the spliceosome, andmore proteins
translated by ribosome. The increased supplies are also likely due to
less RNA degradation, less protein degradation by the proteasome,
and more N-glycan biosynthesis for N-linked glycosylation, one of
the most abundant protein modifications that play a critical role in
tumorigenesis (27). In addition, increased DNA replication accu-
mulates errors as DNA mutations. Mutations inactivating tumor
suppressor genes can further accelerate the accumulation of muta-
tions, partially through defective DNA damage repair, and result in
genome instability, a hallmark of all cancers (26). Hence, this result

demonstrates that the core genes identified by SCOPE-Stabilized
LASSO are stably connected with pathways essential to tumor
growth and/or associated with the fundamental hallmarks of any
type of cancer.

Pan-cancer pathways exhibit contrastive interaction
patterns centered by core genes
To further confirm the roles of the core genes in their discovered
pathways, we calculated the correlations between a core gene and
all the genes in the corresponding pathway. The core genes
exhibit highly disruptive patterns in the coexpression network.
Taking the nucleotide excision repair pathway network across mul-
tiple cancers as an example, the coexpression networks fundamen-
tally differ in structure and intensity with respect to the core genes
(Fig. 6, A and B). Despite different cancers using different core
genes, the correlations between the core genes and the other
genes in the same pathway are universally higher or lower in the
tumor tissue. Many of the core genes are not DE (Fig. 6B), indicat-
ing that core genes may contribute to cancers by disrupting their
interactions, although their own expression levels are not

Fig. 4. Comparison of SCOPE to alternative methods on pathway identifications. (A) Pathways identified by DiffCoEx, DE, and SCOPE are compared for uniqueness
and sharing. (B toD) POS, which indicates the level of enrichment of a pathway across multiple cancers, is contrasted among the three methods. (B) SCOPE uncovers both
cancer-specific (notable by the spike in lower POS) and pan-cancer shared pathways (notable by the spike in higher POS), while both DiffCoEx (C) and DE (D) appear to be
more cancer specific than SCOPE as evidenced by the lower distribution of POS.
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significantly altered. These results further strengthen the role that
core genes appear to play in the pathology of these cancers.
Other coexpression networks centralized by other core genes are

provided in figs. S10 to S14 and further detailed in table S18,
showing switched (opposing) correlation patterns (and, in some
cases, an absence of correlations) when contrasting tumor tissue
to normal tissue. These switched correlations appear to indicate

that the core genes identified by the SCOPE-Stabilized LASSO
method are highly connected genes that are indicators of the
proper functioning of these pathways, if not responsible for medi-
ating these pathways.
In addition to the above pan-cancer shared pathway analysis,

SCOPE also identified cancer-specific pathways, some of which
show contrastive connectivity patterns. For instance, in breast

Fig. 5. Comparison of proportion of genes in each cancer (π) identified by SCOPE in contrast to DiffCoEx and DE in pathways related to hallmarks of cancers.
Pathways shown are (A) DNA replication (has03030), (B) base excision repair (hsa03410), (C) nucleotide excision repair (hsa03420), (D) homologous recombination
(hsa03440), (E) cell cycle (hsa04110), and (F) p53 signaling pathway (hsa04115). (G) Comparison of POS across the three methods for the same pathways (A to G).
POS is calculated as the sum of π values across the cancers for each pathway. Higher values indicate higher discovery of genes related to each pathway across cancers.
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cancer, glyoxylate and dicarboxylate metabolism, fatty acid degra-
dation, and regulation of lipolysis in adipocytes were found (fig.
S15, A to C) (28). For colon cancer, bile secretion, mineral absorp-
tion, and proximal tubule bicarbonate reclamation were highlighted
(fig. S15, D to F). Out of the SCOPE-identified colon cancer–spe-
cific pathways, 90% are classified as being in the category of metab-
olism, while other cancers do not show such patterns.

