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Abstract: Guidelines for genetic testing have been established for multiple tumor types, frequently
indicating the most confident molecularly targeted treatment options. However, considering the
often-complex presentation of individual cancer patients, in addition to the combinatorial complexity
and inherent uncertainties of molecular findings, deriving optimal treatment strategies frequently
becomes very challenging. Here, we report a comprehensive analysis of a 68-year-old male with
metastatic prostate cancer, encompassing pathology and MRI findings, transcriptomic results, and key
genomics findings from whole-exome sequencing, both somatic aberrations and germline variants.
We identify multiple somatic aberrations that are known to be enriched in prostate cancer, including
a deletion of PTEN and a fusion transcript involving BRCA2. The gene expression patterns in the
tumor biopsy were also strikingly similar to prostate tumor samples from TCGA. Furthermore, we
detected multiple lines of evidence for homologous recombination repair deficiency (HRD), including
a dominant contribution by mutational signature SBS3, which is specifically attributed to HRD. On
the basis of the genomic and transcriptomic findings, and in light of the clinical case presentation, we
discussed the personalized treatment options that exist for this patient and the various challenges
that one faces in the process of translating high-throughput sequencing data towards treatment
regimens.

Keywords: prostate cancer; disease management; genomic testing; guidelines; treatment biomarkers

1. Introduction

The concept of precision oncology, defined by the American Society of Clinical Oncol-
ogy (ASCO) as “the molecular profiling of tumors to identify targetable alterations”, has
been widely embraced by nearly all clinical disciplines. Next-generation sequencing (NGS)
is widely acknowledged as a critical technology to realize the full potential of precision
medicine in clinical practice [1,2]. Nonetheless, from a clinical point of view, the determi-
nation of an optimal treatment strategy remains a quandary in the backdrop of the often
complex, clinical reality of a case. The multitude of potential combinations of alternative
treatment strategies, yet to be fully validated by robust research, adds to this complexity.
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Here, we present a prostate cancer (PCa) case diagnosed with metastatic disease at first
presentation that illustrates some of the many challenges arising from the availability and
use of novel treatment modalities.

In 2015, the CHAARTED study showed that the combination of docetaxel and castra-
tion increased the overall survival in men with primary metastatic prostate cancer (mPCa)
by 22 months, compared to standard therapy with androgen deprivation therapy (ADT)
alone [3]. In 2018, the STAMPEDE trial reported a survival benefit of 8% (HR 0.68, 3-year
OS 73% vs. 81%) in a per protocol predefined subpopulation of men with low-tumor
volume PCa adding local radiation to the prostate [4]. However, the clinical prospects
in men with mPCa remain poor, eventually leading to resistance development and fatal
outcomes.

An increasing emphasis on the concept of precision oncology has led to a paradigm
shift moving away from Virchow’s “omnis cellula e cellula” cell biology-centric approach
to a more granular focus on genomic, transcriptomic, and proteomic alterations observed
in cancer cells and the surrounding tumor microenvironment. Our understanding of PCa
at the molecular level has been significantly improved by several large-scale sequencing ef-
forts, including The Cancer Genome Atlas (TCGA), which has characterized approximately
500 primary prostate tumor samples at the genomic and transcriptomic levels [5–8].

Despite the limited clinical implementation at present, the number of PCa patients
potentially benefiting from NGS-based molecular profiling has been reported to be in the
order of 30%. This estimate is defined by the set of cases harboring loss-of-function variants
(somatic or germline) in DNA repair genes, which, in turn, indicates that these tumors may
be sensitive to PARP inhibition (PARPi) or an immune checkpoint blockade [6]. Not least,
the particular findings of genomic alterations in genes involved in DNA damage repair,
combined with the efficacy of PARPi targeting the DNA repair machinery, establishes
the evolving importance of this strategy in the armamentarium for treating mPCa [9].
The foregone changes highlight the need for and role of routine genomic sequencing and
molecular characterization in men with advanced PC.

Here, we describe the clinical case of a de novo mPCa, with the pathology and imaging
results. In light of the current state-of-the-art, whole-exome sequencing and a transcriptome
analysis of the tumor biopsy was performed. We discuss the genomic and transcriptomic
findings in light of the known molecular mechanisms of PCa development and discuss
the complexity of clinical decision-making for further disease medical management in a
comprehensive approach incorporating both germline and somatic genomic testing.

2. Case History

We report the case of a 68-year-old man who was diagnosed with de novo mPCa
T3bN+M1a+b stage in November of 2019. The patient had no family history of PCa. The
pathology report showed a Gleason score of 9, grade group 5 in all 10 biopsies at diagnosis.
Morphologically, intraductal carcinoma was the dominant cell pattern, while cribriform and
perineural growth were observed in the pathological examination [10]. The pretreatment
prostate-specific antigen (PSA) level was 13 ng/mL. Multiparametric magnetic resonance
imaging (mpMRI) and prostate-specific membrane antigen (PSMA)-positron emission
tomography (PET)/computed tomography (CT) confirmed the tumor spread to the pelvic
lymph nodes and a possible solitary metastasis to one of the thoracic vertebrae (Figure 1).
The immunohistochemical analysis of primary tumor biopsies revealed the expression of
all MMR proteins and was negative for PD-L1 staining but showed focal CD3 positivity.
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Figure 1. Magnetic resonance imaging (MRI) and prostate-specific membrane antigen (PSMA)-
positron emission tomography (PET)/computed tomography (CT) findings at the baseline. Axial 
T2-weighted MRI sequences demonstrated a large, diffuse infiltrating tumor in the peripheral 
zone with seminal vesicle invasion (a,b, white arrows). The tumor was hyperintense on diffusion-
weighted MRI (DW-MRI) (b = 1500 s/mm2) (c,d, white arrows) with a corresponding low apparent 
diffusion coefficient (ADC) (ADC = 0.6 × 10−3 mm2/s) (e,f, white arrows). Corresponding tracer 
uptake on fused PSMA-PET/CT images (g,h, white arrow). A large lymph node metastasis in the 
mesorectal fat is shown on the axial T2-weighted MRI (i, white arrow) and fused PSMA-PET/CT 
images (j, white arrow). A coronal-fused PSMA-PET/CT image demonstrates multiple metastases 
to the pelvic lymph nodes (k, white arrows). 

