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Abstract

Background: The proximity of craniopharyngiomas (CPs) to critical neurovascular structures can lead to a host of neurologic and
endocrine complications that lead to difficulty with surgical management. In this review, we examine the molecular and genetic markers
implicated in CP, their involvement in tumorigenic pathways, and their impact on CP prognosis and treatment. Methods: We undertook a
focused review of relevant articles, clinical trials, and molecular summaries regarding CP. Results: Genetic and immunological markers
show variable expression in different types of CP. BRAF is implicated in tumorigenesis in papillary CP (pCP), whereas CTNNB1 and
EGFR are often overexpressed in adamantinomatous CP (aCP) and VEGF is overexpressed in aCP and recurrent CP. Targeted treatment
modalities inhibiting these pathways can shrink or halt progression of CP. In addition, EGFR inhibitors may sensitize tumors to radiation
therapy. These drugs show promise in medical management and neoadjuvant therapy for CP. Immunotherapy, including anti-interleukin-6
(IL-6) drugs and interferon treatment, are also effective in managing tumor growth. Ongoing clinical trials in CP are limited but are testing
BRAF/MET inhibitors and IL-6 monoclonal antibodies. Conclusions: Genetic and immunological markers show variable expression in
different subtypes of CP. Several current molecular treatments have shown some success in the management of this disease. Additional
clinical trials and targeted therapies will be important to improve CP patient outcomes.

Keywords: craniopharyngioma; adamantinomatous; papillary; BRAF; beta-catenin; CTNNB1; immunotherapy; molecular biology;
EGFR

1. Introduction
Craniopharyngiomas (CPs) can result in high levels

of morbidity and mortality because of their involvement
of critical neurovascular structures. Available treatment
strategies, including surgery and radiotherapy, have limi-
tations and known complication profiles. Thus, novel ther-
apies are needed to improve long-term outcomes postop-
eratively. Currently, no medical therapies are widely es-
tablished to treat CPs, but recent advances in molecular
biology have revealed potential molecular pathways that
could be exploited to develop new therapeutics. Targeted
molecular therapy has the potential to minimize the adverse
outcomes currently associated with medical management
of CPs. Here, we performed a scoping review of known
molecular pathways andmarkers identified in the pathogen-
esis of CP and evaluate studies/case reports and current clin-
ical trials evaluating the use of targeted treatments. Search
terms for “targeted treatment”, “craniopharyngioma”, and
repeat searches for key identified genes was performed.

2. Epidemiology and Clinical Features
CPs are benign epithelial tumors that originate from

the sellar region, specifically the craniopharyngeal duct.
They are classified as World Health Organization grade I

lesions [1] and show a bimodal age distribution, with peak
incidence rates observed in children aged 5–14 and adults
aged 50–74 years [2]. These tumors are quite rare, with in-
cidences ranging from 0.17 to 0.2 cases per 100,000 people
in the U.S [3].

CPs may present with focal neurological deficits, oph-
thalmologic disturbances, endocrinopathies, and evidence
of intracranial hypertension [4,5]. Ophthalmologic distur-
bances, seen in 62–84% of patients, may manifest as bitem-
poral hemianopsia due to compression of the optic chiasm
or visual disturbance secondary to intracranial hyperten-
sion. Endocrinopathies occur because of damage to the
hypothalamic–pituitary axis and can be present at time of
diagnosis [6]. Endocrinopathies are seen in 52–87% of
patients and include one or more hormonal deficiencies
and panhypopituitarism. Patients may also present with
diabetes insipidus or develop it along the course of treat-
ment. Focal neurological deficits may include seizures,
headaches, nausea, vomiting, and hydrocephalus [7].

Clinical manifestations are heavily dependent on the
anatomic location of the CP, specifically whether the tumor
is in a prechiasmal, retrochiasmal, or intrasellar location [4].
Tumors in prechiasmal locations are more likely tomanifest
with visual disturbances and optic atrophy, whereas those in
retrochiasmal locations present with increased intracranial
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pressure and hydrocephalus and intrasellar tumors typically
manifest with headache and endocrinopathies. Diagnosis of
childhood CP is usually made late, often years after the ini-
tial symptoms manifest [8]. In children, any combination
of headache, visual deficits, regressed development or re-
duced growth rate, and/or polydipsia should include CP as
a differential diagnosis.

3. Current Management
Craniopharyngiomas pose a significant challenge in

medical management because of their proximity to neu-
rovascular elements, the hypothalamus, subcortical struc-
tures, and the cerebral cortex [9]. An infiltrative and un-
predictable growth pattern is often seen, making safe re-
section difficult. Despite advances in surgical management
and radiation, the morbidity and mortality of patients with
CP remains high, highlighting a need for the development
of novel treatment approaches. CPs have the highest mor-
tality rate of sellar tumors, even after adjusting for other
clinical factors [10]. Overall mortality may be 3–5 times
higher than the baseline population risk [5,11]. Morbid-
ity and mortality for CPs are influenced by tumor loca-
tion, tumor size, and treatment strategy. Overall survival
in mixed pediatric and adult populations has been reported
to be between 54–96% at 5 years, 40–93% at 10 years, and
66–85% at 20 years, indicating that conventional surgical
care is not sufficient for improved survival [5]. Complica-
tions of CP treatment can include visual loss, panhypopitu-
itarism, diabetes insipidus, obesity, cardiovascular disease,
stroke, sleep disturbances, dysfunctional thermoregulation
and thirst, and lower bone density [12].