In-depth annotation reveals hypothetical CD63-centered
mechanism in kidney cancer
Among the five core genes selected by SCOPE in kidney cancer
(KIRC), CD63 plays an indispensable role in VEGFR2 activation
in response to VEGF (29). Notably, aberrant activation of the
VEGF-VEGFR axis is a pivotal driver in kidney cancer since more

than 60% of patients with kidney cancer harbor VHL mutations
(30). Inactivated VHL fails to degrade HIF α subunits (HIFα) in
kidney cancer cells. The accumulation of HIFα induces the tran-
scription of hypoxia-related genes and activation of hypoxia signal-
ing in the presence of oxygen. As a key downstream target of HIFα,
VEGF expression and secretion further cause autocrine or paracrine
activation of the VEGFR signaling pathway (21). Hence, CD63
probably plays an oncogenic role in kidney cancer. Consistently,
high mRNA level of CD63 associates with adverse prognosis in pa-
tients with KIRC (P = 0.0019; Fig. 7A, 1). In contrast, there is no
such relationship in the other five cancer types (fig. S16). In agree-
ment with CD63’s role in the activation of VEGFR signaling
pathway, which is driven by VHL mutations in KIRC, the associa-
tion is more significant in VHL-mutated cohorts (P = 0.0006;

Fig. 6. Example of the roles of core genes in a pan-cancer pathway uncovered by SCOPE. The nucleotide excision repair pathway (hsa03420) is used in this example.
Core genes (light blue) are in the center of the network with the genes in this pathway (gray) arranged in a circle. Pearson’s correlation coefficients are indicated as edges
ranging from−1 (red) to +1 (blue). The names of the genes and their correlations with the core genes are noted in table S18. Boxplots contrast the distributions of two sets
of correlations (tumor versus normal) along with the P value for the Kolmogorov-Smirnov test, with the null hypothesis being that the two samples were drawn from the
same distribution. (A) Core genes are DE, and (B) core genes are not DE.
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Fig. 7A, 2) than in VHL–wild-type cohorts (P = 0.216; Fig. 7A, 3).
Along this line, high expression of CD63 in kidney tumors corre-
lates with a hypoxia gene signature assessed by two different
scores (Fig. 7, B and C). CD63 is also known as a marker of exo-
somes, extracellular vesicles secreted by cells (31). In agreement
with the fact that exosomes can contribute to metastasis (32),
CD63 shows a tendency to be correlated with metastasis in patients
with KIRC although barely above the significant cutoff of 0.05
(P = 0.0565; Fig. 7D). In particular, CD63 knockout mice are
viable, fertile, and almost normal except for an altered water
balance, such as increased urinary flow, water intake, reduced
urine osmolality, and a higher fecal water content (33). This does
not only suggest that CD63 plays a critical and specific role in

kidney pathology, and consequently in kidney tumorigenesis, but
also hints that CD63 can be a therapeutic target for kidney cancer
with minimal systemic toxicity. Anti-CD63 antibodies were report-
ed to suppress allergy (34) or inhibit metastasis (35) in vivo. It will
be worth exploring whether anti-CD63 antibodies are able to
improve the potency of targeted therapy or immunotherapy and
inhibit metastasis in patients with kidney cancer. Nevertheless,
this example suggests that the core genes selected by SCOPE may
help exert bona fide biological functions in the mechanisms
of cancer.
Among all genes connected with CD63, SAT2 is the one with the

most significantly differential correlations in tumor and normal
tissues. SAT2 mRNA level shows a negative correlation with