The patient had low thrombocytes values. Further investigation of the cell morphol-
ogy and flow cytometry of a bone marrow biopsy confirmed a diagnosis of hairy-cell leu-
kemia. In addition, the same examination confirmed AE1/AE3 cytokeratin positivity and 
the pathognomonic marker NKX3.1 originally for epithelial-positive cells suspected to 
represent bone infiltrates of the prostate cancer. 

Before the initiation of long-term ADT, new snap-frozen biopsies were sampled, 
stored in nitrogen, and sent for whole-exome and transcriptome sequencing. The obtained 
results were discussed within a tumor board. A combined treatment with ADT and radi-
otherapy was suggested. After four months of ADT, the total testosterone suppression 
was achieved by adding enzalutamide to goserelin during and after radiation. Due to 

Figure 1. Magnetic resonance imaging (MRI) and prostate-specific membrane antigen (PSMA)-
positron emission tomography (PET)/computed tomography (CT) findings at the baseline. Axial
T2-weighted MRI sequences demonstrated a large, diffuse infiltrating tumor in the peripheral zone
with seminal vesicle invasion ((a,b), white arrows). The tumor was hyperintense on diffusion-
weighted MRI (DW-MRI) (b = 1500 s/mm2) ((c,d), white arrows) with a corresponding low apparent
diffusion coefficient (ADC) (ADC = 0.6 × 10−3 mm2/s) ((e,f), white arrows). Corresponding tracer
uptake on fused PSMA-PET/CT images ((g,h), white arrow). A large lymph node metastasis in the
mesorectal fat is shown on the axial T2-weighted MRI ((i), white arrow) and fused PSMA-PET/CT
images ((j), white arrow). A coronal-fused PSMA-PET/CT image demonstrates multiple metastases
to the pelvic lymph nodes ((k), white arrows).

The patient had low thrombocytes values. Further investigation of the cell morphol-
ogy and flow cytometry of a bone marrow biopsy confirmed a diagnosis of hairy-cell
leukemia. In addition, the same examination confirmed AE1/AE3 cytokeratin positivity
and the pathognomonic marker NKX3.1 originally for epithelial-positive cells suspected to
represent bone infiltrates of the prostate cancer.

Before the initiation of long-term ADT, new snap-frozen biopsies were sampled,
stored in nitrogen, and sent for whole-exome and transcriptome sequencing. The obtained
results were discussed within a tumor board. A combined treatment with ADT and
radiotherapy was suggested. After four months of ADT, the total testosterone suppression
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was achieved by adding enzalutamide to goserelin during and after radiation. Due to
COVID-19-related delays in the course of treatment, fiducial gold markers were installed
in the prostate in late-April 2020, and image-guided conformal radiotherapy of 74 Gy
to the prostate was applied from May to June 2020. The patient had a PSA nadir of
0.44 ng/mL at the end of the radiotherapy, and he was subsequently followed by his local
oncologist. A follow-up MRI scan revealed signal changes on fat-only and water-only
Dixon images and diffusion-weighted images (DWI) within the suspected lesion in the
thoracic spine, presumably consistent with the treatment response of the bone marrow
metastasis (Figure 2). Furthermore, a correspondingly good treatment response in baseline
radiographically outlined lesions was revealed in the prostate tumor and lymph node
metastases on follow-up MRI.
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Figure 2. The left panel (a,b) shows pretreatment magnetic resonance imaging (MRI) and computed tomography (CT)
scans of the thoracolumbar spine. Small, focal lesion in the thoracic spine is shown on MR ((a), white arrow) and CT ((b),
white arrow) images. The right panel (c–e) shows follow-up MRI and CT performed after the start of combined androgen
deprivation therapy. A sagittal T2-weighted fat-only Dixon image demonstrates an increased fat signal within the suspected
lesion in the thoracic spine (c, white arrow). There was no evidence of tumor activity on the diffusion-weighted MRI
(DW-MRI) (d). CT of the thoracolumbar spine showed subtle perilesional sclerosis ((e), white arrow). The findings (c–e)
have appeared since the pretreatment MRI and CT scans and are presumably consistent with the treatment effect in solitary
bone marrow metastasis.

At the last follow-up examination, in August 2020, the PSA level fell to less than
0.03 ng/mL. ADT with goserelin and enzalutamide was continued. All procedures followed
were in accordance with the ethical standards as required by national law and with the
Helsinki Declaration of 1975 (in its most recently amended version). The patient consented
to all the molecular studies and the publication of his case.

3. Materials and Methods
3.1. DNA and RNA Extraction

Original material: EDTA blood sample and needle biopsy material snap-frozen
claimed to contain a significant tumor cell fraction. DNA was subsequently extracted, and
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measurements for the biopsies are listed in Supplementary Table S1 (blood DNA went
through a precipitation prior to the measurements). The tumor biopsy and blood samples
were subject to whole-exome sequencing using the Twist Human Core Exome Plus kit
(Twist Bioscience, San Francisco, CA, USA) on a NovaSeq 6000 sequencing instrument
(Illumina, San Diego, CA, USA). Read length was 2 × 100 basepairs. The needle biopsies
were also used for library preparation of RNA sequencing.

3.2. Whole-Exome Sequencing Analysis

A bioinformatics pipeline was applied to identify the acquired single-nucleotide
variants and short insertions and deletions (indels) in the tumor sample. DNA sequence
reads from the blood (control) and tumor samples were initially aligned to the human
reference genome (build b37 with an added decoy contig) using BWA-mem v0.7.15 [11].
Read duplicates were marked with Picard tools (v.2.5.0), and GATK tools (v3.7) were further
applied for a two-step local realignment around indels, recalibration of the base quality,
and calculation of the coverage statistics [12]. Somatic SNV detection was performed with
MuTect and Strelka, while Strelka was used for the identification of indels [13,14]. Variants
with a sequencing depth in the tumor below 10 were considered unreliable and not used
for the downstream analysis.

FACETS (version 0.5.0) was used for copy number identification, in which allele-
specific copy numbers are corrected for tumor purity, ploidy, and clonal heterogeneity [15].
Genomic regions with loss or gain were identified using a log2 threshold of +/− 0.8.

