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Abstract 

Background: Machine learning algorithms depend on accurate and representative datasets for 

training in order to become valuable clinical tools that are widely generalizable to a varied 

population. We aim to conduct a review of machine learning uses in stroke literature to assess the 

geographic distribution of datasets and patient cohorts used to train these models and compare 

them to stroke distribution to evaluate for disparities.  

Aims: 582 studies were identified on initial searching of the PubMed database. Of these studies, 106 

full texts were assessed after title and abstract screening which resulted in 489 papers excluded. Of 

these 106 studies, 79 were excluded due to using cohorts from outside the United States or being 

review articles or editorials. 27 studies were thus included in this analysis.  

Summary of Review: Of the 27 studies included, 7 (25.9%) used patient data from California, 6 

(22.2%) were multicenter, 3 (11.1%) were in Massachusetts, 2 (7.4%) each in Illinois, Missouri, 

and New York, and 1 (3.7%) each from South Carolina, Washington, West Virginia, and Wisconsin. 1 

(3.7%) study used data from Utah and Texas. These were qualitatively compared to a CDC study 

showing the highest distribution of stroke in Mississippi (4.3%) followed by Oklahoma (3.4%), 

Washington D.C. (3.4%), Louisiana (3.3%), and Alabama (3.2%) while the prevalence in California 

was 2.6%.  

Conclusions: It is clear that a strong disconnect exists between the datasets and patient cohorts 

used in training machine learning algorithms in clinical research and the stroke distribution in 

which clinical tools using these algorithms will be implemented. In order to ensure a lack of bias 

and increase generalizability and accuracy in future machine learning studies, datasets using a 

varied patient population that reflects the unequal distribution of stroke risk factors would greatly 

benefit the usability of these tools and ensure accuracy on a nationwide scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

Machine learning (ML) has markedly increased the capabilities of physician researchers to 

diagnose, treat, prognosticate, and even anticipate disease using clinical data.  Different fields of 

medicine have embraced ML, and its implementation is set to escalate as clinicians become more 

comfortable with ML as an analytical technique1–4. In stroke research, multiple factors such as age, 

socioeconomic status, access to healthcare, and healthcare practices have been associated with 

differing prevalence of stroke. While ML is more resistant to biased analyses by reducing the human 

role in the analytical process, it is still subject to selection bias as  large academic institutions with 

dedicated specialists in biostatistics and computer science are more likely to produce ML-based 

research. As has been described in previous literature, the quality and generalizability of machine 

learning algorithms depends heavily on dataset quality and relevance to the population that these 

clinical tools will be used for. Kaushal et al recently found that data used in ML research across 

multiple specialties was sourced disproportionately from geographic locations close to major 

academic centers, such as California, New York, and Massachusetts, and suggested that geographic 

distribution of datasets can be a major source of systematic bias in machine learning algorithms5. 

While this study assessed machine learning in multiple fields, including radiology, ophthalmology, 

dermatology, pathology, gastroenterology, and cardiology, such an analysis has not been performed 

on neurosurgical datasets used in machine learning, such as stroke, which are uniquely susceptible 

to bias due to socioeconomic and demographic factors affecting known stroke risk factors and 

comorbidities. We aim to assess geographic distribution of datasets used in studies on stroke using 

machine learning to identify disparities in dataset distribution and stroke prevalence.   

 

Methods 

 

A review of the literature was performed on the PubMed Database of all literature published 

between January 1, 2010 and September 1, 2020. We sought to identify studies that utilized any 

sort of machine learning algorithm for the detection, prognostication, or etiological investigation of 

stroke. The search key words included ("machine learning"[Mesh] OR "deep learning" [tiab] OR 

"machine learning"[tiab]) AND ("ischemic lesion"[tiab] OR "stroke"[tiab] OR "stroke"[Mesh]). 