Fig. 7. Hypothetical role of CD63 in kidney cancer. EXP < 0 indicates samples in which the expression level of the gene CD63 is lower than the arithmetic mean of the
expression levels of the gene across all samples, while EXP > 0 indicates a value higher than mean expression levels. (A) Survival plots of patients considering differing
expression of CD63 in (1) all patients in the KIRC dataset, (2) patients with VHL mutation, and (3) patients with VHL wild type (WT). (B) and (C) indicate that a higher
expression of CD63 correlates with a higher expression of hypoxia-related genes profiled by two (73, 74) well-known hypoxia gene signatures, while (D) indicates the
relationship between CD63 and metastasis in kidney cancers. (E) (1 and 2) Connectivity network suggesting the role that CD63 plays in the arginine and proline metab-
olism pathway with key genes involved in the pathway [data and figures of (A) to (E) are derived from the cBioPortal website (www.cbioportal.org/)].
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CD63 in normal tissue while exhibiting an almost opposite correla-
tion in tumors (Fig. 7E, 1 and 2). Many other genes in the pathway
of arginine and proline metabolism, such as AGMAT, DAO,
ALDH4A1, PRODH2, GATM, and HOGA1, also show similar pat-
terns of switched correlations with CD63 (Fig. 7E, 1 and 2). The
altered correlations in tumors uncovered by SCOPE hint that
these genes may play critical roles in kidney tumorigenesis. In
agreement with this hypothesis, agmatinase, encoded by AGMAT,
is diminished in kidney cancer samples, whereas AGMATmRNA is
most abundant in human liver and kidney (36). Moreover, SAT2,
DAO, ALDH4A1, PRODH2, GATM, and HOGA1 are ubiquitously
expressed in the kidney based on the Human Protein Atlas (37, 38).
However, other genes belonging to the pathway of arginine and
proline metabolism were not identified or were only shown negligi-
ble correlation differences by SCOPE, such as SAT1, NOS1, CKM,
CKB, and ARG2, and do not show obvious overexpression in the
kidney (37–39). The distinct tissue specificity of two groups of
genes in the same pathway of arginine and proline metabolism val-
idates that SCOPE was able to identify altered coexpression patterns
in specific cancer types. In contrast, neither DE nor DiffCoEx un-
covered significant enrichment of these pathways in KIRC, further
strengthening the ability of SCOPE in uncovering such biologically
relevant pathways.

DISCUSSION
Current methods of driver gene identification use multiomics data,
particularly mutation data in collaboration with known biological
pathways. Transcriptomic data are seldom used for the identifica-
tion of driver genes. This is in part due to the inability to determine
causality using methods such as DE, DiffCoEx, and coexpression
networks. Gene expression data alone, while conveniently available,
are infrequently used for this purpose and rather directed toward
biomarker discovery. Our proposed method of stabilizing the
LASSO such that it identifies consistent predictors followed by co-
expression and pathway analysis enables researchers to identify the
core genes and pathways by taking advantage of the synergy
between two disconnected fields: linear feature selection and non-
linear coexpression network analysis. This provides a method for
experimentalists to narrow down candidate genes using more
cost-effective expression data. Furthermore, only a handful of
such core genes are selected, thus providing experimentalists an
ideal scenario of being able to study these few genes extensively.
SCOPE uses both coexpression and DiffCoEx in building the

CGNs that represent the units for enrichment. While it is usual
for coexpression to be typically studied, DiffCoEx is less used and
the combination even less so. The intuition here is that while genes
coexpressed in both tumor and normal tissues are clearly interact-
ing with the core genes identified, differentially coexpressed genes
are even more so due to the differences in their behavior between
the two phenotypes. Thus, combining both types of interactions
leads to a better constructed network, identifying more interesting
groups of genes to be studied.
Discovering enriched pathways connected with core genes may

provide a rationale for targeted therapy against certain cancer types.
A series of genes in the ferroptosis pathway, including ACSL4,
MAP1LC3B, ATG5, PRNP, NCOA4, PCBP1, LPCAT3, VDAC3,
FTH1, SLC39A14, SLC40A1, and SLC11A2, showed significantly
changed patterns of correlation with PSMG4 in the PRAD dataset

(table S19). Ferroptosis is a programmed cell death driven by iron-
dependent phospholipid peroxidation and reactive oxygen species
generation (40). Since excessive iron contributes to ferroptosis,
PCBP1 and FTH1, which regulate iron metabolism and storage,
are considered negative regulators of ferroptosis. ATG5,
MAP1LC3B, and NCOA4 initiate autophagy and consequently
promote iron release from degraded iron-bound proteins.
SLC40A1, SLC39A14, and PRNP export iron from cells and
reduce ferroptosis, whereas SLC11A2 regulates iron release to the
cytoplasm and may enhance ferroptosis. ACSL4, LPCAT3, and
VDAC3 regulate the mechanism of phospholipid andNADH oxida-
tion and play roles as positive regulators of ferroptosis (41). In par-
ticular, AIFM2, a critical ferroptosis suppressor identified in 2019
(42, 43), shows reduced expression in prostate cancer (PRAD)
[logFC (fold change) =−0.9008]. All these data indicate that ferrop-
tosis inducers might be potent in patients with PRAD. Consistently,
recent work has reported the induction of ferroptosis as a new ther-
apeutic strategy for advanced prostate cancer (44). Neither Diff-
CoEx nor DE highlighted the ferroptosis pathway as significant in
PRAD, while SCOPE was able to highlight this pathway uniquely
and significantly in PRAD.
There are also many other pan-cancer analyses. Aweighted gene