For variant interpretation and functional annotation, we utilized the Personal Cancer
Genome Reporter (PCGR v0.9.0) [16]. For the assessment of microsatellite instability (MSI)
status (MSI-H vs. MSS), we used the statistical classifier integrated with PCGR, which was
trained with somatic variant data from TCGA tumor samples. The estimated contribution
of mutational signatures (single-base substitutions, SBS) was performed with Mutational-
Patterns (v2.0.0) using the reference collection of n = 67 signatures (COSMIC v3) [17,18].
We restricted the signature fitting to the reference signatures previously attributed to PCa
(SBS1, SBS3, SBS5, SBS18, SBS37, SBS40, SBS41, and SBS58), as recommended [17].

Germline variants (SNVs/InDels) were identified with Illumina’s DRAGEN pipeline
(software version 01.011.308.3.3.11) on the existing read alignment of the control (blood)
sample. We investigated the germline variant set in the context of an exploratory, virtual
panel of n = 216 protein-coding genes of relevance to cancer predisposition (Supplementary
Table S2), using the Cancer Predisposition Sequencing Reporter v0.6.0 [19].

3.3. RNA Sequencing and Analysis

Libraries were prepared using the TruSeq Stranded mRNA kit (Illumina, San Diego,
CA, USA) according to the manufacturer’s instructions and sequenced with the NovaSeq
6000 System (Illumina, San Diego, CA, USA). All analyses were performed through shell
scripts and R (https://www.r-project.org/ (accessed on 1 September 2020)) using Bio-
conductor (https://www.bioconductor.org/ (accessed on 1 September 2020)) packages.
Raw RNA sequence reads (in the fastq format) were checked for the quality of sequenc-
ing through FASTQC (https://github.com/s-andrews/FastQC (accessed on 1 September
2020)). Trimmomatic (v0.38) was used for read trimming [20]. Reads were mapped to the
human reference genome (GRCh38) using STAR v2.7.0 with the default parameters [21].
GENCODE was used for transcript annotation (version 22; the same version that was
used for RNA-seq data processed within TCGA). Reads per transcript were estimated
with the option quantMode GeneCounts in STAR. Transcript abundance levels were finally
transformed into normalized expression units in the form of TPM (transcripts per million).
Activity levels for gene expression signatures were evaluated through a gene set variation
analysis (R package gsva) using log-transformed TPM values pr. gene as the input.

We used RNA-seq data from The Cancer Genome Atlas (TCGA, release 28) as a
reference distribution for the gene expression levels in tumor samples. Specifically, we

https://www.r-project.org/
https://www.bioconductor.org/
https://github.com/s-andrews/FastQC
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downloaded gene expression data for the primary tumor samples using the TCGAbiolinks
package [22] and converted the expression unit from FPKM to TPM values.

For the detection of fusion transcripts, Arriba (v2.1.0) and STAR-fusion (v1.9.1) were
used with the default parameter settings [23,24]. GRCh38 was used as the reference genome
and GENCODE (v22) as the gene transcript model during read mapping and fusion calling.
In the output of Arriba, the quality of fusion transcript callings was evaluated using a
confidence tag (e.g., high, medium, and low), which suggests the likelihood that a fusion
candidate is robust rather than an artifact. To improve the sensitivity of detection, the
nominated fusion candidates by Arriba and STAR-fusion were merged.

3.4. Immunohistochemistry

The immunohistochemistry of the sections from formalin-fixed paraffin-embedded
prostate carcinoma tissue was performed by mouse anti-MSH2 (clone G219-1129, Ven-
tana, Oro Valley, AZ, USA,; “ready to use”), rabbit anti-MSH6 (clone EP49, Epitomics,
Burlingame, CA, USA, dilution 1:50), and mouse anti-MLH1 (clone G-168-15, BioCare,
Pacheco, CA, USA, dilution 1:50) for MMR proteins. For PD-L1, mouse anti-PD-L1 (clone
22C3, “ready to use”) was used. In all specimens, the presence of MMR proteins and lack
of expression of PD-L1 was confirmed.

4. Results
4.1. Genomic Findings—Tumor

The tumor cellularity or purity of the biopsy, as estimated from FACETS, was found
to be relatively low (30%). Low purity will reduce the effective coverage of variant alleles
in the tumor cells, in turn reducing the detection sensitivity [25]. As a consequence of the
low tumor purity, the distribution of variant allele fractions (VAFs) was skewed towards
the lower end (Figure 3).
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Figure 3. Distribution of the variant allelic fraction for somatic variants (SNVs/InDels) detected in the prostate tumor case.

A total of 149 protein-coding variants were detected, and the tumor mutational burden
(TMB) was calculated accordingly as 3.88 (nonsynonymous variants pr. Mb), which may
be somewhat uncertain, given the low tumor content in our case (the complete set of
variants are listed in Supplementary Table S3), yet a high TMB for primary PCa. It has been
estimated that the TMB of unselected and usually treatment-naïve locoregional prostate
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adenocarcinoma cohorts typically falls between 0.94 and 1.74 nonsynonymous mutations
per megabase [26].

The copy number analysis performed with FACETS did not reveal any regions with
significant amplifications or homozygous deletions.

MSI is a result of impaired DNA mismatch repair and constitutes a cellular phenotype
of clinical significance in many cancer types [27]. We utilized the patterns and load of
indels in the tumor to examine the MSI status (MSI-high vs. MSS). Specifically, we applied
a machine-learning classifier trained on tumor samples in TCGA (breast, ovarian, stomach,
and endometrial) with established MSI status from mononucleotide repeat assays. The
tumor was classified as microsatellite stable (MSS), with properties resembling microsatel-
lite stable tumors (Figure 4). Furthermore, no somatic alterations were detected in the
mismatch repair genes.
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We estimated the contribution of mutational signatures by computationally fitting
established signatures (COSMIC v3) to the patterns of nucleotide variants found in the
tumor biopsy. The accuracy by which the mutational profile could be reconstructed
with reference signatures previously attributed to PCa (i.e., the fitting procedure) was
79%, indicating that the reference signatures cannot explain the mutations observed in
an optimal manner. Mutational signature SBS3 was by far the most dominant signature,
with a relative contribution of 59% (Supplementary Table S4). This signature is a relatively
flat and featureless base substitution signature associated with defective homologous
recombination-based DNA repair and inactivating mutations of BRCA1 and BRCA2 [28,29].
It is usually accompanied by small deletions, with overlapping microhomology at their
boundaries and large numbers of rearrangements, including tandem duplications and
deletions [28].