Current treatment options rely on maximal safe resec-
tion; the choice of gross-total resection (GTR) or subto-
tal resection (STR) depends on the extent of encasement
or invasion of critical neurovascular structures. Regard-
less of the extent of resection, multidisciplinary treatment
at experienced centers for management of CPs is favored to
improve extent-of-resection and reduce neurological mor-
bidity [13]. Radiotherapy, although beneficial in reduc-
ing tumor recurrence, is controversial due to the potential
neurovascular morbidity. Post-operative conventional ra-
diotherapy (CRT) for CP is associated with new pituitary
deficits, includingworsening of partial hypopituitarism, ob-
served in 20–60% of irradiated patients studied in the liter-
ature, and radiation induced optic neuropathy [14,15]. In
contrast, fractionated stereotactic radiation therapy (FSRT)
and stereotactic radiosurgery (SRS) have lower toxicity
rates and greater safety and efficacy in terms of hypotha-
lamic and visual function. As a result, SRS and FSRT have
largely replaced CRT methods for post-operative treatment
of CP. In addition, optimal timing after tumor resection,
whether immediately after surgery or after tumor progres-
sion, is undetermined. In a study of adults with CP undergo-
ing GTR, STR + adjuvant radiotherapy, or STR alone, the
rates of recurrence were similar between GTR and STR +

adjuvant radiotherapy [16]. Furthermore, a meta-analysis
of 744 CP patients undergoing GTR vs. STR + adjuvant
radiotherapy showed no difference in overall survival and
progression-free survival between groups [17]. However,
a retrospective review of a pediatric cohort with primary
and recurrent CP showed that patients with upfront GTR
had significantly longer progression-free survival, support-
ing the notion that GTR offers a better chance of disease
control and cure [18].

On the other hand, several studies have shown that
GTR is associated with a higher risk of neurologic, oph-
thalmic, and endocrinological deficits. In the pediatric
population GTR has higher morbidity and mortality re-
lated to hypothalamic dysfunction including hyperphagia,
hypothalamic obesity, thermal dysregulation, diabetes in-
sipidus, and cognitive deficits [19]. A retrospective, single-
center analysis of 178 pediatric patients treated between
1960 and 2017 showed that radical resection was associ-
ated with higher risks of worsening visual acuity, panhy-
popituitarism, diabetes insipidus, psychosocial impairment,
and new-onset obesity [20]. Importantly, while conserva-
tive management showed a higher risk of multiple recur-
rences and radiation induced vasculopathy, this was bal-
anced by similar rates of tumor control and a lower risk of
long-term morbidities in comparison to GTR. Another ret-
rospective analysis of 30 pediatric patients found that GTR
resulted in an average loss of 9.8 points of IQ while a com-
bined surgical/radiotherapy group lost an average of only
1.25 points [21]. Long-term adverse effects of radiother-
apy include hormone deficiencies, hearing loss, vision loss,
and cognitive worsening [5]. Similarly, a study on the ex-
tent of resection and long-term functional outcome in adults
with craniopharyngioma found that conservative manage-
ment led to equal long term visual, endocrinological, and
hypothalamic outcomes in comparison to GTR [22]. Addi-
tionally, the addition of adjuvant radiotherapy with STR led
to better local control of the tumor, and none of the patients
that received this intervention had recurrence for more than
five years in the follow up period.

Overall, studies have shown that radical resection has
similar benefit but an increased risk of deficits compared
with STR + adjuvant radiotherapy, which has resulted in a
practice shift over time to maximize function and quality of
life. These studies remain difficult to compare over time
because of variations in treatments strategies. Nonethe-
less, the refinement of less invasive surgical approaches has
helped foster a need to better understand CPs and derive
new treatment options.

4. Papillary and Adamantinomatous CPs
CPs can occur as either of two primary histologic

subtypes, namely adamantinomatous (aCP) and papillary
(pCP) (Table 1, Fig. 1). The aCP subtype is more preva-
lent overall, more common in children and is characterized
by cystic and/or solid components, calcifications, necrotic
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Table 1. Differential characteristics between aCP and pCP.
Characteristic Adamantinomatous CP Papillary CP

Age More common in children More common in adults
Tumor type Cystic and/or solid components Solid and/or cystic components
Calcifications and necrosis debris Frequent Uncommon
Histologic hallmarks Peripheral basal cell layer of palisading

epithelium and nodules of wet keratin and
anucleated cells

Squamous epithelium creating papillae of
different sizes and lack of a basal cell layer of

palisading cells
Surgical margins Frequently irregular Well demarcated
Invasion More aggressive Less aggressive
Mutation CTNNB1 BRAFV 600E

debris, and fibrous tissue [23]. Surgical margins in aCP
are more frequently irregular, making resection difficult.
Histologic hallmarks include a peripheral basal cell layer
of palisading epithelium, loosely aggregated stellate cells,
and nodules of wet keratin and anucleated cells [23,24].
Wet keratin is highly calcified and grossly appears as white
flecks.

In contrast, pCPs are more common in adults, are usu-
ally well demarcated, and do not tend to invade nearby crit-
ical structures. Macroscopically, pCPs are solid or mixed
with cystic and solid components. Calcifications are un-
common in pCPs. Histologically, they show growing cells
with squamous epithelium creating papillae of different
sizes and lack a basal cell layer of palisading cells.

Furthermore, histologic subtyping to determine risk
factors for CP recurrence has yielded conflicting evidence.
In some studies, pCPs have shown higher 5-year survival
rates, less aggressive disease progression, and less risk of
recurrence in comparison to aCPs [25]. However, other
studies have not found significant differences [6,26]. Al-
though aCPs are more likely to be invasive and make GTR
more challenging, no differences in recurrence have been
found between aCPs and pCPs independent of resection sta-
tus [25]. GTR seems to be the most important factor influ-
encing risk of recurrence.

