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ABSTRACT: 
 

Bioprinting facilitates the generation of complex, three-dimensional (3D), cell-based 

constructs for various applications. Although multiple bioprinting technologies have 

been developed, extrusion-based systems have become the dominant technology due to 

the diversity of materials (bioinks) that can be utilized, either individually or in 

combination. However, each bioink has unique material properties and extrusion 

characteristics that affect bioprinting utility, accuracy, and precision. Here, we have 

extended our previous work to achieve high precision (i.e., repeatability) and printability 

across samples by optimizing bioink-specific printing parameters. Specifically, we 

hypothesized that a Fuzzy Inference System (FIS) could be used as a computational 

method to address the imprecision in 3D bioprinting test data and uncover the optimal 

printing parameters for a specific bioink that result in high accuracy and precision. To 

test this hypothesis, we have implemented a FIS model consisting of four inputs (bioink 

concentration, printing flowrate, speed, and temperature) and two outputs to quantify 

the precision (scaffold bioprinted linewidth variance) and printability. We validate our 

use of the bioprinting precision index (BPI) with both standard and normalized 

printability factors. Finally, we utilize optimized printing parameters to bioprint 

scaffolds containing up to 30 x 106 cells/mL with high printability and precision. In total, 

our results indicate that computational methods are a cost-efficient measure to improve 

the precision and robustness of extrusion 3D bioprinting with gelatin-based bioinks. 
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1. Introduction:  

 

1.1. Bioprinting 
 

Additive manufacturing is a process by which three-dimensional objects are generated 

by depositing material in sequential layers [1–3]. Bioprinting is an emerging field of 

additive manufacturing, in which bioactive scaffolds can be quickly generated by 

depositing layers of cell-laden biocompatible materials, such as collagen or other 

hydrogels [4]. After slicing a computational three-dimensional (3D) model of a desired 

scaffold, the appropriate extrusion path and required printing parameters can be used to 

direct the fabrication of the construct in a layer-by-layer fashion. Indeed, the ability to 

place cells in biologically relevant scaffold materials with a high spatial resolution has 

made bioprinting a popular fabrication method for tissue engineering [4–6]. 

 

However, the parameters used to perform the bioprinting procedure will have significant 

effects on the final properties of the scaffold [7]. Therefore, it is essential to fully 

characterize and optimize the bioprinting parameters (e.g., print speed or bioink 

viscosity) necessary to reach the desired outputs, such as architectural matching of the 

defect shape, high cell viability, appropriate cell function, and mechanical properties [8]. 

For example, increasing the nozzle size on the bioprinter decreases the shear stress placed 

on the biomaterial during extrusion, resulting in increased cell viability but reduced print 

resolution [9]. Therefore, determining the optimal print parameters is imperative for 

success in bioprinting. As a result, several studies have been performed in the field of 

bioprinting optimization, such as the optimization of a computational model for 3D 

bioprinting, bioink optimization, and bioprinting parameter selection [10,11]. 

 

Hydrogels provide three-dimensional (3D) support for cellular growth and tissue 

formation similar to native extracellular matrix (ECM) and are widely utilized to study 

cellular proliferation, migration, differentiation, and interaction [12–14]. In general, 

hydrogels are crosslinked networks of hydrophilic polymers that swell in water 

[13,15,16]. One of the most common natural hydrogels in biomedical applications and 

bioprinting is gelatin, which is derived through collagen hydrolysis. Although there are 

several ways to hydrolyze the collagen, we have used Type A (acid-derived) gelatin in 

this experiment.  Gelatin is particularly useful for drug release and tissue engineering 

due to its biocompatibility [17], rapid biodegradability, constituent purity, high cell 

attachments due to arginine-glycine-aspartic acid (RGD) sequences [18], and tunable 

physical properties [16]. The composition, crosslinking method, and level of crosslinking 

of gelatin-based materials affect its physical and biochemical properties. Crosslinking 

gelatin bioink can be done by photo crosslinking [7,19], enzymatic crosslinking [20], 

thermal crosslinking [21], or chemical crosslinking [22]. As a result, our study is directly 



applicable to a variety of other gelatin-based bioinks, such as gelatin methacryloyl 

(GelMA) [13,23]. 

 

1.2. Approximation and Prediction 
 

There is a significant degree of imprecision and uncertainty inherent in bioprinting 

optimization. A potential approach to handling this issue, which arises from normal 

biological variation, is implementing approximation systems based on computational 

methods [24]. In recent years, systems biology has become a critical multidisciplinary 

research area between computer science and biology. Studies in this field aim to develop 

computational models of biological processes, requiring both a robust dynamic model 

and a large dataset of experimental results [25,26].  

 

Developing a dynamic model is challenging and requires well-characterized control 

parameters to approximate laboratory experiments' outcomes. Nonetheless, recent 

studies have observed that machine learning algorithms can effectively predict output 

parameters using either a deterministic or stochastic biological model. A partial list of the 

approaches employed to this end includes meta-heuristic, evolutionary, global 

optimization, genetic programming, simulated annealing, simplex, ant-colony, fuzzy 

genetic hybrid system, and multi-objective optimization [25,27]. In-silico models have 

significantly helped reproducibility and quality in the in-vitro experiments in tissue 

engineering fields [28–30]. 
 