Articles that resulted from this search underwent title and abstract assessment for relevance to 

stroke and use of explicitly described machine learning algorithm. After this initial screening, the 

remaining full texts were screened by two independent reviews (L.V. and D.N.) for details 

describing the dataset, particularly geographic distribution. Results were supplemented by 

searching reference lists of publications and review papers. Only studies that included at least one 

dataset collected in the US were included. When not explicitly named, cohorts were attributed to 

the home state of the institution.  Datasets created from >3 states, from NIH data, or from industry 

databases were marked as “multicenter” and analyzed independently. 

 

 

 



 

Results 

582 studies were identified on initial searching of the PubMed database. Of these studies, 106 full 

texts were assessed after title and abstract screening which resulted in 489 papers excluded. Of 

these 106 studies, 79 were excluded due to using cohorts from outside the United States or being 

review articles or editorials. 27 studies were thus included in this analysis (Figure 1).  

 

 

Figure 1: PRISMA flow diagram detailing literature search and exclusion 

 

Of the 27 studies included, 7 (25.9%) used patient data from California, 6 (22.2%) were 

multicenter, 3 (11.1%) were in Massachusetts, 2 (7.4%) each in Illinois, Missouri, and New York, 

and 1 (3.7%) each from South Carolina, Washington, West Virginia, and Wisconsin. 1 (3.7%) study 

used data from Utah and Texas (Table 1).  

 



Discussion 

The use of machine learning within neurosurgery has recently expanded in an effort to optimize the 

generalizability and predictive value of research studies with small sample sizes. ML algorithms 

operate on a similar methodology to traditional statistical modeling studies: an initial dataset is 

required which is subjected to data cleaning, characterization, and preliminary descriptive analysis 

before being fed into, most commonly, a supervised learning algorithm that uses a portion of the 

data as a training set to optimize parameters that result in a predictive model. Optimizing these 
features results in a model that is then set against a testing set of data, which is used to evaluate 

model accuracy, sensitivity, and specificity. While many studies aim to evaluate optimal algorithms 

used in these use cases, the importance of the dataset is often understated. One of the reasons for 

this disconnect between research and clinical practice is due to a lack of characterization of 

reporting and quality outcomes of machine learning algorithms, which has been recently addressed 

by the SPIRIT-AI and CONSORT-AI consensus statements33,34. While multicenter studies have been 

used as seen in our study, the majority of datasets still originate from a single state or even a single 

institution, both of which do not match demographically to a wider population and thus are difficult 

to generalize outside of the specific population used. In addition, previous work has strongly 

characterized the adverse effect of biased datasets on predictive algorithms, such as Gijsberts et. al 

showing the decreased generalizability of the Framingham study on populations not matching the 

initial study population and a study by Neighbors et. al showing overdiagnosis of schizophrenia in 

African American patients based on biased datasets35,.36. In addition, both Obermeyer et. al and Char 

et. al. have expounded on the adverse influence of racially biased datasets on healthcare algorithm 

predictive capability, which is possible with geographically biased datasets37,38,39. 

Ischemic stroke in particular is a pathology that is susceptible to this bias in machine learning 

datasets. As seen in our study, datasets  were disproportionately trained across the 50 states, with 

weighting heavily towards California, Massachusetts, and less so toward Illinois, Missouri, and New 

York. As Kaushal et. al. mention, these states may have socioeconomic or ethnocultural differences 

from the rest of the nation that affect their outcomes. While that study looked across a broad range 

of diseases in multiple specialties and thus could not identify specific factors that are unequally 

distributed, these factors are well elucidated in the case of stroke, such as age, sex, co-morbities 

such as diabetes, hypertension, hyperlipidemia, and atrial fibrillation, and pre-operative factors 

such as access to preventative medications (aspirin, statins) and distance to stroke centers (last 

seen normal time, door-to-needle time in the case of thrombectomy, etc.)40. All of these variables 

are known not to be distributed equally across the United States, solidifying the need for a broader 

distribution of studies sampling from many different populations.  