Not only are their histological features distinct, but
aCPs and pCPs demonstrate differing gene and methyla-
tion patterns [27]. DNA methylation profiling after anal-
ysis of the most variably methylated CpG sites has shown
that aCPs and pCPs are characterized by two unique methy-
lation clusters [27]. Therefore, histologic subtypes also
differ on an epigenetic and transcriptional level. Further-
more, whole-exome sequencing has revealed that aCPs and
pCPs consist of mutations that are mutually exclusive and
clonal, specifically catenin beta 1 (CTNNB1) and B-Raf
(BRAFV 600E) mutations, respectively [28]. CTNNB1 was
the most commonly mutated gene in aCPs, present in 11
of the 12 tumor specimens, and exclusive to exon 3. In
contrast, pCPs had mutations in the BRAFV 600E gene and
no mutations for CTNNB1. Similarly, mutational analysis
of a larger number of CP tumor samples showed activat-
ing mutations and deletions in exon 3 of the CTNNB1 gene

exclusive to aCP tumors [27]. In contrast, BRAF mutations
were only found in pCP tumors, with subsequent Sanger se-
quencing confirming the BRAFV 600E mutation. It is likely
that these and other mutational pathways account for the
clinical variation seen in CP subtypes and play a role in pa-
tient outcomes.

5. BRAF mutations in pCPs

BRAF mutations are implicated in the tumorigene-
sis of pCPs. Whole-exome sequencing, next-generation
panel sequencing, pyrosequencing, and Sanger sequenc-
ing revealed the prevalence of BRAF mutations in pCPs in
81–100% of tumors [3,28–30]. The BRAFV 600E mutation
leads to glutamic acid in place of valine and uncontrolled
activation of this serine threonine kinase that normally
regulates the mitogen-activated protein kinase/extracellular
signal–related kinase (MAPK/ERK) signaling pathway.
The MAP/ERK pathway is well known for its role in
cell proliferation and differentiation. The existence of a
BRAFV 600E mutation–specific antibody (VE1) can be di-
agnostic, especially in cases where diagnosis of pCPs is
challenging, but its specificity is still unclear and the use
of sequencing is often required.

Recent studies have shown the possibility of targeted
therapy with BRAFV 600E inhibitors, which have demon-
strated success in treatment of other malignancies harbor-
ing this mutation [29,31–40]. Some recent studies have also
shown that magnetic resonance imaging features have been
used to successfully predict the presence of BRAFV 600E

mutations in patients with CPs with high sensitivity and
specificity [41]. These features include suprasellar tumor
location, spherical shape, solid component predominance,
homogeneous enhancement, and thickened pituitary stalk.
Improved preoperative determination of genetic drivers in
CP may aid in designing neoadjuvant targeted therapy. Pre-
operative genetic statusmay alter surgical decision-making,
which can potentially better justify an STR in a situation
where good postoperative adjuvant treatments are avail-
able.
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Fig. 1. Overview of symptoms and clinical changes from craniopharyngioma.

6. CTNNB1 Mutations and Pathogenesis in
aCPs

Disruption of the cateninβ-1 (CTNNB1) and the corre-
sponding Wnt pathway are implicated in the tumorigenesis
of aCPs (Fig. 2). β-catenin is found either in the cell mem-
brane or the cytoplasm, where it is to be degraded by protea-
somes [24]. aCPs show upregulation of the β-catenin/Wnt
(LEF1 and AXIN2) and sonic hedgehog (SHH) signaling
(GLI2, PTCH1, and SHH) pathways in comparison with
pCPs. β-catenin is regulated by a destruction complex
consisting of tumor suppressor adenomatous polyposis coli
(APC), scaffolding proteins Axin1/Axin2, and phosphoki-
nases GSK3B and CK1. Once bound to the complex, β-
catenin is phosphorylated on its N-terminal region encoded
by exon 3. Mutations in exon 3 in the CTNNB1 gene lead to
constitutive β-catenin activity by inhibiting its phosphory-
lation and degradation [42]. TheWnt pathway becomes ac-
tivated upon Wnt ligand binding to receptors, which leads
to inhibited degradation of β-catenin and GSK3B, allow-
ing relocation of the ligand-binding complex to the nucleus
where β-catenin leads to activation of lymphoid enhancer

factor and T-cell factor transcription factors. CTNNB1 mu-
tations can impact a wide array of pathways involved in cell
proliferation, differentiation, and cell migration [42].

Genetically engineered mouse models expressing
oncogenic β-catenin have shown that overactivation of the
Wnt pathway is sufficient to lead to formation of tumors that
parallel human aCPs and consist of cell clusters accumulat-
ing β-catenin [3]. However, it is vital to note that mouse
aCPs can lack wet keratin and calcifications and thus do not
completely parallel human aCPs. Although mouse models,
primary cell cultures, and xenografts are clinically useful
in the study of aCPs, they do not recapitulate all the charac-
teristics of human aCPs, highlighting a need for more com-
parable human models [3]. A xenotransplant mouse model
has been proposed to better study potential novel therapies
[43].