1.3 Fuzzy Inference System (FIS) 

 

Fuzzy Logic (FL) is an extension of standard logic, in which values can only be completely 

false or completely true. In contrast to the standard logic set with a crisp boundary, values 

in the Fuzzy set can have a degree of truth between 0 (completely false) and 1 (completely 

true) [31]. Moving from discrete to continuous values provided a computational 

approach to approximate the model output with the inherited uncertainty and 

imprecision. As a result, this status offers a computational model to move from discrete 

to continuous values. A system based on FL is called a Fuzzy Inference System (FIS). A 

FIS is a framework consisting of Fuzzification, Inference Engine, and Defuzzification. A 

complete discussion of the Fuzzy Set theory and implementation can be found in the 

Supplement. 
 

As a potential solution for overcoming potential uncertainty, we have developed a 

quantitative model of a biomanufacturing process using the FIS approach. Previous 

studies have shown that the accuracy of a fuzzy system approach is the same as the 

deterministic mathematical approach (ordinary differential equations) for the same 



kinetic dataset [32]. Moreover, fuzzy systems can be utilized to find a qualitative system 

response when a quantitative dataset is unavailable [31,33]. In decision-making systems, 

theoretical fuzzy models have been used to approximate biomechanical properties such 

as the stress/strain of a bone structure in a biological process [34–36]. The mathematical 

model of the FIS has been provided in the Supplement.  

 

1.4 Approximation in 3D printed Scaffold 
 

Bioprinting outputs can be predicted using classic physics formulation or computational 

and machine learning methods. We recently demonstrated that computational methods 

are precise in the output approximation, which can be measured and optimized based on 

the bioprinting inputs of speed, pressure, and dilution percentage [34]. Here, we propose 

to implement an approximation model using a 3D scaffold with greater complexity of 

inputs. To do so, we implemented a fuzzy system and measured the approximation error 

on the dataset. Ultimately, we optimized and approximated the bioprinting output for 

extrusion parameters in four different precision and printability indexes and measured 

the validation error. Fig. 1 shows the general workflow of the process.  
  



2. Methods 

 

2.1. Bioprinting parameters and study design 
 

Gelatin was chosen as a bioink for acellular 3D printing and bioprinting due to its ability 

to form hydrogel constructs of similar stiffness to soft tissue as well as permit adequate 

cellular proliferation and differentiation [14,37]. Here, we refer to both acellular and 

cellular gelatin as bioink. Importantly, gelatin is a highly temperature-dependent 

material whose viscosity generally decreases as a function of temperature and 

concentration [38]. Therefore, optimization of gelatin concentrations and bioink 

temperature is critical for achieving high-precision bioprinting. Furthermore, the 

extrusion flow rate (corollary to the input voltage to the extrusion motor) and travel 

speed of the nozzle strongly affects printing precision. To investigate the effect of these 

four factors (gelatin concentration, bioink temperature, flow rate, and nozzle speed) on 

the precision and printability of gelatin, a full factorial design (all possible combinations) 

is the most reliable experimental design. However, this method is not practical in terms 

of time and cost due to the large number of experiments required. Therefore, we utilized 

a common experimental design to identify the minimum number of experiments 

required, known as response surface methodology (RSM) [39]. Specifically, we used a 

central composite design (CCD) in which the center points have enough replication to 

allow for a test of the model's lack of fit. Here, our input parameters were designed to 

span the range of optimal values as follows: the input voltage of the extrusion motor (0.9, 

1.1, and 1.3 V), travel speed of the nozzle (4, 8, and 12 mm/s), bioink temperature (15, 25, 

and 35 °C), and bioink concentration (3, 4, and 5% w/v). Since each parameter had three 

discrete values, the number of experiments required to provide FIS input data was 31 

prints including 7 center points (Table 1). Each print condition was performed in 

triplicate. 

 

2.2. Acellular 3D bioprinting 

 

Three different concentrations of ink (3%, 4%, and 5% w/v) were prepared and stored in 

50 mL centrifuge tubes. Type A gelatin from porcine skin (gel strength 300, G2500-500G, 

Sigma-Aldrich) was measured and gradually added to warmed Dulbecco’s phosphate-

buffered saline (DPBS) (Gibco 14190136). For better contrast during the imaging, 100 µL 

of red food dye was added to each solution. Next, 2.5 mL of each gelatin ink concentration 

was pipetted into a 3 mL syringe. The syringe was capped with a 25-gauge 0.25 mm 

internal diameter tapered plastic tip nozzle (8001279, Fisnar), and the syringe was loaded 

into a custom-built extrusion bioprinter with a temperature control system. The extrusion 

of the biomaterial was controlled via voltage delivered to a 6V 30:1 micromotor with a 

threaded shaft (Pololu). The print layout was a 30 mm x 30 mm grid square with a 500 



µm layer height. Infill distances were 5 mm. Three replicates of each printing parameter 

set were performed (n=3). Each freshly loaded ink syringe was maintained for ten 

minutes in a water bath inside a 4 °C fridge. Then, the syringe was put in the preheated 

bioprinter extruder and kept at the printing temperature for at least 10 minutes before 

printing. Room humidity was maintained at less than 40% with a room temperature 

range of 22-24 °C. Constructs were imaged using a stereo microscope (LAXCOTM) at 

0.67X zoom and analyzed in FIJI [21]. 
 