co-expression network analysis (WGCNA) (45)–based approach
(46) identified multiple hallmarks of cancer stratifying different
tumors contrary to SCOPE, where the pathways and hallmarks
that are shared by different cancers are identified. Another study
conducting survival analysis based on the TCGA database (47)
identifies unique prognostic tumor-specific genes that are also
cancer hallmark genes and remarks on their tumor specificity.
However, the shared pathways identified by SCOPE may highlight
that cancer hallmarks may be induced at a pathway level even if the
same hallmark genes are not clearly expressed in each type of tumor.
A mutation-based approach to pan-cancer network analysis (48)
identifies 16 significant subnetworks that span across multiple path-
ways with previously identified roles in cancer, further contributing
to the hypothesis of shared pathways explored by SCOPE.
An inherent limitation of transcriptomic data is that most bio-

logical functions are performed by proteins, not mRNAs. One
example is the p53 signaling pathway in BRCA, which is signifi-
cantly enriched by the gene pairs of MT-CO2 with CDK4, AIFM2,
or CHEK2 (table S20). Furthermore, another core gene, CD300LG,
shows switched correlations with TP53 and CASP9, although the
respective CGN is not enriched for the p53 signaling pathway. Al-
though TP53 (encoding p53) showed altered correlations with
CD300LG and MT-CO2, the putative transcriptional targets of
p53, such as CDKN1A and MDM2 (49), did not show significant
changes of correlation. It implies that the p53 transcriptional activ-
ity was not significantly changed in the presence of significantly
changed mRNA level of TP53. This implication was further sup-
ported by two facts: (i) The regulation of p53 activity is dominant
at the posttranslational level (49), not at the mRNA level; (ii) 35% of
patients in the TCGA-BRCA database harbor TP53 mutations, and
most TP53mutations abolish the transcriptional activity of p53. We
looked for top transcription factor binding sites in the promoters of
these genes (CASP9, CDK4, AIFM2, and CHEK2) provided by
QIAGEN through GeneCards (50) and found CCAAT/enhancer
binding proteins (C/EBPs) bound to these promoters. Since the
phosphatidylinositol 3-kinase (PI3K)–AKT–mTOR signaling
pathway is highly mutated in the BRCA database [fig. S17; obtained

Kossinna et al., Sci. Adv. 8, eabo2846 (2022) 21 December 2022 11 of 16

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at T

hom
as Jefferson U

niversity on January 04, 2023



from cBioPortal in the TCGA-BRCA database (51, 52)] and is able
to regulate the transcriptional activity of C/EBPs (53), a reasonable
explanation is that a hyperactivated PI3K-AKT-mTOR axis induces
the mRNA expression of these targets via C/EBPs as the transcrip-
tional factor (but not TP53) in patients with BRCA. Nevertheless,
with more data of cancer at the protein level, such as The Pathology
Atlas (38) and The Cancer Proteome Atlas Portal (54, 55), SCOPE
may be substantially empowered to provide more valuable insights
into the aberrant connections in tumor cells.
To recap, we have presented SCOPE, a method stabilizing gene

selection and coexpression network analysis, which is able to iden-
tify core genes and pathways underlying cancers. Its effectiveness
has been demonstrated by various analyses from three angles (i.e.,
selection of few, stable, and predictive genes; pan-cancer shared
pathways; and the role of core genes in connectivity analysis). More-
over, in-depth annotations have revealed the pivotal role ofCD63 on
tumorigenesis in kidney cancer and the potential therapeutic appli-
cation of anti-CD63 antibody on patients with kidney cancer. As a
proof of concept, we have only contrasted cancer and normal tissues
in this work. However, the statistical framework is applicable to any
case/control settings. In the future, we will adapt SCOPE to analyze
clinically important qualities such as whether a patient will respond
to medical treatments such as immunotherapy, paving the way to
the application of precision medicine in more applications.