4.2. Somatic Variants of Potential Clinical Relevance
4.2.1. PTEN Inframe Deletion—p.His196_Ile203del

We revealed a 24-base pair interstitial deletion causing an in-frame deletion of seven
amino acids from the PTEN protein. The deletion was found with a very low allelic
fraction (2.8%), indicating that it may represent a subclonal event. Inactivation of the PTEN
tumor-suppressor gene by deletion occurs in 20–30% of PCa tumors, and a loss of PTEN
function is strongly associated with a poor outcome [30]. In a study of TCGA prostate
samples, PTEN loss-of-function not only led to activation of the PI3K/AKT pathway but,
also, affected the genome stability and levels of tumor aneuploidy, especially in cases with
PTEN homologous deletion. PTEN-deficient cells exhibit elevated levels of reactive oxygen
species, increased endogenous DNA damage, and constitutive ATM activation. ATM
inhibition (discussed below) has been reported to be specifically toxic to PTEN-mutant
cancer cells, thus providing a mechanistic rationale for a clinical evaluation of the inhibitors
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in PTEN-deficient tumors [31]. The pHis196_Ile203 inframe deletion we discovered is not,
however, a classic loss-of-function variant caused, e.g., by frameshift and was not found in
the COSMIC database of somatic mutations in cancer or in tumor samples in the TCGA
database.

4.2.2. ATM Missense Variant—p.Arg1575His

A somatic missense mutation in ATM was identified with an allelic fraction of 13.6%.
Germline ATM mutations have been found to increase the risk of developing PCa (among
other cancers) [32]. Interestingly, this particular variant has also been observed as a
germline variant and is listed as a variant of unknown significance (VUS) in ClinVar (acces-
sion identifier RCV000159727.9). The ATM gene encodes a PI3K-related serine/threonine
protein kinase that plays a central role in the response to, and ultimately the repair of, DNA
double-strand breaks (DSBs). Once activated, ATM phosphorylates multiple substrates,
protein kinases, and sensor proteins in order to carry out DSB repair and, also, regulate the
normal cell cycle processes, such as apoptosis and checkpoint activation. Further, ATM
germline mutations have been linked to an increased level of sensitivity to platinum-based
antineoplastic drugs [33].

4.2.3. CREBBP Missense Variant—p.Trp1718Gly

The CREBBP variant we identified is a missense variant also with a very low allelic
fraction (3.5%), possibly indicating its presence in a clone. Targeting the CBP/p300 bro-
modomain has shown therapeutic potential in castration-resistant PCa [34]. A recent
report showed how a small molecule inhibitor (CCS1477) can decrease the influence of the
coactivator p300/CBP on AR activity in castration-resistant PCa [35].

4.3. Germline Findings—Blood

Using an exploratory virtual panel of n = 216 genes of relevance for cancer predisposi-
tion, we examined the case for pathogenic germline variants (details for the panel are listed
in Supplementary Table S3). We identified a total of n = 111 protein-coding variants in
these genes, but none of them were classified previously as pathogenic or likely pathogenic
(P/LP), according to ClinVar, and none of the novel (i.e., not recorded in ClinVar) variants
were classified as P/LP by the algorithm used in CPSR. A total of n = 14 variants were
classified as variants of uncertain clinical significance. A few of these variants were in
genes involved in DNA repair and are described briefly below (details per variant are
provided in Supplementary Table S5).

A missense variant in BARD1 (BRCA1-associated RING domain protein 1) was de-
tected, a variant that has been reported previously for hereditary cancer conditions in
ClinVar (NM_000465.4:p.His116Tyr, rs144856889). BARD1 is a cancer-susceptibility gene
that interacts with BRCA1 in homology-directed repair (HDR). A recent study investigated
the functional impact of numerous BARD1 missense variants on HDR proficiency and
discovered that HDR-deficient variants were located in distinct functional domains [36].
Although the His116Tyr variant found in our case was not assessed in that study, it was
located in close proximity to a variant that was reported to have no impact on the repair
proficiency (p.Asn118Ser). Thus, it seems likely that the His116Tyr variant does not affect
the proficiency of homologous recombination repair (HR).

A germline splice region variant was found in MSH2, previously reported for Lynch
syndrome conditions in ClinVar (rs779102258). However, this variant was found to be
located in a poly-A tract and may well be an artefact from sequencing or read alignment.
We also discovered a missense variant in ERCC5 (NM_000123.4:p.Gly1080A, rs9514067);
however, this gene is not directly involved with homologous recombination repair but,
rather, nucleotide excision repair.
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4.4. Transcriptomic Findings—Tumor

The transcriptome of the tumor case was characterized with high-throughput RNA
sequencing. Initially, we verified that the gene expression patterns from our tumor biopsy
resembled the signals previously shown for prostate tumor samples. Specifically, using
the expression profile for a set of n = 89 protein-coding genes linked to PCa development
(gene set KEGG_PROSTATE_CANCER in MSigDB [37]), a Spearman rank correlation was
calculated between our case and all primary tumor samples (n = 9346) in TCGA. Samples
originating from the prostate adenocarcinoma cohort (TCGA-PRAD) were heavily enriched
among the samples showing the strongest correlation to our case (96.4% prostate samples
among the 500 cases with the strongest correlation).