2.3. Gaussian (nominal) Distribution Analysis 
 

To determine and quantify the actual bioprinted construct line width, we measured each 

side of the 16 squares (40 data points per sample). In order to implement the FIS with our 

measured data series for each printed scaffold, we used a nominal distribution to find the 

variance for the linewidth data for each printing parameter. Here, low variance indicates 

a more uniform line width data in a printed scaffold. Therefore, our approximator used 

the variance as a precision measurement (the first output). The Gaussian distribution is a 

two-parameter family of curves, which is a continuous probability distribution for a real-

valued random variable. The general form of the normal probability density function 

(pdf) is: 

𝑦 = 𝑓(𝑥 | 𝜇, 𝛿) =
1

𝛿√2𝜋
𝑒

−(𝑥−𝜇)2

2𝛿2  

Where 𝜇 is the mean and 𝛿 is the variance. 

 

2.4. Printability Factor 
 

Printability is a factor that quantifies shape fidelity with a referenced formula for multiple 

shapes. For a square shape, the bioink printability (𝑝𝑟) uses the following function: 

 

𝑝𝑟 =  
𝐿2

16𝐴
 

Where 𝐿 is the perimeter and 𝐴 is the area of the enclosed area. For an ideal gelation 

condition or perfect printability status, the interconnected channels of the constructs 

would demonstrate a square shape, and the 𝑝𝑟 value is 1. 𝑝𝑟 indicates the degree of 

gelatin bioink to maintain the construct shape fidelity [40]. Although a shape can have 

the 𝑝𝑟 value equivalent to 1, this metric does not represent the overall 3D construct shape 

fidelity. Therefore, we introduced a new 𝑝𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 metric generated by multiplying by 

the normalization coefficient. We use the following normalization coefficient to 

normalize the 𝑝𝑟 value: 



 

𝑝𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝 𝑝𝑟𝑖𝑛𝑡𝑒𝑑 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
×  𝑝𝑟 

Here, we expected 16 squares in each printed scaffold. In this approximation model, 

𝑝𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the second system output.  

 

2.5. Fuzzy Inference System  
 

The FIS structure is programmed utilizing the MATLAB FIS editor toolbox to implement 

the model and approximate the precision and printability. The Sugeno-based fuzzy 

inference system and the Gaussian membership functions are used to fuzzify the datasets 

and map the relationship between the process inputs and the outputs. In the first step, 

we designed FIS membership functions with four inputs (gelatin concentration (% w/v), 

bioink temperature (°C), flowrate (V), speed (mm/s)), and two outputs (precision and 

printability) (Supplemental Figure 1). The detailed implemented FIS also includes the 

inputs, fuzzifier, rules, inference engine, defuzzifier, and outputs (Fig. 2). The 

implemented fuzzy rules are detailed in the Supplemental Methods. Next, we measured 

the Root Mean Square Error (RMSE) and accuracy between the experimented output 

(precision and printability) and the approximated outputs. 

 

The approximation RMSE is calculated based on the error between the actual (printed) 

precision for a printing set and the approximated for each print set as follows: 

 

𝑅𝑀𝑆𝐸 ( 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟) =  √∑
(𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2 

𝑛

𝑛

𝑖=1

 

 

Where 𝑛 is the number of observations (printed scaffolds Table 1-2). The accuracy of the 

FIS on given datasets is derived as follows: 

 

𝐴𝑐𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

 

2.6. Bioprinting Precision Index 

 

In recent work, we introduced the Bioink Precision Index (BPI) as a new metric for 

evaluating bioink precision [34]. BPI is a metric derived from a fuzzy surface gradient 

value (e.g. Fig. 4); therefore, this metric is dimensionless to measure precision and system 



robustness. Furthermore, this technique can be applied to the printing of any 2D or 3D 

shape. In contrast to our previous work, we used 3D constructs as a scaffold to 

approximate the printability and precision to optimize and achieve the BPI. 

The standard calculation for a gradient of a 3D surface with four inputs: 

 
𝑓(𝑥, 𝑦, 𝑧, 𝑘) ≈ 𝑓(𝑥0, 𝑦0, 𝑧0, 𝑘0) + (∇𝑓)𝑥(𝑥0, 𝑦0, 𝑧0, 𝑘0)(𝑥 − 𝑥0) +  (∇𝑓)𝑦(𝑥0, 𝑦0, 𝑧0, 𝑘0)(𝑦 − 𝑦0)

+ (∇𝑓)𝑧(𝑥0, 𝑦0, 𝑧0, 𝑘0)(𝑧 − 𝑧0)  + (∇𝑓)𝑘(𝑥0, 𝑦0, 𝑧0, 𝑘0)(𝑘 − 𝑘0)   

  

Thus, BPI is calculated from the sum of the squared error of the above equation: 

 
𝐵𝑃𝐼

=  √(∇𝑓)𝑥(𝑥0, 𝑦0, 𝑧0, 𝑘0)2 + (∇𝑓)𝑦(𝑥0, 𝑦0, 𝑧0, 𝑘0)2 + (∇𝑓)𝑧(𝑥0, 𝑦0, 𝑧0, 𝑘0)2 + (∇𝑓)𝑘(𝑥0, 𝑦0, 𝑧0, 𝑘0)2 

 

Where 𝑥0, 𝑦0, 𝑧0,  𝑎𝑛𝑑 𝑘0 are the inputs in our system (gelatin concentration, flowrate, 

speed, and temperature). 
 

2.7. Cell Culture 

 

C2C12 immortalized mouse myoblasts (CRL-1772TM, ATCC) were cultured in T75 and 

T175 flasks with proliferation medium: Dulbecco’s Modified Eagle Medium, high 

glucose, pyruvate (Gibco, 11995-081); qualified, heat-inactivated fetal bovine serum 

(Gibco, 16140-071) at 10% (v/v); and penicillin-streptomycin (Gibco, 15070-063) at 1% 

(v/v). When the cells reached above 80% confluency, they were suspended using a 0.05% 

of Trypsin-EDTA solution (Gibco, 15400054), diluted in DPBS, and reseeded into a new 

flask at an appropriate seeding density to enable cell expansion. Once an adequate 

number of cells were generated, the cells were again suspended, counted, and 

encapsulated in the gelatin bioink warmed to 37 °C at concentrations of 1, 10, and 30x106 

cells/mL for rheological and cell printing tests. 