MATERIALS AND METHODS
SCOPE-Stabilized LASSO selection
While LASSO has proven versatile in many applications, statisti-
cally, it has become apparent that in the presence of multiple cor-
related features, it may be inconsistent in its selection of features,
even in multiple random samplings of the same data (56). This
has led to a number of new methods being proposed that are all
modifications of the original LASSO such as adaptive LASSO
(56), random LASSO (57), and bolasso (19). A seminal work by
Meinshausen and Bühlmann (17) discusses stability paths, which
obtain the selection probabilities of each feature by subsampling
along all possible values of the tuning parameter with randomized
LASSO, which introduces a random penalty λ for each feature.
While such methods are statistically proven and can lead to sound
results, they appear to be seldom used in the field of genomics.
In SCOPE, a simpler solution to the inconsistency of variable se-

lection in LASSO is proposed and applied in the form of a boot-
strapped LASSO (Fig. 1, A and B). While simple in design, it
produces consistent results that are highly predictive. In the case
of this paper, where the phenotype is binary (tumor or normal
sample), a logistic LASSO regression model is trained multiple
times by subsampling from the same dataset. Genes that were select-
ed in most of the models (over a threshold proportion θthr) are used
to build a final logistic regression model for which the final accuracy
will be assessed. This stable subset of genes is proposed to be the
“core” genes of the disease. These core genes can then be used in
other predictive models or for further downstream analysis;
SCOPE uses a coexpression-based pathway analysis using these se-
lected core genes.
The SCOPE-Stabilized LASSO used in this analysis features the

consensus of 1000 training-test splits of a 70%-30% split ratio (each
with a consistent case/control ratio of the full dataset). Each LASSO
model trained was tuned for the optimal value of λ using 10-fold

cross-validation. The thresholds used for the different datasets of
the real analysis are detailed in Results.

Coexpression and pathway analysis
It is assumed that core genes interact with multiple other genes that
may be involved in pathways responsible for disease mechanisms.
To identify these genes, we conducted both coexpression and Diff-
CoEx analysis (Fig. 1D). To claim a gene as being significantly coex-
pressed with a core gene, we required a null distribution for the
correlations (coexpression) between pairs of random genes. To
this end, we drew random pairs of genes and calculated the
Pearson correlation coefficients of these pairs. Using this distribu-
tion, we obtain the (rthr=) 97.5th percentiles for both positive and
negative correlations. This allowed us to identify genes that are sig-
nificantly coexpressed with core genes. Each set of genes thus iden-
tified (secondary coexpressed genes, along with their corresponding
core gene), termed CGNs, was then tested for pathway enrichment.
To reflect the fact that some critical genes are not so highly coex-

pressed but are significantly differentially coexpressed when con-
trasting cancer and normal tissues, we also obtained the genes
that are significantly differently coexpressed with the core gene
between tumor and normal tissues (Fig. 1D). As in the case of the
coexpression analysis, a null distribution of the DiffCoEx values (|
corrcase − corrcontrol|) was obtained, and the (rDthr ¼) 97.5th percen-
tile was used to select significantly differentially coexpressed sec-
ondary genes. These secondary genes from DiffCoEx analysis
were also added to the CGNs for pathway analysis below.
Pathway enrichment is typically used to assess whether a partic-

ular set of genes overlap with known biological pathways signifi-
cantly higher than by chance. There are many databases
containing such pathways, and SCOPE uses the KEGG (58, 59) da-
tabase because of its comprehensiveness and popularity. Overrepre-
sentation analysis (60) is used to identify the statistical significance,
and the R package WebGestaltR (61, 62) was used for testing
pathway enrichment against the KEGG database. This analysis
results in several pathways enriched (at FDR ≤ 0.05) for each
CGN (comprising of genes both coexpressed and differentially
coexpressed) underlying the focal core gene. SCOPE then discovers
pathways that are commonly influenced by CGNs (seeded by differ-
ent core genes).
For a single disease such as a cancer, an index for the level of

sharing of a pathway (across multiple CGNs within a cancer),
πcancer, is defined as the number of coexpressed genes (including
the core gene) found to be enriched in this pathway divided by
the total number of genes in the pathway. When multiple diseases
are jointly analyzed (e.g., the six cancers used here as a demonstrat-
ing example), SCOPE will further discover pathways common to all
diseases (table S17). The summation of this single cancer-specific
index (πcancer) over all the cancers is noted as the POS. Intuitively,
a higher POS indicates a higher overlap of the pathway across dif-
ferent cancers.