Theβ-catenin/Wnt pathway has proven to be an essen-
tial potential target of novel therapies for CP. To our knowl-
edge, there are no ongoing clinical trials targeting the β-
catenin/Wnt pathway in CP tumors, although Wnt pathway
inhibition is currently being investigated for non–central

4
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Fig. 2. Signaling pathway and targeting of adamantinomatous craniopharyngioma. Upregulation of theβ-catenin signaling pathway
is governed by mutant β-catenin, which resists ubiquitin-mediated proteolysis. Upregulation of sonic hedgehog (SHH) signaling is seen
along with the epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) signaling pathways. Only
targeted therapy of EGFR, VEGF, and inflammatory cytokines has been described with adamantinomatous craniopharyngioma. APC,
adenomatous polyposis coli; CKIα, casein kinase 1 alpha; GLI1, glioma-associated oncogene; Hh, sonic hedgehog; LRP, low-density
lipoprotein receptor-related protein; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinases; PTCH, patched; SMO,
smoothened; SUFU, suppressor of fused homolog; TCF/LEF, T-cell factor/lymphoid enhancer-binding factor; VEGF, vascular endothelial
growth factor.

nervous system tumors in various clinical trials (clinical-
trials.gov identifiers NCT03901950, NCT02675946, and
NCT03447470) [44]. NCT03901950 is a phase 1 trial in-
vestigating study drug XNW7201, a Wnt protein blocker in
patients with advanced solid tumors. NCT02675946 is in-
vestigating study drug CGX1321, a Wnt pathway inhibitor
in patients with advanced solid tumors and in combination
with Pembrolizumab in patients with advanced gastroin-
testinal tumors. Finally, NCT03447470 is a phase 1 trial
investigating Wnt inhibitor RXC004 as monotherapy or in
combinationwith Nivolumab in patients with advancedma-
lignancies. Despite its promising potential, it is vital to note
that β-catenin/Wnt targeting is possibly associated with sig-
nificant off-target effects [44].

aCPs also show upregulation of SHH signaling (GLI2,
PTCH1, and SHH) pathways in comparisonwith pCPs. The
SHH signaling pathway, essential to organ development
and maintenance of stem cell niches, is also upregulated
in both mouse and human aCPs [24]. SHH binds to the
receptor Patched 1 (PTCH1), resulting in disinhibition of
Smoothened (SMO), a transducer. Once active, SMO in-
duces a signaling cascade and activates target genes. In
gene expression studies of aCP mouse models, SHH was
overexpressed in β-catenin cell clusters. In humans, ex-
pression of SHH mRNA and receptor PTCH1 have also
been found in β-catenin cell clusters. Therefore, SMO in-
hibitors are another potential therapy in CP management
and have demonstrated success in treating advanced human
cancer [45].

5

https://www.imrpress.com


7. Epidermal Growth Factor Receptor
Signaling in CP

Epidermal growth factor receptor (EGFR) is a recep-
tor tyrosine kinase that has also been found to be overex-
pressed in both human and mouse aCPs [32]. Similarly to
β-catenin, EGFR activation is associated with cellular pro-
liferation, differentiation, motility, and apoptosis. In cell
clusters of aCPs, EGFR has demonstrated high rates of ex-
pression. In vitro and animal studies have demonstrated
the correlation of EGFR pathway activation with enhanced
fascin-1 expression, cell growth, and migration in aCP cells
[46–48]. Fascin is a cytoskeletal actin-binding protein that
manages cell motility and invasiveness [49]. Furthermore,
the presence of an activated EGFR pathway in β-catenin–
accumulating cells at the infiltrating borders of the tumor
supports the role of EGFR in brain invasion [46,50–52].
Stache et al. [53] demonstrated the impact of EGFR sig-
naling on promoting aCP resistance to radiation through
enhancing survivin (an antiapoptotic protein) gene expres-
sion. They have also reported that inhibition of EGFR activ-
ity leads to increasing cell death in response to radiotherapy
[53].

8. Other Signaling Pathways
Different cell populations are implicated in the patho-

genesis of aCPs. Cell clusters, characterized by whorl-
like patterns near the infiltrative regions of the tumor, have
an unknown function but represent a different cell popula-
tion from other tumor cells [3]. Cell clusters in aCPs have
demonstrated differential increased expression of Axin2
and BMP4 RNA as well as increased protein translation
in comparison with surrounding tumor cells. In addition,
increased cellular migratory potential is seen, indicating
that other mechanisms determine which cells form clusters
[24,46].

Sox2+ stem cells represent another distinct popula-
tion of cells that have been shown to stimulate tumorige-
nesis via a paracrine mechanism [3]. Embryonic induced
mice expressing degradation-resistant β-catenin in Sox2+
cells have been shown to develop tumors with β-catenin–
accumulating cluster cells similar to those of human aCPs
[54]. Interestingly, genetic tracing and molecular analy-
ses have shown that pituitary tumors do not originate from
Sox2+ stem cells, but the stem cell clusters do release fac-
tors that impact the surrounding tissue and may induce cell
transformation and tumor growth [24,55]. It is proposed
that Sox2+ cells form quiescent β-catenin–accumulating
clusters of daughter cells that are secretory and quiescent
and signal via members of fibroblast growth factor (FGF),
transforming growth factor beta (TGF-β), epithelial growth
factor, SHH pathways, cytokines, and chemokines [3].

9. aCP Cystic Tumor Pathogenesis
The cystic component of CP is responsible for signif-

icant symptoms due to mass effect and is associated with a
risk of recurrence [56]. Management of cystic CPs may in-
volve intracavitary delivery of radioisotopes or drugs which
allows for local treatment to the cyst lining leading to elim-
ination of the secretory epithelial lining and ultimately defi-
cient fluid production and cyst shrinkage [7]. Nonetheless,
targeted therapies targeting the cystic component of CPs
represent an intriguing potential option for treatment. Sev-
eral agents have been studied in cystic areas of CP, includ-
ing P32, interferon (IFN), and bleomycin [57,58]. How-
ever, improved understanding of the cystic components of
CP has opened the possibility of more targeted treatment
options.