 

2.8. Bioink rheological testing 

 

The viscosities of the 4% (w/v) gelatin bioinks at concentrations of 1, 10, and 30x106 

cells/mL were evaluated using a Discovery Hybrid Rheometer-3 (TA Instruments). The 

system was controlled using TRIOS software. Each of the bioinks at varying cell 

concentrations was tested by pipetting 1.9 mL of the bioink onto the testing surface and 

a 60 mm flat parallel plate testing geometry (511600.905, TA Instruments) was lowered 

to a testing gap of 600 µm. The top bowl of the parallel plate geometry was filled with 

distilled water and enclosed with a solvent trap to prevent evaporation of the hydrogel. 



The sample was heated to 37 °C and preshear was performed at a rate of 100 1/s for 60 s. 

The material was allowed to stabilize by cooling the sample to 4 °C and then warming 

the sample to 30 °C for 10 min. The viscosity was measured by flow sweep with a shear 

rate range of 1-333 1/s collecting 10 points per decade. 

 

2.9. Cellular 3D bioprinting  

 

Bioinks consisting of cellular concentrations of 1, 10, and 30 x 106 cells/mL in 4% (w/v) 

gelatin were loaded into 3 mL syringes and bioprinted as described using the same 

printing geometry. However, no food dye was added to these bioinks. The printing 

parameter set was predicted by the model to exhibit high printability and high precision: 

a temperature of 30 °C, extrusion voltage of 0.9, and speed of 6 mm/s. The macroscopic 

scaffold was again captured using a stereo microscope. Magnified phase-contrast images 

to display the varying cell densities were captured on an Axio Observer 7 microscope 

(Zeiss).  



3. Results 

 

3.1. FIS Approximator Performance 

 

First, the series of parameter sets designed to function as the FIS input data (Table 1) were 

used for bioprinting and the resultant constructs were imaged. Next, printing precision 

and printability were quantified for each parameter set. Printability values over 0.8 and 

precision values lower than 250 were categorized as “high”. Conversely, printability 

factors equal and less than 0.8 and precision over 250 were categorized as “low”. As a 

result, the parameter sets could be divided into four groups: A) high precision, high 

printability; B) high precision, low printability; C) low precision, high printability; and 

D) low precision, low printability (Fig. 3). Overall, we observed that the FIS approximated 

the experimental input data with 95% accuracy and low relative RMSE for both precision 

(92.9) and printability (0.12) outputs (Table 3). 

 

3.2. FIS Validation 

 

Next, we used six BPI surfaces to visualize the results of the multi-dimensional FIS 

approximation, considering either precision as an output (Fig. 4a) or printability as an 

output (Fig. 4b). To validate this model for approximating and optimizing precision and 

printability, we randomly chose three printing parameter sets to represent each of the 

four groups characterized previously (Table 2). Importantly, these validation parameter 

sets were not included in the parameter sets used to generate the FIS input data. Each 

validation parameter set was used to generate three individual constructs using the same 

conditions as the FIS input data (Fig. 5). Here, the printability and precision validation 

accuracy was 75% and 87%, respectively. Furthermore, the RMSE value for printability 

and precision with the validation dataset was 0.28 and 105.3 (Table 3). 
 

In general, the printed constructs were consistent with our model approximations (Fig. 

5). In particular, the mean precision (166 ± 9.7) and printability (0.8 ± 0.09) in Group A 

were both categorized as high, and resulted in continuous, uniform fibers with little 

bleeding of the deposited filament. Similarly, the results from Group B were as predicted, 

with mean printability categorized as low (0.6 ± 0.3) and mean precision categorized as 

high ( 222.5 ± 16.13). Here, the resultant printed constructs had relatively uniform fibers 

with discontinuous filaments or non-sharp corners. In Group C, the results were 

consistent with the approximated data and categorized as high mean printability (0.89 ± 

0.15) and low mean precision (323 ± 122). Group C printed constructs exhibited relatively 

continuous fibers with good intersections in most groups, but the prints were often over-

gelated with inconsistent fibers, jagged edges, discontinuities, and various diameters. 

Finally, the results from Group D were categorized as low mean printability (0.6 ± 0.3) 



and low mean precision (358 ± 126), consistent with model predictions. Thus, Group D 

constructs had highly variable diameters and discontinuous fibers that were too fluid and 

bled into each other.  

 

3.3. Cell-laden bioink 

 

Finally, we analyzed bioink viscosity following the inclusion of cells of varying 

concentration into a 4% (w/v) gelatin bioink (Fig. 6A). The viscosity of the bioink at 30 °C 

was similar across cellular concentrations from 0, 1, 10, and 30 x 106 cells/mL. During the 

constant portion of the viscosity curve, the bioink containing 30 x 106 cells/mL did exhibit 

a modest increase in viscosity that is unlikely to affect bioprinting outcomes. Next, cell-

laden gelatin bioinks were bioprinted using parameter sets predicted to have high 

precision and printability: 4% (w/v), 30 °C, 0.9 V, and 6 mm/s (Fig. 6B). Here, we observed 

results from all cell concentrations were similar to the acellular prints. The varying cell 

densities of the bioprinted fibers were confirmed using phase contrast microscopy (Fig. 