The use of RNA-based molecular classifiers to stratify PCa patients for the risk of
relapse to primary or secondary treatment is becoming an attractive clinical strategy [38].
Therefore, we interrogated a few published gene expression signatures related to disease
progression and molecularly targeted treatment regimens for our case (Supplementary
Table S6). In particular, we investigated a BRCAness signature (HR deficiency, n = 10 genes),
a signature with 49 genes that correlate with response to ADT, a signature associated with
response to bromodomain inhibitors (n = 10), as well as a signature of aberrant PTEN tumor-
suppressor pathway activity (n = 190 genes) [39–42]. As our case presented a Gleason score
9, we used expression data from prostate adenocarcinoma samples in TCGA (Gleason score
>= 8, n = 201 samples) and performed a gene set variation analysis in order to evaluate
whether the PCa case had relatively high or low scores for these signatures. A strong
positive enrichment score was observed for the signature associated with ADT response
(Figure 5). The signature attributed to PTEN pathway activity showed a considerable
negative enrichment score in our case, indicating a downregulation of this pathway. The
bromodomain signature, a proxy for response to BET inhibitors, also showed a significant
negative score. The evidence for BRCAness appeared with a modest positive signature
enrichment score and above the median for the primary prostate tumor samples in TCGA.
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Figure 5. Gene set variation analysis of gene signatures attributed to ADT response, HR defi-
ciency/BRCAness, response to bromodomain inhibitors (BROMO10) and aberrant PTEN tumor-
suppressor pathway activity. Signature enrichment scores were calculated for all the prostate ade-
nocarcinoma samples in TCGA (Gleason score >= 8, n = 201). In the boxplots, scores for our case
are indicated with solid black lines, and median scores in TCGA-PRAD are indicated with gray
horizontal lines.
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4.5. Fusion Transcript Findings—Tumor

The fusion transcript analysis of RNA-seq data resulted in a list of 18 candidates, of
which seven were tagged as high-confident candidates (Supplementary Table S7). Two
novel high-confident fusion transcripts involved partner genes with considerable molecu-
lar relevance in PCa. The first one, an OSBPL11-BRCA2 fusion transcript, was predicted
to have an out-of-frame open reading frame (ORF) without encoding a chimeric protein.
The breakpoint was located at the intronic region of BRCA2 and did not match the intact
conserved exon–exon boundaries. Figure 6 illustrates how the read coverage of down-
stream exons at the BRCA2 breakpoint site are reduced compared to the upstream exons,
indicating reduced expression.
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The second relevant fusion transcript involved PIK3R1, which encodes a key regu-
latory subunit of the phosphoinositide-3 kinase (PI3K) pathway. The PIK3R1-HSD17B4
fusion was the only nominated fusion transcript that could form an inframe ORF encoding
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a chimeric protein (Supplementary Figure S2). The putative fusion protein combines the
SH3 and RhoGAP domains of PIK3R1 with MaoC-like and SCP2_sterol-bd domains of
HSD17B4.

5. Discussion

For mPCa, the Philadelphia and NCCN guidelines recommend germline and somatic
testing within a priority gene panel covering MLH1, MSH2, MSH6, and PMS2 (for Lynch
syndrome) and homologous recombinant genes BRCA1/2, ATM, PALB2, and CHEK2. This
recommendation is based on mutation prevalence and existing treatment options. The
challenge ahead will be to define the standardized methods to decipher the information
accumulated for each case and convert it to clinical treatment strategies. This can only
be achieved by a concerted approach involving multidisciplinary teams to bring home
knowledge for the benefit of our patients [43]. For the case presented here, interdisciplinary
discussions were undertaken to evaluate the possible treatment options.

5.1. Pathology Findings

In a comprehensive approach, the pathology report (mainly intraductal/cribriform
and grade 5 cancer) suggests an aggressive tumor [10]. No neuroendocrine differentiation
was reported. The evidence suggests that intraductal PCa are heterogeneous, and some of
these respond to ADT [44]. Tumor cell deposits had been found in the bone marrow of the
patient advocating for both maximal androgen deprivation and early stereotactic radio-
therapy [45]. Concordantly, targeting the androgen receptor (AR) axis with enzalutamide
and goserelin led to an observed PSA decline below 0.03 ng/mL. The remarkable response
to maximal androgen deprivation could indicate a preferential androgen-driven pathway,
as elucidated by Zhao et al. [46]. Using a PAM50-based gene expression subtype classifier,
patients were neatly dissected into three different major response types, and one of those,
the luminal B type, was clearly related to the clinical benefit of ADT.

5.2. MRI Findings

MRI is considered the most sensitive and specific imaging technique for localizing
and staging clinically significant PCa. In our patient, the pretreatment imaging findings,
including low apparent diffusion coefficient (ADC) values within the tumor, were consistent
with the features of aggressive PCa and are in agreement with previous reports [47].

5.3. Genomic and Transcriptomic Findings

The molecular findings at the genomic and transcriptomic levels were interrogated
specifically with respect to the treatment options. Some novel biomarkers for prognosis
and diagnosis, beyond the Gleason score and PSA level, have been proposed for prostate
cancer management, but these were not investigated in detail for our case [48,49].

The incidence of pathogenic germline mutations in DNA repair genes in men with
mPCa has been estimated to be almost 12% [50]. Having considered a large set of known
cancer predisposition genes, we could not identify any pathogenic germline mutation
in our case. Nonetheless, two potentially actionable targets could be identified from the
tumor sequencing analysis of the patient. Somatically acquired protein-coding alterations
in PTEN and ATM were identified in the tumor biopsy. The PTEN somatic alteration
was accompanied by a concomitant suggested loss of PTEN activity by the transcriptome
analysis. Interestingly, the somatic ATM variant (p.Arg1575His) has been reported multiple
times as a germline variant and is currently classified as a VUS in ClinVar. Alterations in
MMR genes could not be confirmed at the protein level, and the transcriptome analysis
showed a relatively low BRCAness score. However, the large contribution of the mutational
signature SBS3, signaling a HR defect, indicated that the ATM variant may be implicated
in the mutational processes acting on the tumor. Furthermore, the presence of an OSBPL11-
BRCA2 fusion transcript points to a functional loss of BRCA2, a gene that regulates the
activity of RAD51, an essential protein for proficient HR [51]. The differential expression of
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exons before/after the breakpoint in the BRCA2 gene indicated that one copy of BRCA2
was broken up by this fusion event.

Some limitations of our genomic approach must be acknowledged. First, the yield
of DNA extracted from the tumor was low, possibly introducing a possible bias in our
assessment of low TMB. Second, the MSI classifier applied in our analysis has not yet been
validated by samples from PCa patients. Additionally, we observed that the reference
mutational signatures that were fitted to the mutations in the tumor could not optimally
explain the patterns observed. Notably, the presence and contribution of “flat” signatures,
such as the mutational signature SBS3, attributed to HR deficiency, are generally hard to fit
and estimate robustly [52].