It is unlikely that these factors are equally distributed across the nation, as seen in a CDC study in 

2005 that showed substantial differences in stroke prevalence by state, race/ethnicity, age group, 

and education level. This study noted the highest prevalence of stroke in Mississippi (4.3%) 

followed by Oklahoma (3.4%), Washington D.C. (3.4%), Louisiana (3.3%), and Alabama (3.2%) 

while the prevalence in California was 2.6% (Figure 2A)41, 42. These findings have been echoed by 

numerous studies on the so-called “stroke belt”, a group of states including Alabama, Arkansas, 

Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee that have 

been noted to have an unusually high stroke prevalence43, 44. Of these stroke belt states, only South 

Carolina is included in the machine learning algorithm of one study (Figure 2B)28. There is thus a 

concerning discrepancy between the study populations used for predictive modeling and the states 



most afflicted by ischemic stroke. Challen et. al describes the so-called “distributional shift”, with 

training data not matching ongoing patient data in continuously trained algorithms, which can have 

an analogous influence with the disparity in stroke distributions seen here45. As noted by Chen et. al 

and Braveman et. al, geographic distribution of patients used to train datasets can be a major 

contributor to biases in machine learning, as historically underserved populations and groups 

without robust healthcare access can have adverse events or worse outcomes that are mistakenly 

attributed to causes such as comorbidities or compliance46, 47. In addition, with stroke outcomes 

being dependent on factors such as distance from a healthcare center and time to reperfusion, the 

impact of geographic bias on stroke outcomes is clear and can be perpetuated by geographically 

biased algorithms.  

 

 

Figure 2: Comparison of Stroke Incidence with Dataset Distribution in Stroke Literature6 



 

As the use of big data and machine learning algorithms increases in neurosurgery, careful 

consideration as to the quality and generalizability of these tools is imperative48,49. Increasing 

numbers of studies have clearly demonstrated the capabilities of these predictive algorithms, but 

the introduction of bias into these predictive algorithms has the potential to cause devastating 

effects in terms of inaccurate predictions or perpetuating systemic healthcare biases in a so-called 

“objective” methodology. Our study demonstrates one avenue through which bias can be 
introduced into machine learning studies, and the increasing interest in formal characterization and 

guidelines surrounding the use of machine learning, such as the CONSORT-AI and SPIRIT-AI 

consensus decisions, is a promising regulatory measure curtailing the implementation of biased 

algorithms. Further analyses into dataset quality, perhaps on an international scale, are warranted 

to develop stringent guideline which both aid the machine learning and research community by 

providing set benchmarks to measure against and also aid the clinician and patient communities by 

vouchsafing any clinical tools that do gain widespread acceptance.  

Some limitations to this study include the varied nature of the stroke studies included as well as the 

analysis of machine learning outcomes using local and varied datasets. We included a broad variety 

of stroke machine learning studies, including for prognosis, diagnosis, and imaging analysis, due to 

the need for a corpus of work to analyze dataset origin. As more machine learning studies within a 

particular area are published, future studies to analyze dataset qualities that are limited to one area 

of research would be warranted. In addition, comparative studies between algorithms trained on 

data that is from the clinical population that the algorithm is applied to and algorithms trained on 

national or foreign data would be valuable to evaluate the quantitative difference that dataset 

origin can make.  

Conclusion 

Machine learning has been increasingly applied across medical specialties and its potential in the 

prevention, diagnosis, treatment, prognostication of ischemic stroke is tremendous. Recent 

literature has shown an important geographic discrepancy between the states that cohorts are 

drawn from and the states most afflicted by ischemic stroke. There is a strong preponderance of 

studies based in California, Massachusetts, Illinois, Missouri, and New York, while the vast majority 

of states with the highest prevalence of stroke are not included in any study. There is thus a 

pressing need for improving our machine learning algorithms by minimizing selection bias and 

optimizing dataset quality. 
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Table 1: Studies Included in this Analysis 

State  

Study 

(n=sample 

size)   

Algorithms Used  Study Outcome 

California 

Ho et. al
6 

(n=190) 