6C).  

  



4. Discussion 
 

In this study, we introduced a novel approach to approximate the Bioink Precision Index 

(BPI) by utilizing a fuzzy inference system (FIS) in a 3D bioprinting process with multiple 

inputs and outputs. In this model, inputs included gelatin bioink concentration, 

bioprinting flowrate, printing speed, and bioink temperature along with two outputs 

(precision and printability). Next, the BPI surface was generated using the experimental 

design data. We then tested four new printing parameter sets that had not been in the FIS 

input dataset. As expected, the precision and printability of the constructs varied widely 

based on the parameter set. Importantly, the experimental results were consistent with 

the approximation model that accurately predicted parameter sets with both high and 

low precision. Finally, we utilized the optimal printing parameters to generate high-

precision constructs with cell-laden bioink. In total, our study demonstrates that 

computational methods are a cost-effective way to significantly improve precision in 3D 

bioprinting. 

The difference between fuzzy systems and machine learning methods, such as neural 

networks, is that fuzzy systems can utilize raw and ambiguous data whereas neural 

networks rely on training data to learn and improve system accuracy over time. 

Moreover, fuzzy systems have transparency in data inferencing and approximation, 

whereas the inference model used with machine learning methods cannot be precisely 

extracted. Therefore, we used an FIS model to robustly approximate precision and 

printability in gelatin-based bioprinting. Nonetheless, we note that this system can be 

adapted to essentially any bioink or bioprinting environment. In contrast, conventional 

physics-based formulations cannot be utilized for optimization since they are not 

reversible in the multi-parameter domain. Also, the non-convex solution space and 

discrete values in the traditional formulation of the process decrease the probability of 

obtaining optimized bioprinting parameter sets.  

 

One of the limitations of this study is the lack of experiments using alternative nozzle 

sizes. Furthermore, since the BPI is specifically a measure of output precision, utilizing a 

parameter set with optimal BPI may not result in high accuracy. As a result, choosing a 

parameter set for bioprinting may result in a necessary tradeoff between accuracy and 

precision. Furthermore, future work could extend this approach to other parameters that 

bioprinting experimental outcomes, such as cell viability or biocompatibility. 

Nonetheless, we note that BPI is independent of input dimensions/units and will remain 

a valuable metric as bioprinting needs and technology evolves. 

 

To ensure that our optimization of printing parameters extended to cell-laden bioink, we 

bioprinted gelatin containing C2C12 myoblasts in a range of common cell densities. 



Indeed, previous work identified 30 x 106 cells/mL to be the most effective concentration 

of cells for direct implantation and differentiation of skeletal muscle cells [41]. 

Importantly, the inclusion of cells did not dramatically change the viscosity of the bioink 

across any of the tested cell concentrations. While a 1-2 kPa.s increase in viscosity was 

noticed for the 30 M cells/mL, we do not expect that this modest effect would have any 

impact on bioprinting. Indeed, previous studies demonstrated that cell concentrations 

under a 40% volume fraction do not induce changes in viscosity that affect bioprinting; 

30 x 106 cells/mL is well under a 40% volume fraction [42,43]. Furthermore, we found that 

optimized parameter sets resulted in similar bioprinted constructs utilizing bioink with 

or without cells. In total, experimental validation of our optimization method using cell-

laden bioink increases the impact of this work by demonstrating that optimization of 

bioprinting parameters can be performed without cells and their associated costs. 

 
  



5. Conclusion 
 

Obtaining high precision in bioprinting is a necessary step toward the mass production 

of bioprinted 3D constructs for use in research and medicine. Here, we have 

demonstrated that the Fuzzy Inference System (FIS) approach can be used to approximate 

output precision and printability with a set of bioprinting parameters, including printing 

speed, flowrate, gelatin bioink concentration, and bioink temperature, as well as 

determine bioprinting parameter sets that maximize precision in 3D constructs. 

Furthermore, we have applied the previously defined Bioink Precision Index (BPI) that 

can be used to quickly compare the ease of reproducibility regardless of the number of 

inputs, and environment. 
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Figure 1. General workflow of the study. (A) First, the 3D model was designed 

with four different input parameters, and the sample was printed by an extrusion-

based bioprinter. (B) Next, the data was acquired using brightfield microscopy. (C) 

The data were normalized, processed, and interpolated by a Gaussian function. Then 

the dataset was used as the FIS rules for implementing the FIS model; the final model 

was generated to approximate and optimize the BPI for the parameter set. 
  



 
 

 

Figure 2. Type-1 Fuzzy Logic Algorithm and Study Design. General overview 

and different features of the Type-1 Fuzzy system including fuzzification, rules, 

inference engine, and defuzzification. Schematic of our study design, including three 

inputs (speed, flow rate, temperature, and gelatin concentration) and two outputs 

(precision and printability). 
 

  



 
 

Figure 3 – Acellular printing used for FIS input data. Representative images of 

acellular gelatin prints of various input settings used to implement the model are 

grouped by high or low printability and precision. Scale bars are 5 mm.  
  



 

 
  



 
 

 

Figure 4 – Fuzzy Surface Gradients. Six 3D graphs are used to illustrate FIS 

surfaces (BPI) using A) precision as the output or B) printability as the output. The 

colored points represent the parameter sets used for validation – Group A (green), 

Group B (blue), Group C (red), and Group D (yellow). 
 