Human aCPs are characterized by a combination of
both solid and cystic components within the tumor, and
molecular studies have characterized important inflamma-
tory mediators in the solid and cystic components. Cys-
tic fluid in human aCPs has been found to contain elevated
levels of cytokines and chemokines, specifically interleukin
(IL)-6, IL-8, IL-10, CXCL1, indoleamine 2, 3-dioxygenase
(IDO)-1, and defensin 1-3 [59,60]. Similarly, in solid com-
ponents, transcript levels of IL-6, CXCL, IL-6, and CXCR2
were elevated. In vitro studies have identified the role of
IL-6 in mitogenesis, growth, and migration of aCP cells
[30,60]. aCPs were also found to have higher transcript lev-
els of immunosuppressive factors IL-10 and IDO-1. These
findings are relevant given that they represent the role of im-
mune system modulators in tumor behavior. For instance,
IL-6 is an important activator of the STAT3 pathway, which
leads to chronic inflammation and suppression of antitu-
mor activity when dysregulated [61]. Similarly, IL-10 has
been observed to have an immunosuppressive role in the
brain and in tumor models [62,63]. Alpha defensins 1–3
and antimicrobial peptides involved in the innate immune
system have been identified in the cystic component of CPs
[59]. Importantly, alpha defensin expression decreases af-
ter treatment of CPs with IFN-α and correlates with the ef-
fectiveness of this treatment, highlighting the role of im-
mune mediators in tumorigenesis. The entire role of im-
mune system modulators in aCP tumorigenesis has yet to
be described, but these findings point to the potential role
of targeted therapy toward immune system modulators. To
our knowledge, no studies have investigated the cystic and
solid components of pCPs.

10. Molecular and Immune Mediators of CP
Recurrence and Tumor Growth

Recurrence of CPs represents a formidable challenge
because of the unpredictable behavior, morbidity, and po-
tential mortality. CPs have a recurrence rate of approxi-
mately 65%, with most occurring within the first 10 years
after surgery [64]. Given that the histologic subtype is not
likely to provide prognostic value, other molecular markers
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may have higher relevance. In terms of histologic features,
the presence of cystic lesions or whorl-like arrays in aCPs
has been associated with higher risks of recurrence [25].
Reactive gliosis, a response consisting of proliferation and
hypertrophy of glial cells after damage, has also been asso-
ciated with increased rates of recurrence, although only one
study has provided supportive evidence [25].

Molecular markers can be significant predictors of CP
recurrence. According to Coury et al. [25], molecular
markers that have consistently yielded convincing evidence
regarding expression and increased risk of recurrence in-
clude Ki-67, epithelial cell adhesion molecule (Ep-CAM),
pituitary tumor transforming gene (PTTG-1), survivin, spe-
cific retinoic acid receptor (RAR) subtypes, osteonectin,
and the chemokines CXCL12 and CXCR4. Increased ex-
pression of Ki-67, a marker of proliferation in tumors, has
been found in aggressive CPs and predicts a higher risk
of recurrence and faster tumor growth. Similarly, the an-
tiapoptotic protein survivin is upregulated in the brains of
CP patients compared with healthy brains [65]. Interest-
ingly, survivin had higher expression in aCPs compared
with pCPs or recurrent tumors. Furthermore, EpCAM, a
cell adhesion molecule associated with several cancers, and
PTTG-1, an oncogene, show increased expression in recur-
rent aCPs compared with primary CPs [66]. The presence
of osteonectin, a glycoprotein with a role in tumor angio-
genesis and proliferation, in the stroma surrounding the CP
has also shown a positive correlation with CP recurrence
rate [67]. The expression and lack of expression of cer-
tain retinoic acid receptor (RAR) subtypes is also associ-
ated with recurrence. RARs have a role in cell matura-
tion and differentiation. Low RAR-B and high RAR-y ex-
pression in CPs was associated with a higher risk of recur-
rence within two years of surgery [68]. Finally, expression
of chemokines CXCL12/CXCR4 has been associated with
worse progression-free survival in pediatric CPs [69].

Moreover, recurrent tumors are characterized by up-
regulation of angiogenesis, as driven by vascular endothe-
lial growth factor (VEGF). Indeed, recurrent CPs have
higher expression of VEGF, and aCPs have been shown
to have higher VEGF expression in comparison with pCPs
[70,71]. The latter finding supports previous descriptions of
aCP as more invasive and difficult to resect. More recently,
molecular profiling has revealed the presence of senescent
cells in mouse and human aCPs [72]. Senescent cells se-
crete senescence associated secretory phenotype (SASP),
proinflammatory cytokines, chemokines, growth factors,
and proteases. SASP is responsible for the recruitment of
immune cells for elimination and promotes the progression
of tumor cells via promotion of angiogenesis, extracellular
matrix remodeling, or epithelial mesenchymal transition. In
fact, it has been shown that targeting the SASP response in
β-catenin cluster cells leads to a reduction in tumor induc-
ing potential and highlights a need for further investigation
into the role of senescent cells in aCPs.

Immune checkpoint inhibitors have been used and ap-
proved for treatment of a variety of cancers, and their role in
CP management remains to be explored. pCPs have shown
expression of programmed-death ligand 1 (PD-L1) in some
tumor cells [73], and Lin et al. [74] reported that recur-
rent CPs have more PD-L1–expressing cells than primary
CPs. Another study of PD-L1 expression showed that it
was predominant in the cyst lining of aCP and colocalized
with β-catenin in the nucleus [73]. In comparison, PD-L1
was primarily within the tumor stromal fibrovascular cores
in pCP. These studies indicated that immune checkpoint in-
hibitors may have a role in management of CPs.