Naïve Bayes, Support Vector Machine, 

Decision Tree, Random Forests, and 

Logistic Regression 

Compared the performance of SVM, 

PCA-SVM, DT, RF, NB, and LR models 

for predicting stroke patient mortality 

at discharge and determined SVM 

was the best based on relative c-

statistic and F1-score 

Ho et. al
7
 

(n=131) 

Logistic Regression, Random Forest, 

Gradient Boosted Regression Tree, 

Support Vector Machine, and Stepwise 

Multilinear Regression  

Developed new imaging features 

from MR images, perfusion 

parameter maps, and deep AE 

feature maps, and showed that they 

can be utilized by machine learning 

models to classify TSS 

Wang et. al
8 

 

(n=137) 

Linear Regression Classifier, Ridge 

Regression Classifier, Kernel Ridge 

Regression classifier, Neural Network 

Classifier, Support Vector Machine with 

Radial Basis Function, and Random 

Forest Classifier 

pCASL perfusion magnetic resonance 

imaging in conjunction with the DL 

algorithm provides a promising 

approach for assisting decision-

making for endovascular treatment in 

patients with acute ischemic stroke 

Ho et. al
9 

(n=44) 

Deep Convolution Neural Networks 

(CNNs) 

Deep convolution neural networks 

(CNNs) on predicting final stroke 

infarct volume using only the source 

perfusion images 

Ho et. al
10 

(n=105) 

Stepwise Multilinear Regression (SMR), 

Support Victor Machine (SVM), Random 

forest (RF), and Gradient Boosted 

Regression Tree (GBRT) 

SMR, SVM, RF, and GBRT models 

were able to classify TSS, with SMR 

achieving the highest AUC 

Xie et. al
11 

(n=512) 

Extreme Gradient Boosting (XGB) and 

Gradient Boosting Machine (GBM) 

Decision tree-based GBMs can predict 

the recovery outcome of stroke 

patients at admission with a high AUC 

Yu et. al
12 

(n=165) 

Support Vector Machines, Linear 

Regression, Decision Trees, Neural 

Networks, and Kernel Spectral 

Regression 

A model  can learn to extract imaging 

markers of HT directly from source 

PWI images rather than from pre-

established metrics 



Multicenter 

Liu et. al
13  

(n=43,400) 

Random Forest Regression, 

Hyperparameter 

Optimization(AutoHPO) based on Deep 

Neural Network(DNN) 

Reduced the false negative rate with 

a relatively high overall accuracy, 

which means a successful decrease in 

the misdiagnosis rate for stroke 

prediction 

Kasasbeh et. 

al
14  

(n=128) 
Artificial Neural Network  

An ANN that integrates clinical and 

CTP data predicts the ischemic core 

with accuracy 

Yu et. al
15  

(n=182) 
Attention-gated U-Net 

Deep learning model appears to have 

successfully predicted infarct lesions 

from baseline imaging without 

reperfusion information and achieved 

comparable performance to existing 

clinical methods 

Ambale-

Venkatesh et 

al
16

 
 
(n=6,814) 

 Random Survival Forest 

Machine learning in conjunction with 

deep phenotyping improves 

prediction accuracy in cardiovascular 

event prediction in an initially 

asymptomatic population 

Kogan et. al
17  

(n=7,149) 

Random Forest Model, Gradient 

Boosting Model, Neural Network, and 

Linear Regression 

Machine learning models built on 

EHR data can be used to determine 

proxies for stroke severity 

Wu et. al
18 

(n=3,301) 

Automated Deep Learning 

Segmentation 

Automated accurate clinical diffusion-

weighted MRI lesion segmentation 

using deep learning algorithms 

trained with multi-center and diverse 

data is feasible 

Massachusetts 

Ong et. al
19 

(n=17,864) 

Logistic Regression, k-Nearest Neighbors 

(k-NN), Classification and Regression 

Trees, (CART) Optimal Classification 

Trees (OCT) with and without 

hyperplanes (OCT-H), Random Forest, 

and Recurrent Neural Networks (RNN) 