 
 

 

 

Figure 5 – Acellular validation prints.  Representative images of acellular gelatin 

prints from predicted inputs expected to result in either high or low printability or 

precision. Scale bars are 5 mm. 

 



 
 

 

Figure 6 – Validation using cell-laden bioink. A) Changes in viscosity across shear 

rate for 4% gelatin bioinks with cellular concentration from 0 to 30 x 106 cells/mL. 

B) Bioinks containing 1, 10, or 30 x 106 cells/mL were bioprinted in 4% gelatin 

bioink using optimized printing parameters. C) Phase contrast micrographs 

demonstrate the varying cellular densities across the bioprinted groups. 
 



 

  

 

Table 1.  Experimental Design and FIS Input Data  

 

Gelatin 
bioink Conc. 

(W/V%) 

Printing 
Speed 

(mm/s) 

Flow Rate 
(V) 

Bioink 
Temperature

(°C) 

Experimental (Input) Data  
(Output) 

FIS Approximation 
(Output) 

O
rd

er 

P
rin

tab
ility 

C
atego

rized 

P
recisio

n
 

C
atego

rized 

P
rin

tab
ility 

C
atego

rized 

P
recisio

n
 

C
atego

rized 

1 4 8 1.1 15 0.4 L 292 L 0.3248 L 199 H 

2 4 8 0.9 25 1 H 135 H 0.8717 H 142 H 

3 4 8 1.1 25 1 H 128 H 0.8717 H 142 H 

4 4 8 1.1 25 1 H 241 H 0.8717 H 142 H 

5 4 8 1.1 25 0.8 L 145 H 0.8717 H 142 H 

6 4 8 1.1 25 1 H 240 H 0.8717 H 142 H 

7 4 8 1.1 25 1 H 207 H 0.8717 H 142 H 

8 4 8 1.1 25 1 H 161 H 0.8717 H 142 H 

9 4 8 1.1 25 0.84 H 182 H 0.8717 H 142 H 

10 4 8 1.3 25 0.95 H 144 H 0.8717 H 142 H 

11 4 12 1.1 25 1 H 101 H 0.8716 H 142 H 

12 4 4 1.1 25 0.9 H 152 H 0.8716 H 142 H 

13 4 8 1.1 35 0.82 H 199 H 0.8717 H 142 H 

14 3 4 1.3 15 1 H 350 L 0.8716 H 255 L 

15 3 12 1.3 15 0.13 L 305 L 0.3284 L 255 L 

16 3 4 0.9 15 0.31 L 149 H 0.3284 L 202 H 

17 3 12 0.9 15 0.05 L 258 L 0.3284 L 250 L 

18 3 8 1.1 25 1 H 160 H 0.8717 H 142 H 

19 3 12 0.9 35 0.4 L 216 H 0.3284 L 140 H 

20 3 12 1.3 35 0.17 L 456 L 0.3284 L 255 L 

21 3 4 0.9 35 0.45 L 234 H 0.3284 L 140 H 

22 3 4 1.3 35 0.12 L 437 L 0.3284 L 255 L 

23 5 4 0.9 15 0.18 L 263 L 0.3284 L 250 L 

24 5 12 1.3 15 0.12 L 249 H 0.3284 L 140 H 

25 5 4 1.3 15 0.67 L 496 L 0.6 L 255 L 

26 5 12 0.9 15 Not printed 

27 5 8 1.1 25 1 H 225 H 0.8717 H 142 H 

28 5 12 0.9 35 0.6 L 188 H 0.6 L 140 H 

29 5 4 1.3 35 0.66 L 385 L 0.6 L 255 L 

30 5 4 0.9 35 0.22 L 171 H 0.328 L 140 H 

31 5 12 1.3 35 0.35 L 396 L 0.3284 L 255 L 



  

 

Table 2.  FIS Validation  

 

Gelatin 
bioink 
Conc. 

(W/V%) 

Printing 
Speed 

(mm/s) 

Flow Rate 
(V) 

Bioink 
Temperature 

(C) 

Validation Data  
FIS Approximation  

Validation Data 
Experimental Result 

O
rd

er 

P
rin

tab
ility 

C
atego

rized 

P
recisio

n
 

C
atego

rized 

B
P

I 

P
rin

tab
ility 

C
atego

rized 

P
recisio

n
 

C
atego

rized 

Group A) High Printability, High Precision 

V 7 4 6 0.9 30 0.82 H 150 H 9.3 0.7 L 155 H 

V 14 3 8 1 30 0.82 H 150 H 12.8 0.93 H 178 H 

V 8 4 6 1 30 0.82 H 150 H 4 0.85 H 164 H 

V 5 5 8 1 30 0.82 H 150 H 12.8 0.85 H 170 H 

Group B) Low Printability, High Precision 

V 1 5 12 1.2 15 0.37 L 150 H 43 0.12 L 231 H 

V 16 3 6 0.9 35 0.37 L 150 H 13.2 0.7 L 238 H 

V 6 5 6 0.9 35 0.37 L 150 H 13 0.87 H 201 H 

V 15 3 12 1 30 0.37 L 150 H 44 0.8 L 220 H 

Group C) High printability, Low Precision 

V 9 3 4 1.2 15 0.85 H 255 L 61 0.95 H 434 L 

V 10 3 6 1.3 15 0.85 H 255 L 45 0.66 H 421 L 

V 12 3 4 1.3 20 0.85 H 255 L 45.7 0.96 H 192 H 

V 3 5 8 1.3 25 0.85 H 255 L 72.6 1 H 245 H 

Group D) Low Printability, Low Precision 

V 2 3 10 1.3 30 0.37 L 255 L 116 0.95 H 548 L 

V 13 5 6 0.9 20 0.37 L 255 L 88.4 0.3 L 292 L 

V 11 3 12 1 15 0.37 L 255 L 58 0.36 L 300 L 

V 4 5 12 1.2 30 0.37 L 255 L 116 0.85 H 293 L 



Table 3. FIS Performance  

 Printability Precision 

RMSE Accuracy RMSE Accuracy 

FIS Input Dataset 0.12 95% 92.9 95% 

Validation Dataset 0.28 75% 105.3 87% 

 