11. Usage of BRAF inhibitors for pCP
Various cancers with positive BRAF mutations have

been treated with BRAF inhibitors, including melanomas
and thyroid and colorectal cancers [75–77]. The identifi-
cation of BRAFV 600E mutations in pCP has unleashed a
new perspective on the pharmacological treatment of CP
[29,31–39]. A total of 11 reported cases of pCP have been
treated with a BRAF inhibitor, either dabrafenib or vemu-
rafenib, and with or without a mitogen-activated protein ki-
nase (MEK) inhibitor, trametinib (Table 2, Fig. 3). MEK
inhibitors could be effective by blocking the downstream
MAPK/ERK pathway, which has been shown to be down-
stream of EGFR signaling in CP [78,79]. The combination
of a MEK inhibitor with BRAF inhibitor in the treatment
of melanomas has been shown to reduce development of
tumor resistance to BRAF inhibitors and improves patient
survival [76,80,81].

Single-agent therapy with the BRAF inhibitor
dabrafenib (150 mg by mouth twice daily) or vemurafenib
(960 mg by mouth twice daily) was used in 4 cases
[32,34,36,40]. Dual targeted therapy using trametinib (2
mg by mouth daily), in combination with BRAF inhibitor,
was prescribed in 7 patients [29,31,33,35,37–39]. Regard-
less of treatment regimen, all case reports demonstrated
favorable clinical response. Tumor volume reduction—
ranging from 55% to 100%—was seen in all cases, and
both solid and cystic portions of tumor were responsive
to treatment. These reports mostly included patients
with progressive or recurrent pCP that had failed primary
treatment. The interruption of treatment because of side
effects resulted in tumor regrowth in 2 cases; however,
the tumors shrank again after readministration of agents in
both cases [29,32–40]. In another case, Himes et al. [34]
reported stable disease over 1 year after discontinuation of
dabrafenib therapy.

Combined BRAF and MEK inhibitors have been well
tolerated in all reported patients. One patient with recur-
rent BRAFV 600E-mutated tumor treated with dabrafenib
and trametinib had reduced tumor volumewithin amonth of
treatment [31]. The most common adverse effect for com-
bined inhibitors has been fever (Table 2, Ref. [29,31–40].
Other side effects include rash, arthralgia, myalgia, cough,
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Fig. 3. Signaling pathway and targeting of papillary craniopharyngioma. Constitutive activation of the BRAF signaling pathway
occurs with the V600E mutation in papillary craniopharyngioma. Inhibition of BRAFV 600E with vemurafenib or dabrafenib along with
inhibition of MEK with tramatinib has shown efficacy. ERK, extracellular signal-related kinase; MEK, Mitogen-activated protein kinase
kinase; RTK, receptor tyrosine kinase; RAS-GTP, Ras-guanosine triphosphate.

and elevated liver enzymes. These symptoms also have
been reported in patients treated with BRAF inhibitor for
other type of diseases [82–84].

Preoperative treatment with BRAF/MEK inhibitors
may be helpful as a neoadjuvant treatment by reducing tu-
mor volume. Juratli et al. [37] reported a patient with
BRAFV 600E-mutated pCP who received dual-agent tar-
geted therapy after biopsy of lesion. A significant reduc-
tion in the tumor size (>80%) and improvement of the pa-
tient’s symptoms was observed after 6 months of treatment
[37]. This report for the first time suggested the potential
use of targeted therapy as a neoadjuvant treatment. Further
investigations, particularly clinical trials, are needed to de-
termine the optimal drug combination, dose, and duration,
as well as to evaluate the safety and efficacy of treatment.

Recently, minimally invasive and noninvasive meth-
ods for preoperative tumor diagnosis including the use
of magnetic resonance imaging characteristics that predict
BRAF-mutated pCP [41,85] and detection of circulating
BRAFV 600E mutations in peripheral blood have been de-
scribed [31]. These proposed diagnostic approaches need
to be validated in prospective studies; however, if a BRAF-

mutated pCP could be identified preoperatively through
reliable noninvasive techniques or a routine tissue biopsy
(using image-guided transcranial or transsphenoidal tech-
niques), neoadjuvant targeted therapy with these agents
could reduce tumor burden and facilitate surgical interven-
tion or radiation therapy and potentially reduce associated
morbidities.

12. Potential Use of EGFR Inhibitors
EGFR inhibitors, as either monoclonal antibodies or

tyrosine kinase inhibitors, represent a potential therapeu-
tic in the management of CPs and have been efficacious
for the treatment of non–small-cell lung cancer (NSLC),
breast, and colorectal cancer [86]. Indeed, in vitro exper-
iments have demonstrated that gefitinib (a selective EGFR
inhibitor) treatment prevents migration and motility of tu-
mor cells and significantly reduces fascin mRNA expres-
sion in aCP cells [78]. In addition, EGFR inhibitors could
provide another therapeutic benefit by increasing tumor cell
sensitivity to radiation [53]. Further animal models and pre-
clinical studies will be needed to investigate the benefit of
EGFR inhibitors in the treatment of aCPs.
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Table 2. Studies describing the use of targeted therapy in BRAFV 600-mutated papillary craniopharyngiomas.
Paper Age/Sex Prior treatment Targeted treatment agent(s) Duration Treatment after

targeted therapy
Response to treatment Final outcome Complication(s)

Brastianos et al. 2016 [31] 39/M 5 surgeries dabrafenib 150 mg bid + trametinib 2
mg bid (after 21 days)

52 days TSS + RT 85% and 81% reduction
in solid and cystic

components at 35 days

stable disease
after 18 mo

Low-grade fever

Aylwin et al. 2016 [32] 57/F (27 at
diagnosis)