Methods compared to SCOPE
Least absolute shrinkage and selection operator
The primary benchmark and point of comparison is a traditional L1
regularized logistic regression model, which uses the addition of the
absolute value of the coefficients to promote sparsity in the loss
function. Given n number of samples and p number of features/var-
iables, the regularized loss function of a logistic regression model
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takes the form

min
b

Xn

i¼1
½yixTi b � logð1þ e

xTi bÞ� þ l
Xp

j¼1
jbjj ð1Þ

where λ is the tuning parameter controlling the trade-off between
sparsity and accuracy. Ten-fold cross-validation is typically used
to tune for this parameter, and the R package glmnet (63, 64) en-
hanced by glmnetUtils (65) was used to fit LASSO models here
(Supplementary Materials). Genes selected by a traditional
LASSO and genes selected by the SCOPE-Stabilized LASSO step
are compared in Results.
Adaptive Elastic-Net
The Adaptive Elastic-Net (23) is essentially a merging of the
popular elastic-net (66) (which combines L1 and L2 regularization)
and the adaptive LASSO (56), which assigns data-dependent
weights to the coefficients in the L1 penalty. The data-dependent
weights are calculated using a standard elastic-net model, and
these estimates are denoted by bbðenetÞ. The Adaptive Elastic-Net
estimates are then given by

bb ¼ 1þ
l2

n

� �

� arg min
b

jj y � Xb jj22 þ l2jj b jj
2
2 þ l�1

Xp

j¼1
bwj j bj j

( )

where bwj ¼ ½j bbjðenetÞ j�
� g

and γ is a positive constant. The R
package gcdnet (67) is used to tune and fit the Adaptive Elastic-
Net models used here, while the elastic-net weights were obtained
using the glmnet package.
Randomized LASSO
The randomized LASSO modifies the penalty λ of a typical LASSO
model to a randomly chosen value in the range l; l

a

� �
where α ∈

(0,1] (default = 0.8) is defined as the weakness. Assuming Wj to
be independent, identically distributed (IID) random variables in
[α,1], the randomized LASSO estimator is

bb ¼ arg min
b

jj y � Xb jj22 þ l
Xp

j¼1

j bj j

Wj

 !

Randomized LASSO, as described in (17), also follows the addi-
tional step of stability selection by selecting only variables that are
above a certain threshold (πthr, default = 0.8) across random sub-
samples. The implementation of randomized LASSO in the mona-
Lisa (68) R package was used for comparison purposes here.
DiffCoEx analysis
Standard network-basedmethods of analysis of expression data typ-
ically use the interconnectedness of genes (in the form of coexpres-
sion) to identify important networks (or “modules”) of genes.
However, in a case-control setting, the use of DiffCoEx can prove
more informative because of the contrastive nature of the analysis.
DiffCoEx (69), one of the most popular methods extending the
popular WGCNA coexpression network analysis tool, was chosen
for comparison. DiffCoEx identified differentially coexpressed
modules (Supplementary Materials) that were used in pathway en-
richment similar to how CGNs were used for pathway enrichment
and for studying pathway overlaps.

Differential expression
An edgeR-limma–based pipeline (70) was used to normalize the
data to log2–counts per million values, and a linear model incorpo-
rating weights from voom to correct for the mean-variance relation-
ship was used to statistically detect the DE of genes in each of the
cancers. The pipeline was run using default values for all parameters
as described in the workflow.