5.4. Specific Treatment Considerations

Based on the strong pathology evidence for combining radiation with ADT, the
patient has been treated with goserelin, and conformal radiotherapy was applied to the
prostate [3,4]. Since AR was reported to maintain the expression of DNA repair genes, and
given the ATM mutation in our case, we added treatment with Enzalutamide following an
enforced ADT during radiation to personalize the treatment [53,54]. Enzalutamide prolongs
survival when added to ADT and has shown clinical benefits as a first-line treatment in men
with both nonmetastatic and castration-resistant metastatic disease [55,56]. The final results
of the ENZAMET trial showed an overall survival at 3 years of 80% in the enzalutamide
group, as compared to 72% in the standard-care group. With level 1 evidence supporting
the superiority of enforced ADT, it was reasonable to involve this strategy, especially in the
case of putative HR deficiency.

5.4.1. PARP Inhibitors

PARP inhibitors (PARPi) are approved for biomarker-selected or unselected male
patients with metastatic castration-resistant PCa with DNA repair deficiencies. The PRO-
found trial investigated the impact of olaparib in biomarker-selected (BRCA1, BRCA2, or
ATM) patients [57]. The trial showed a progression-free survival benefit of 3.1 months in
the olaparib arm (median PFS 7.4 months in the olaparib group compared to 3.6 months in
the control group). The drug prolonged patient survival to a clinically significant median
of 18.5 months compared to 15.1 months in the control group. Our patient had a somatic
alteration in the ATM gene. In the context of cancers with deficiencies in homologous
recombination (HR) repair, the association with indels, especially with microhomology
at the breakpoint, makes mechanistic sense, since this presumably occurs by error-prone
nonhomologous end joining (NHEJ) and the alternate-EJ. The ATM gene promotes NHEJ
for DNA double-stranded break repair, but when deficient, the aberration-prone single-
stranded DNA repair substitutes NHEJ. Thus, it seems plausible that ATM may be a reason
for the observed mutational signature 3 in the tumor sample of our case and possibly may
play a role in the relatively high TMB (compared to other prostate cancers).

In our case, the somatic ATM mutation, combined with the presence of mutational
signature 3 (homologous recombination deficiency), could indicate a biomarker-based
selection of our patient for strategy utilizing PARPi as monotherapy [58]. Moreover, ADT
can induce a DNA damage repair-deficient phenotype, thereby promoting the effect of
PARPi. Several ongoing studies (TALAPRO2 and MAGNITUDE) are investigating the role
of PARPi in combination with a novel ADT in biomarker-unselected patients.

The BRCA2 fusion variant detected is particularly interesting in the context of PARPi
treatment, in that phase 2 trials have shown that antitumor activity with PARPi in patients
with metastatic mPCa have consistently higher response rates among those with BRCA2
alterations than those for other DNA repair gene alterations [57,59–61].

Our patient had hairy cell leukemia with an initially reduced platelet count. Per-
sonalized medicine drives the decision focus from assessing symptom-caused medicine
to anticipating the disease development. Since PARPi administration is associated with
thrombocytopenia and anemia, the suitability of cladribine administration to the patient
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was discussed with a hematologist. However, cladribine was not recommended due to the
often-indolent course of hairy cell leukemia. So far, no agreement has been reached on the
optimal clinical approach in a patient with two different diseases. Still, olaparib, a PARPi, is
regarded as a possible first-line drug for the patient and was discussed interdisciplinarily.

We decided to challenge the hematologist’s view and, for the time being, postponed the
PARPi intervention, supported by the favorable treatment response and absence of further
tumor growth or detectable activity on follow-up MRI. In the case of oligo-progression,
stereotactic radiotherapy to the thoracic bone lesion could be an alternative treatment to
stretch the need for further systemic treatment [47].

On the other hand, combined PARPi/ATR access is under early clinical testing and
might open up a novel avenue of treatment that circumvents adapted ATM resistance.
Lloyd et al. recently showed that a combination of olaparib and an ATR inhibitor potenti-
ated each other and led to accelerated cell death in a mouse model [58]. Future studies will
show if this approach could be beneficial in mPCa. Following the Philadelphia guidelines,
priority genes to test for metastatic disease treatment include germline variants in BRCA1,
BRCA2, and mismatch repair genes, along with broader testing, such as ATM, for clinical
trial eligibility. Recently, a first-in-humans trial with the ATR inhibitor BAY1895346 was
conducted in 21 patients with advanced solid tumors [62]. If this successfully progresses to
phase 2 trials, this would also be a possible option for our case.

5.4.2. Targeting Consequences of Loss of PTEN Activity

Loss of the tumor-suppressor PTEN function, a major finding in men with mPCa is
associated with poor outcomes [63]. The transcriptome analysis showed a low activity of the
PTEN tumor-suppressor pathway. However, the PTEN deletion appears to be present only
at a subclonal level in our case. We have therefore developed an assay for this particular
PTEN deletion as a circulating-tumor DNA marker for further detailed monitoring of the
treatment response and detection of treatment resistance based on the potential expansion
of this clone (see section PTEN deletion monitoring assay in Supplementary Materials). To
this stage, we have not detected clonal expansion of the clone harboring the PTEN deletion.

5.4.3. HDAC Inhibitors

HDACi have been shown to synergize with PARPi and DNA-damaging agents
through multiple mechanisms, including the induction of DNA damage, attenuation
of HR protein ATM activity, inhibition of both NHEJ and HR systems, induction of p53
acetylation and activity, downregulation of antiapoptotic proteins, and upregulation of
proapoptotic proteins [64].

5.4.4. Immune Checkpoint Inhibitors

According to the preliminary results of an ongoing trial, PCa patients with tumors
having a PD-L1 level of at least 1%, HR deficiency mutations, DNA damage repair muta-
tions, or a TMB greater than the median of 74.5 mutations showed enhanced responses
to a combined nivolumab/ipilimumab treatment [65]. Our subject has signs of HR defi-
ciency (the most dominant mutational signature), an ATM mutation of unknown clinical
significance, a BRCA2 fusion transcript that likely reduces full BRCA2 functionality, and
a significantly higher TMB than the median for PCa [26]. BRCA2-altered PCa tumors
have been shown to harbor enhanced intra-tumoral immune infiltrates compared to wild-
type tumors [60], suggesting treatment options targeting immune cell modulation [66].
The relatively high mutational load and CD3 influx could indicate a possible response
if the patient is challenged with checkpoint inhibition (CPI). Nevertheless, to date, the
attempts to treat mCRPCa with pembrolizumab, a checkpoint inhibitor, have not been very
successful [67]. Furthermore, although pembrolizumab CPI-agnostic therapy has been
approved for MSI-high tumors, our case presented an expression of all MMR proteins
(IHC), and PD-L1 staining was negative. Of note, mismatch repair deficiency has been
shown to be a very uncommon phenomenon in PCa, with a reported prevalence of only