  



Supplement 
 

Statistical Inferencing is a method to use samples from a population to draw conclusions 

regarding the entire population. Inferencing can be performed with three standard 

methods: Estimating, Prediction, and tolerance interval. The validity of inference is 

related to the way the data are obtained and the stationarity of the process producing the 

data. For instance, the least square method is one of the estimation models. Tolerance 

intervals are used to give a range of values that, with pre-specified confidence, will 

contain at least a pre-specified proportion of the measurements in the population. 

 

One consideration in designing an experiment or sampling study is the desired precision 

utilizing estimators or predictors. The precision of an estimator is a measure of the 

estimator variability. Moreover, another equivalent way of expressing precision is the 

width of a level L confidence interval. For a given population, precision is a function of 

the sample size: the larger the sample, the greater the precision. However, if our 

population is not fixed, the precision of the output system is related to the system's 

robustness. One of the methods for approximating the output with high precision is a 

fuzzy system. 

 

Fuzzy systems implement fuzzy logic, which is an extended model of standard logic. In 

standard logic, truth values can only be completely false or completely true (with degrees 

of truth equal to 0 or 1, respectively), whereas, in fuzzy logic, values can have a degree of 

truth between 0 and 1. This generalization provides a mathematical framework to move 

from discrete to continuous values. In other words, in contrast to sets in classical logic, a 

fuzzy set is a set without a crisp boundary. For instance, if the reference set 𝑋 is a Universe 

of discourse for elements 𝑥, the fuzzy set A is defined: 

 

𝐴 = { (𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑋} 

 

Where 𝜇𝐴(𝑥) is called the Membership Function (MF) for the fuzzy set A. The MF maps 

each element of the Universe set 𝑋  to a grade between 0 and 1, i.e., a membership of 0 

means that the associated element is not included, whereas a membership of 1 means a 

fully included element. 

 

A fuzzy rule-based system is a modeling framework that uses the above fuzzy set theory 

along with a set of “if-then” rules where the antecedents and consequents are fuzzy logic 

propositions. This rule-based fuzzy system is used for modeling the inputs and their 

relationships with the output variables.  A type-1 Fuzzy System (T1 FS) is a framework 

consisting of weighted rules, membership functions, and a fuzzy inference system. This 

system takes the crisp data (fuzzy singletons) or fuzzy inputs and generates fuzzy 



outputs based on the given if-then rules. A method of defuzzification is then used to 

extract a crisp value inferred from the fuzzy model.  
 

From the commonly used membership functions such as triangular, trapezoidal, and 

Gaussian, this study employs the Gaussian membership function in the FIS model for the 

assessment of input and output variables. Further steps deal with providing the Gaussian 

membership functions along with fuzzy input to the neural network. The membership 

function 𝐴 has three main features: core, support, and boundary. For any fuzzy set, the 

core of an MF is defined as a region characterized by full membership in the set, such 

that: 

 
𝜇𝐴(𝑥) = 1   

 

An FS is a framework consisting of Fuzzification, Inference Engine, and Defuzzification 

(Supplemental Fig. 1). This system takes the crisp data (fuzzy singletons) or fuzzy 

inputs and generates fuzzy outputs based on the given inference engine (if-then rules). 

A method of defuzzification is then used to extract a crisp value inferred from the fuzzy 

model. A fuzzy if-then rule has the following form: 

 
if 𝑥 is  𝐴𝑛  then 𝑦 is 𝐵𝑛   

 

Where  𝐴𝑛 and 𝐵 are fuzzified values defined by fuzzy sets on universes of 

discourse 𝑋 and 𝑌 respectively. The term “𝑥 is 𝐴𝑛" is called antecedent and “𝑦 is 𝐵𝑛" is 

the consequent [1]. The result of this step for each rule “ if 𝑥 is  𝐴𝑛  then 𝑦 is 𝐵𝑛 “ is the 

fuzzy set 𝐵𝑛 truncated at the level 𝜇𝐴𝑛(𝑥), i.e. a set 𝜇𝑜𝑢𝑡𝑝𝑢𝑡 𝑛 | 𝑥 such that:  

 
𝜇𝑜𝑢𝑡𝑝𝑢𝑡 𝑛 | 𝑥(𝑦) = min( 𝜇𝐵𝑛(𝑦), 𝜇𝐴𝑛(𝑥)) 

 

In the next step, truncated fuzzy sets corresponding to each fired rule are aggregated to 

provide on single fuzz set 𝜇𝑀𝑎𝑚𝑑𝑎𝑛𝑖 | 𝑥 defined by the membership function: 

 
𝜇 𝑀𝑎𝑚𝑑𝑎𝑛𝑖 | 𝑥(𝑦) = max

𝑛
[𝜇𝑜𝑢𝑡𝑝𝑢𝑡 𝑛 | 𝑥(𝑦)] =  max

𝑛
[min(𝜇𝐵𝑛(𝑦) , 𝜇𝐴𝑛(𝑥))] 

 

Fuzzification is the process of the above steps to convert the crisp sets to a fuzzy set [2]. 