Data generation and model fitting for simulations
A number of different factors such as signal-to-noise ratio, linear/
nonlinear effects on phenotype, and different coexpression struc-
tures were considered in generating the data required for the simu-
lations. The GTEx (22) was used as the source of expressions. A
random sample of 15 pathways from the KEGG pathway database
was considered as candidates of gold-standard core pathways. Each
simulation begins by randomly sampling p ( p = 3,5,10) number of
core pathways from the available pathways. Then, the Pearson cor-
relation of all genes in the 15 pathways is calculated pairwise for
each of the genes in the core pathways. The absolute sums of
these values are then calculated, providing an empirical estimate
of the interaction of each gene with the core pathways. Then, gc
(gc = 5,10,15) number of core genes are selected on the basis of
(i) the highest interacting genes and (ii) the lowest interacting
genes with the core pathways. A further ge (ge = 0,3,5) extra
causal genes are randomly selected from all the remaining genes
of the 15 pathways, and the combined set of genes, {gc, ge}, was
used to generate the phenotype.
Phenotypes are generated using both linear and nonline-

ar models:

1) Linear: Y linearinitial ¼
Xgcþge

j¼1
bjXj, where β~Unif( − 10,10)

2) Nonlinear: Ynonlinearinitial ¼
Xgcþge

j¼1

Xj

i¼1
bj;iXj � Xi, where β~Unif( −

10,10) and ⊙ represents element-wise multiplication
To ensure that a consistent signal-to-noise ratio (snr = 0.7,0.8,0.9)

is achieved and a binary phenotype is produced, both Yinitial values
undergo the following transformations to obtain the respective phe-
notypes. Let s2g ¼ varðY initialÞ. Then, s

2
error ¼ s2g

1
s2nr
� 1

h i
and Ynoisy

= Yinitial + e where e ≏ Nð0;s2errorÞ. Then, let p ¼ 1
1þexpð� YnoisyÞ

. Last,
Yi~Bin(1, pi). Ten replicates of each unique combination of param-
eters were obtained, resulting in a total of 3240 simulations.
The above procedure generates data ready for analysis. The an-

alytic procedure is generally the same as what we did for real data
analysis. The only alteration is on the interaction term in the non-
linear case. In practice, one has to rely on regularized regression to
select causal genes out of many candidates. Following this proce-
dure, when analyzing the data, around 700 terms (genes) from
the randomly selected pathways were included in the regularized re-
gression to test the ability of feature selections. However, in the non-
linear cases, if we put all potential combinations of all noisy genes to
the model, the power will be close to zero. As such, we assume that
the candidates under interactions are known and only put the inter-
action terms between these genes into the regression. This might
still be close to the practice as users should have a rough idea of
which genes are under interactions; without which, such feature se-
lection methods would not work well. Nevertheless, we make the
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interacting genes available for all three competitive methods to
ensure the fairness of the comparison.

Real data analysis
Data source and processing
The TCGA program initiated by the National Cancer Institute and
the National Human Genome Research Institute in 2006 (20) offers
a wealth of omics data on 32 different cancers and their subtypes at
68 primary sites. This includes RNA sequencing data that provide a
snapshot of the transcriptomic landscape of the tumor site and of
solid normal tissue close to the tumor site.
Six cancers [breast invasive carcinoma (BRCA), kidney renal

clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD),
colon adenocarcinoma (COAD), prostate adenocarcinoma
(PRAD), and thyroid carcinoma (THCA)] were chosen primarily
because of the large samples of expression data available and the in-
clusion of normal tissue from the same patients. A breakdown of the
sample sizes and disease status is given in table S21. The raw count
data were downloaded from the TCGA data portal and then con-
verted to transcripts per million values using gene lengths obtained
through the biomaRt (71, 72) package. Phenotype (tumor or
normal) was determined on the basis of the sample type column
provided in the database, and “primary tissue” was considered as
cases and normal tissue as controls. Any other sample types such
as “metastasis” were discarded. Models were then fitted on these
processed data. Two additional datasets (lung cancer associated),
E-MTAB-6043 (24) and MTAB-6699 (25), were downloaded from
ArrayExpress and used to externally validate the predictive accuracy
of core genes selected by SCOPE and alternative methods.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S17
Tables S1 to S16, S19 and S21

Other Supplementary Material for this
manuscript includes the following:
Tables S17, S18 and S20

View/request a protocol for this paper from Bio-protocol.
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