3 surgeries + RT vemurafenib 960 mg bid 10 mo (3 mo
interruption
after 3 mo)

surgery for CSF leak near-complete resolution
after 3 mo

Progression
after 7 mo

CSF leak with
meningitis due to tumor

shrinkage

Rostami et al. 2017 [29] 65/M 1 surgery dabrafenib 150 mg bid + trametinib 2
mg daily (after 21 days)

7 weeks RT 91% reduction of the
tumor at 15 weeks

fever

Roque et al. 2017 [33] 47/F 1 surgery + Ommaya
cyst aspiration + RT

dabrafenib 150 mg bid + trametinib 2
mg daily

7 mo none near disappearance of
tumor at 7 mo

intermittent fever

Himes et al. 2018 [34] 52/M (47 at
diagnosis)

1 surgery + RT dabrafenib 150 mg bid (dose
reduction after several weeks then
dose was increased to 225 mg daily)

12 mo none significant decrease in
tumor size at 6 mo

stable disease 1
year off therapy

joint pain

Bernstein et al. 2019 [35] 60/M 4 surgeries + RT dabrafenib 150 mg bid + trametinib 2
mg daily (after 14 days)

28 mo none 100% tumor reduction at
2 mo

complete
response at 28

mo

verrucal keratosis

Rao et al. 2019 [36] 35/M 1 surgery + shunt dabrafenib 150 mg bid 24 mo none Complete response of
solid component at 24

mo

none

Juratli et al. 2019 [37] 21/M biopsy dabrafenib 150 mg bid + trametinib 2
mg daily

6 mo none 80% response at 6 mo none

Khaddour et al. 2020 [38] 39/M 1 surgery dabrafenib 150 mg bid + trametinib 2
mg daily

9 mo gamma knife
radiosurgery

>70% tumor reduction
at 9 mo

in remission for
2 years

mild fever

Di Stefano et al. 2020 [39] 55/F 1 surgery dabrafenib 150 mg bid + trametinib 2
mg daily

12 mo RT 94.5% tumor shrinkage
after 72 days

stable at 385
days

fatigue, coughing,
peripheral edema

Chik et al. 2021 [40] 37/M (10 at
diagnosis)

4 surgeries vemurafenib 960 mg bid 40 mo 2 surgeries followed
by RT and gamma

knife

55% tumor reduction at
15 mo

arthralgia, myalgia,
elevated liver enzymes,
severe sun sensitivity

RT, radiotherapy; bid, twice daily; TSS, transsphenoidal surgery; CSF, cerebrospinal fluid.
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13. Tyrosine Kinase Inhibitors of VEGF
Receptors

VEGF regulates angiogenesis and promotes tumor
growth, metastasis, and recurrence [86,87]. One down-
stream pathway in aCP of Wnt/β-catenin signaling is ex-
pression of VEGF [9,79,87]. Studies demonstrated that
recurrent aCPs show higher levels of VEGF expression
than primary tumors, suggesting that VEGF expressionmay
have an important role in growth and invasiveness of aCP
[88–91]. Furthermore, Hu et al. [92] showed the associ-
ation of VEGF expression with CP radiosensitivity. Tu-
mors with a higher level of VEGF receptor-2 expression are
insensitive to 32P-colloid interstitial radiotherapy. These
findings suggest that the VEGF pathway could be a poten-
tial target in medical therapy of aCP. New treatment modal-
ities with VEGF inhibitors, such as bevacizumab, could
have a therapeutic benefit in the management of CP. Higher
VEGF expression in recurrent and aCP tumors suggest that
tyrosine kinase inhibitors of VEGF receptor may have a
therapeutic role in preventing or delaying CP recurrence
[92]. No trials have evaluated the use of VEGF inhibitors
alone in aCP patients. Grab et al. [93] reported a significant
decrease in tumor cyst size after treatment with combination
of systemic tocilizumab (a monoclonal antibody against IL-
6 receptor) and bevacizumab in a case of recurrent aCP.

14. Role of Directed Therapies against
Inflammatory Mediators in aCP

The role of the immune microenvironment in CP
pathogenesis is increasingly recognized in recent years
[94], and several studies have attempted to evaluate the use
of selective inflammatory blockade as a potential therapeu-
tic target for treatment of aCP [44]. IFN has antitumor ac-
tivity through inhibition of cell proliferation and modula-
tion of the host’s immune response [95,96]. Several studies
have investigated the efficacy of intracystic and systemic
administration of IFN with promising results. Cystic treat-
ment can delay surgery or radiotherapy through cyst shrink-
age, which can reduce the patient’s risk profile for treat-
ment, especially in children [97–100]. Jakacki et al. [101]
reported the result of systemic IFN-α2a administration in
patients with progressive or recurrent CP. Among 12 pa-
tients at the end of study, a radiologic response was demon-
strated in 3 patients with predominantly cystic tumors (one
patient with complete response). In patients without pro-
gressive disease that completed one year of therapy, pro-
gression was seen in 3 and 6 patients after discontinuation
of IFN, respectively. The median time to progression was
25 months. Yeung et al. [102] explored the efficacy of pe-
gylated IFN in treatment of 5 patients with recurrent CP. Pe-
gylated IFN-α2bwas shown to bemore effective because of
longer plasma half-life compared with non-pegylated IFN
[103]. All patients treated with pegylated IFN-α2b expe-
rienced stable disease or better in response to treatment (2
complete responses, 2 partial responses, 1 stable disease)

[102]. No evidence of disease progression was observed
during the follow-up period. Like the previous study, all pa-
tients had predominantly cystic tumors in this series [102].
The Pediatric Brain Tumor Consortium conducted a multi-
center phase 2 study of using pegylated IFN-α2b in children
and young adults with unresectable or recurrent CP [104].
Among 7 patients who did not have previous radiotherapy,
2 had a partial response and 1 had a durable response >3
months. No patient who failed radiotherapy had a response
with pegulated IFN-α2b, but treatment was well tolerated.
While promising, the role of IFN as an alternative treatment
for patients with recurrent or progressive CP remains un-
clear given that these studies had small sample sizes, short
follow-up periods, and did not include solid CPs. Still, the
use of IFN in the future, particularly in tumors with a pre-
dominantly cystic component warrants further investigation
given that it has been shown to delay disease progression
and may defer the need for radiation therapy in children
with CP.