FS inference engine applies the rules on the input fuzzy membership function and 

aggregates the output fuzzy value 𝜇 𝑀𝑎𝑚𝑑𝑎𝑛𝑖 | 𝑥(𝑦). In most applications, it is required to 

convert the fuzzy output value into a crisp number. This method is called 

“defuzzification”, which can be performed with different mathematical approaches. In 

this developed FS, we use the “centroid” method since it has the highest correlation 



between crisp input and output values. The centroid method is calculated with the 

following formula:   

𝑦∗ =
∫ 𝜇 𝑀𝑎𝑚𝑑𝑎𝑛𝑖 | 𝑥(𝑦) ∗ 𝑦 𝑑𝑦

∫ 𝜇 𝑀𝑎𝑚𝑑𝑎𝑛𝑖 | 𝑥(𝑦) 𝑑𝑦
 

 

Where 𝑦∗ is the crisp output value.  

 

Based on our data (Table 1), the fuzzy rules have been defined as: 

 

   1     "Gelatin_Concentration==3 & Temperature==15 & Speed==4 & Flowrate==0.9 => 

Printability=Low, Precision=Low (1)"      

    2     "Gelatin_Concentration==4 & Temperature==25 & Speed==8 & Flowrate==0.9 => 

Printability=High, Precision=High (1)"    

    3     "Gelatin_Concentration==4 & Temperature==25 & Speed==8 & Flowrate==1.1 => 

Printability=High, Precision=High (1)"    

    4     "Gelatin_Concentration==4 & Temperature==25 & Speed==8 & Flowrate==1.3 => 

Printability=High, Precision=High (1)"    

    5     "Gelatin_Concentration==4 & Temperature==25 & Speed==12 & Flowrate==1.1 => 

Printability=High, Precision=High (1)"   

    6     "Gelatin_Concentration==4 & Temperature==25 & Speed==4 & Flowrate==1.1 => 

Printability=High, Precision=High (1)"    

    7     "Gelatin_Concentration==4 & Temperature==35 & Speed==8 & Flowrate==1.1 => 

Printability=High, Precision=High (1)"    

    8     "Gelatin_Concentration==3 & Temperature==15 & Speed==4 & Flowrate==1.3 => 

Printability=High, Precision=Low (1)"     

    9     "Gelatin_Concentration==3 & Temperature==15 & Speed==12 & Flowrate==1.3 => 

Printability=Low, Precision=Low (1)"     

    10    "Gelatin_Concentration==3 & Temperature==15 & Speed==4 & Flowrate==0.9 => 

Printability=Low, Precision=High (1)"     

    11    "Gelatin_Concentration==3 & Temperature==15 & Speed==12 & Flowrate==0.9 => 

Printability=Low, Precision=Low (1)"     

    12    "Gelatin_Concentration==3 & Temperature==25 & Speed==8 & Flowrate==1.1 => 

Printability=High, Precision=High (1)"    

    13    "Gelatin_Concentration==3 & Temperature==35 & Speed==12 & Flowrate==0.9 => 

Printability=Low, Precision=High (1)"    

    14    "Gelatin_Concentration==3 & Temperature==35 & Speed==12 & Flowrate==1.3 => 

Printability=Low, Precision=Low (1)"     

    15    "Gelatin_Concentration==3 & Temperature==35 & Speed==4 & Flowrate==0.9 => 

Printability=Low, Precision=High (1)"     



    16    "Gelatin_Concentration==3 & Temperature==35 & Speed==4 & Flowrate==1.3 => 

Printability=Low, Precision=Low (1)"      

    17    "Gelatin_Concentration==5 & Temperature==15 & Speed==4 & Flowrate==0.9 => 

Printability=Low, Precision=Low (1)"      

    18    "Gelatin_Concentration==5 & Temperature==15 & Speed==12 & Flowrate==1.3 => 

Printability=Low, Precision=High (1)"    

    19    "Gelatin_Concentration==5 & Temperature==15 & Speed==4 & Flowrate==1.3 => 

Printability=Medium, Precision=Low (1)"   

    20    "Gelatin_Concentration==5 & Temperature==25 & Speed==8 & Flowrate==1.1 => 

Printability=High, Precision=High (1)"    

    21    "Gelatin_Concentration==5 & Temperature==35 & Speed==12 & Flowrate==0.9 => 

Printability=Medium, Precision=High (1)" 

    22    "Gelatin_Concentration==5 & Temperature==35 & Speed==4 & Flowrate==1.3 => 

Printability=Medium, Precision=Low (1)"   

    23    "Gelatin_Concentration==5 & Temperature==35 & Speed==4 & Flowrate==0.9 => 

Printability=Low, Precision=High (1)"     

    24    "Gelatin_Concentration==5 & Temperature==35 & Speed==12 & Flowrate==1.3 => 

Printability=Low, Precision=Low (1)"     

 

Since we utilized the RSM method to design the study, one of the printing parameter sets 

has been repeated (3-9). However, we only utilized one of them for the rule 

implementation. We have used “Minimum” as the “And Method”, “Maximum” as the 

“Or Method”, “Minimum” as the “implication Method”, and “Maximum” as the 

“Aggregation Method”. 
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Supplemental Figure 1 – FIS Membership Functions. A) Membership functions of the 

model inputs (gelatin concentration, speed, flowrate, temperature). B) Membership 

functions for the model outputs (printability and precision).  
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