Identifying salient stroke features 

from radiology text that can triage 

high-risk imaging findings and identify 

patient populations of interest for 

research 

Orfanoudaki 

et. al
20 

(n=4,385) 

N-SRS, R-FSRS, Logistic Regression, 

CART, Random Forest, XGBoost 

Developed N-SRS, an accurate stroke 

risk calculator that outperforms, in 

accuracy and user-friendliness, the 

existing stroke risk prediction tool 



Forkert et. 

al
21

 
 
(n=68) 

Support Vector Machine (SVM) 

Graded SVM-based functional stroke 

outcome prediction using the 

problem-specific brain regions for 

lesion overlap quantification leads to 

promising results but needs to be 

further validated using an 

independent database to rule out a 

potential methodical bias and 

overfitting effects. 

New York 

Beecy et. al
22

 

(n=114) 
Deep Learning  

Machine-learned models using novel 

DL techniques enable highly accurate 

automated diagnosis of acute brain 

infarction. 

Kamel et. al
23

 

(n=1,083) 

L1 regularization, Gradient-Boosted 

Decision Tree Ensemble (XGBoost), 

Random Forests, and Multivariate 

Adaptive Splines was used 

Machine learning estimator that 

distinguished known cardioembolic 

versus noncardioembolic strokes 

indirectly estimated that 44% of ESUS 

cases were cardioembolic. 

Missouri 

Chen et. Al
24 

(n=38) 

Random Forest (RF), (HU) thresholding 

and RF Segmentation 

Validated an automated CSF 

quantification approach which is 

accurate and reliable, and can be 

applied to scans from multiple 

centers 

Dhar et. al
25

 

(n=155) 
Generalized estimating equation (GEE) 

Proof-of-principle that we can 

automate brain imaging data analysis 

and obtain meaningful volumetric 

data on large cohorts of stroke 

patients. 

Illinois 

Harari et. al
26 

(n=50) 
Lasso regression 

Models presented in this study could 

help clinicians and researchers to 

predict the discharge scores of clinical 

outcomes for individuals enrolled in 

an inpatient stroke rehabilitation 

program  

 Garg et. al
27

 

(n=50) 

K-nearest neighbors (KNN),  Support 

Vector Machines (SVM), Random 

Forests (RF),  Extra Randomized Trees 

Classifiers,  Gradient Boosting Machines,  

and Extreme Gradient Boosting 

(XGBoost) 

Automated machine learning 

approaches using textual data from 

the EHR shows agreement with 

manual TOAST classification 



South Carolina 
Alawieh et. 

al
28 

(n=110) 
Optimal Prognostic Mode 

SPOT is a useful tool to determine 

which patients to exclude from ET, 

and has been implemented in an 

online calculator for public use 

Washington 
Bochniewicz 

et. al
29 

(n=20) 
Random Forest Model 

Inexpensive and objective 

quantification of functional UE (upper 

extremity) use in hemiparesis, and for 

assessing the impact of UE 

treatments 

West Virginia 
O’Connell et. 

al
30 

(n=46) 
k-nearest neighbors (kNN)  

Confirm the diagnostic robustness of 

the previously identified pattern of 

differential expression in an 

independent patient population, and 

further suggest that it is temporally 

stable over the first 24 h of stroke 

pathology 

Wisconsin 
Liu et. al

31 

(n=10) 

Imaging–Based attenuation correction 

using deep convolutional auto-encoder 

Developed an automated approach 

that allows generation of discrete-

valued pseudo CT scans (soft tissue, 

bone, and air) from a single high-

spatial-resolution diagnostic-quality 

three-dimensional MR image and 

evaluated it in brain PET/MR imaging 

Utah/Texas 
Sheth et. al

32 

(n=297) 
Convolutional Neural Network 

Information needed to perform the 

neuroimaging evaluation for 

endovascular therapy with 

comparable accuracy to advanced 

imaging modalities may be present in 

CTA, and the ability of machine 

learning to automate the analysis 
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