Targeting of IL-6 has been evaluated as a method to
modulate inflammatory signaling in CPs. Grob et al. [93]
reported the first systemic use of tocilizumab, a monoclonal
antibody against IL6-R, in the management of two patients
with cystic aCP that was refractory to intracystic therapy.
They administered tocilizumab alone in one patient and
tocilizumab in combination with bevacizumab (VEGF in-
hibitor) in another. A partial tumor response and signif-
icant decrease in cyst volume were seen in both patients.
Grob et al. [93] proposed tocilizumab as a new potential
agent for the treatment of cystic aCP. Currently, a Phase 0
clinical trial (NCT03970226) is investigating the efficacy
of tocilizumab in the management of aCP.

15. Current Clinical Trials in CP
Only a handful of clinical trials are currently evalu-

ating targeted agents in CP (Table 3). A Phase 2 clinical
trial (NCT03224767) is investigating the combined use of
BRAF and MEK inhibitors (vemurafenib and cobimetinib)
for the treatment of BRAFV 600E mutant pCPs in adults 18
years or older. Patients are given vemurafenib for 28 days
combined with cobimetinib for 21 days with up to 5 re-
peated cycles. Outcome measures include response rate,
progression-free survival, and overall survival.

NCT03970226 is a phase 0 study examining the role
of tocilizumab, a monoclonal IL-6 antibody, in the treat-
ment of newly diagnosed and progressed aCPs in children
and adolescents 2 to 21 years of age. In this study, pa-
tients are given systemic tocilizumab, and the presence
of drug metabolites, IL-6 levels, and other inflammatory
markers are measured within tumor tissue, tumor cyst, or
CSF fluid. If drug metabolites are detected, patients are el-
igible for concurrent enrollment to evaluate the efficacy of
tocilizumab by measuring progression-free survival, over-
all response rate, 1-year disease stabilization, and tissue
analysis using various biomarkers. Lastly, NCT03610906
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Table 3. Current clinical trials in molecular targeted therapy of CP.
Clinical trial Phase Molecular target Objective

NCT03224767 II BRAF Pathway To study the combined used of BRAF and MEK inhibitors (vemurafenib and
cobimetinib) for the treatment of BRAFV 600E mutant papillary craniopharyngiomas in

adults 18 years or older
NCT03970226 Zero IL-6 To study the role of tocilizumab, a monoclonal IL-6 antibody, in treatment of newly

diagnosed/progressed aCp in children and adolescents ages 2–21 years
NCT03610906 I/II To identify new potential areas of target in pediatric patients

is a phase 1/2 study that aims to identify new potential ar-
eas of target in pediatric patients but is not examining any
targeted treatment.

16. Conclusions
There are multiple promising genetic and molecular

biomarkers being explored for prognostic and therapeutic
purposes in CP. Differences in histology, namely between
aCP and pCP, do not necessarily correlate with prognosis
and outcomes; however, different mechanisms for patho-
genesis of these subtypes have aided in understanding the
disease and targeting therapeutics. Overexpressed onco-
genes in CP include genes controlling cell growth, prolifer-
ation, and angiogenesis among other pathways. These mu-
tations can serve as both therapeutic targets and biomarkers
of prognosis. Furthermore, variations in molecular mark-
ers can be seen in recurrent versus primary CP, indicating
that differences in mutational signatures could potentially
help understand and predict recurrence. Inhibition of some
genes overexpressed in recurrent CP may be able to reduce
recurrence rates overall. Currently, the primary treatment
for recurrent CPs should include repeat surgery or radio-
surgery given that current investigative targeted therapies
are emerging.

Oncogenic gene mutations in CP are also implicated
in other forms of cancer and have been targeted for therapy
with molecular inhibitors. Drugs targeting these pathways
have been testedwith reasonable success onmedicallyman-
aged CPs. Apart from pure medical treatment, a promising
application for such drugs is for neoadjuvant therapy to be
followed by radiation or resection. EGFR inhibitors could
both prevent tumor growth and sensitize the tumor to sub-
sequent radiation therapy. Inhibitors of the BRAF/MEK
pathway in pCP have proven to be effective in shrinking
tumors and may facilitate resection. VEGF inhibitors, in
combination with IL-6 inhibitors, have also been shown to
reduce tumor size, although no studies have been done with
VEGF inhibitors alone. Further studies and clinical trials
are needed to examine these applications for their therapeu-
tic potential. Immunotherapy may also have potential for
combating CP growth and spread. Current clinical trials are
examining the use of IL-6 inhibition in CP treatment. The
expression by pCP tumors of PD-L1, especially in recurrent
tumors, also suggests anti-PD-1/PD-L1 immunotherapy as
a potential route for CP therapy.

Challenges remain in applying our knowledge of
molecular drivers towards clinical treatment in CP. Only
a handful of clinical trials are currently evaluating the role
of molecular treatments, with reports of successful agents
only being found in rare case reports. Driver mutations and
their associated signaling pathways should be further ex-
plored within in vitro and animal models; however, clinical
studies are also required to translate the therapeutic value in
CP management and establish the efficacy of these agents.
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