J. Pers. Med. 2021, 11, 330 14 of 18

3% [68]. Subudhi et al. showed that patients with high TMB, high T-cell density, and a
high IFN-gamma response signature had favorable outcomes on the CPI [69]. The primary
biopsies in our case showed only the focal presence of CD3. ADT can reverse thymic
involution, thereby recruiting naïve T cells capable of forming lymphocyte infiltrates in the
primary tumor [70,71]. Of note, the typical immune-pathological cell picture is governed
by a suppressed immunity for PCa patients when treated with ADT [72]. In summary,
this evidence discourages instantly a first-line treatment with CPI monotherapy. However,
findings from a phase 1 trial of a therapeutic peptide vaccine in men with de novo mPCa
could overcome the immunosuppressive tumor microenvironment, indicating an interest-
ing combined approach that will be further evaluated [73] or BRCA2-induced immune cell
modulation [66].

5.4.5. Current Preferred Considerations for the Management of the Patient

The heterogeneous findings from genomic testing can potentially evoke further actions
for our case:

• Intraductal carcinoma with grade group 5 should encourage participation in
clinical trials.

• Continuous PTEN deletion as the biomarker-based monitoring of treatment effi-
cacy in liquid biopsies, which could define a switch into therapies targeting the
mTOR/PI3K/AKT axis.

• Treatment with PARPi in combination with an AR blockade.
• Immune modulation.
• Test of the ATM variant in preclinical models for the response to a treatment with

PARPi and AKTi.
• Stereotactic radiotherapy to a single thoracic lesion.

6. Conclusions

The clinical case illustrated here pinpoints the many challenges inherent in the
decision-making process for personalized treatments. Although the genomic findings
provided a comprehensive understanding of the complex scenario ahead in managing this
patient, we adopted a treatment strategy in compliance with the existing guidelines.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11050330/s1: Figure S1: Amplification products from two PCR assays of the PTEN
deletion, Figure S2: The PIK3R1-HSD17B4 fusion transcript, Table S1: DNA extraction measurements,
Table S2: Germline screening panel, Table S3: Somatic variants, Table S4: Mutational signatures, Table
S5: Selected germline variants of uncertain clinical significance, Table S6: Gene expression signatures,
Table S7: Fusion transcripts, Table S8: PTEN deletion monitoring assay primers.

Author Contributions: Conceptualization, E.H. and W.L.; Methodology, S.N., S.Z., F.K., A.U., and
P.O.E.; Software, S.N., S.Z., and F.K.; Validation, P.O.E.; Formal Analysis, S.N., S.Z., F.K., and
A.U.; Investigation, M.D.S., K.E.K., and W.L.; Resources, E.H. and W.L.; Writing—Original Draft
Preparation, E.H., O.L., W.L., and S.N.; Writing—Review and Editing, S.N., M.D.S., A.U., S.Z., E.H.,
O.L., and W.L.; and Visualization, S.N., S.Z., and P.O.E. All authors have read and agreed to the
published version of the manuscript.

Funding: S.N. is supported by the Research Council of Norway through its Center of Excellence
funding scheme (project: 262652). A.U. is supported by the Norwegian Cancer Society (grant number
#198016-2018).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki (in its most recently amended version). All procedures followed were in
accordance with the ethical standards as required by national law.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study

https://www.mdpi.com/article/10.3390/jpm11050330/s1
https://www.mdpi.com/article/10.3390/jpm11050330/s1


J. Pers. Med. 2021, 11, 330 15 of 18

Data Availability Statement: All processed molecular data of the tumor biopsy and R code for the
transcriptome analysis are available through the following DOI: https://doi.org/10.5281/zenodo.45
96571.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Garraway, L.A. Genomics-Driven Oncology: Framework for an Emerging Paradigm. J. Clin. Oncol. 2013, 31, 1806–1814.

[CrossRef]
2. Gagan, J.; Van Allen, E.M. Next-generation sequencing to guide cancer therapy. Genome Med. 2015, 7, 80. [CrossRef] [PubMed]
3. Sweeney, C.J.; Chen, Y.-H.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.-N.; Hahn, N.; Kohli, M.; Cooney, M.M.;

et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2015, 373, 737–746. [CrossRef]
4. Parker, C.C.; James, N.D.; Brawley, C.D.; Clarke, N.W.; Hoyle, A.P.; Ali, A.; Ritchie, A.W.S.; Attard, G.; Chowdhury, S.; Cross,

W.; et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): A randomised
controlled phase 3 trial. Lancet 2018, 392, 2353–2366. [CrossRef]

5. Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025.
[CrossRef]

6. Abida, W.; Armenia, J.; Gopalan, A.; Brennan, R.; Walsh, M.; Barron, D.; Danila, D.; Rathkopf, D.; Morris, M.; Slovin, S.; et al.
Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May
Affect Clinical Decision Making. JCO Precis. Oncol. 2017, 1, 1–16. [CrossRef] [PubMed]

7. Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M.; et al.
Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [CrossRef]

8. Grasso, C.S.; Wu, Y.-M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.;
et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012, 487, 239–243. [CrossRef]

9. Antonarakis, E.S.; Shaukat, F.; Velho, P.I.; Kaur, H.; Shenderov, E.; Pardoll, D.M.; Lotan, T.L. Clinical Features and Therapeutic
Outcomes in Men with Advanced Prostate Cancer and DNA Mismatch Repair Gene Mutations. Eur. Urol. 2019, 75, 378–382.
[CrossRef] [PubMed]

10. Prensner, J.R.; Iyer, M.K.; Sahu, A.; Asangani, I.A.; Cao, Q.; Patel, L.R.; Vergara, I.A.; Davicioni, E.; Erho, N.; Ghadessi, M.; et al.
The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet.
2013, 45, 1392–1398. [CrossRef] [PubMed]

11. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

12. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.B.; Daly,
M.J.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome
Res. 2010, 20, 1297–1303. [CrossRef] [PubMed]

13. Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G.
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213–219.
[CrossRef]

14. Saunders, C.T.; Wong, W.S.W.; Swamy, S.; Becq, J.; Murray, L.J.; Cheetham, R.K. Strelka: Accurate somatic small-variant calling
from sequenced tumor-normal sample pairs. Bioinformatics 2012, 28, 1811–1817. [CrossRef]

15. Shen, R.; Seshan, V.E. FACETS: Allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA
sequencing. Nucleic Acids Res. 2016, 44, e131. [CrossRef]

16. Nakken, S.; Fournous, G.; Vodák, D.; Aasheim, L.B.; Myklebost, O.; Hovig, E. Personal Cancer Genome Reporter: Variant
interpretation report for precision oncology. Bioinformatics 2018, 34, 1778–1780. [CrossRef]

17. Blokzijl, F.; Janssen, R.; van Boxtel, R.; Cuppen, E. MutationalPatterns: Comprehensive genome-wide analysis of mutational
processes. Genome Med. 2018, 10, 33. [CrossRef]

18. Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Ng, A.W.T.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.;
Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101. [CrossRef]

19. Nakken, S.; Saveliev, V.; Hofmann, O.; Møller, P.; Myklebost, O.; Hovig, E. Cancer Predisposition Sequencing Reporter (CPSR): A
flexible variant report engine for germline screening in cancer. Cold Spring Harbor Lab. 2019, 846089. [CrossRef]

20. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef]

21. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast
universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef] [PubMed]

22. Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni,
I.; et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016, 44, e71.
[CrossRef] [PubMed]

23. Haas, B.J.; Dobin, A.; Li, B.; Stransky, N.; Pochet, N.; Regev, A. Accuracy assessment of fusion transcript detection via read-
mapping and de novo fusion transcript assembly-based methods. Genome Biol. 2019, 20, 213. [CrossRef]

https://doi.org/10.5281/zenodo.4596571
https://doi.org/10.5281/zenodo.4596571
http://doi.org/10.1200/JCO.2012.46.8934
http://doi.org/10.1186/s13073-015-0203-x
http://www.ncbi.nlm.nih.gov/pubmed/26221189
http://doi.org/10.1056/NEJMoa1503747
http://doi.org/10.1016/S0140-6736(18)32486-3
http://doi.org/10.1016/j.cell.2015.10.025
http://doi.org/10.1200/PO.17.00029
http://www.ncbi.nlm.nih.gov/pubmed/28825054
http://doi.org/10.1073/pnas.1902651116
http://doi.org/10.1038/nature11125
http://doi.org/10.1016/j.eururo.2018.10.009
http://www.ncbi.nlm.nih.gov/pubmed/30337059
http://doi.org/10.1038/ng.2771
http://www.ncbi.nlm.nih.gov/pubmed/24076601
http://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://doi.org/10.1038/nbt.2514
http://doi.org/10.1093/bioinformatics/bts271
http://doi.org/10.1093/nar/gkw520
http://doi.org/10.1093/bioinformatics/btx817
http://doi.org/10.1186/s13073-018-0539-0
http://doi.org/10.1038/s41586-020-1943-3
http://doi.org/10.1101/846089
http://doi.org/10.1093/bioinformatics/btu170
http://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
http://doi.org/10.1093/nar/gkv1507
http://www.ncbi.nlm.nih.gov/pubmed/26704973
http://doi.org/10.1186/s13059-019-1842-9


J. Pers. Med. 2021, 11, 330 16 of 18

24. Uhrig, S.; Ellermann, J.; Walther, T.; Burkhardt, P.; Fröhlich, M.; Hutter, B.; Toprak, U.H.; Neumann, O.; Stenzinger, A.; Scholl, C.;
et al. Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Res. 2021. [CrossRef] [PubMed]

25. Shin, H.-T.; Choi, Y.-L.; Yun, J.W.; Kim, N.K.D.; Kim, S.-Y.; Jeon, H.J.; Nam, J.-Y.; Lee, C.; Ryu, D.; Kim, S.C.; et al. Prevalence and
detection of low-allele-fraction variants in clinical cancer samples. Nat. Commun. 2017, 8, 1377. [CrossRef] [PubMed]

26. Ryan, M.J.; Bose, R. Genomic Alteration Burden in Advanced Prostate Cancer and Therapeutic Implications. Front. Oncol. 2019, 9,
1287. [CrossRef]

27. Cortes-Ciriano, I.; Lee, S.; Park, W.-Y.; Kim, T.-M.; Park, P.J. A molecular portrait of microsatellite instability across multiple
cancers. Nat. Commun. 2017, 8, 15180. [CrossRef] [PubMed]

28. Nik-Zainal, S.; Davies, H.; Staaf, J.; Ramakrishna, M.; Glodzik, D.; Zou, X.; Martincorena, I.; Alexandrov, L.B.; Martin, S.; Wedge,
D.C.; et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 2016, 534, 47–54. [CrossRef]
[PubMed]

29. Polak, P.; Kim, J.; Braunstein, L.Z.; Karlic, R.; Haradhavala, N.J.; Tiao, G.; Rosebrock, D.; Livitz, D.; Kübler, K.; Mouw, K.W.; et al.
A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet.
2017, 49, 1476–1486. [CrossRef] [PubMed]

30. Vidotto, T.; Tiezzi, D.G.; Squire, J.A. Distinct subtypes of genomic PTEN deletion size influence the landscape of aneuploidy and
outcome in prostate cancer. Mol. Cytogenet. 2018, 11, 1. [CrossRef]

31. Burdak-Rothkamm, S.; Mansour, W.Y.; Rothkamm, K. DNA Damage Repair Deficiency in Prostate Cancer. Trends Cancer 2020, 6,
974–984. [CrossRef]

32. Na, R.; Zheng, S.L.; Han, M.; Yu, H.; Jiang, D.; Shah, S.; Ewing, C.M.; Zhang, L.; Novakovic, K.; Petkewicz, J.; et al. Germline
Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at
Death. Eur. Urol. 2017, 71, 740–747. [CrossRef]

33. Lima, Z.S.; Ghadamzadeh, M.; Arashloo, F.T.; Amjad, G.; Ebadi, M.R.; Younesi, L. Recent advances of therapeutic targets based
on the molecular signature in breast cancer: Genetic mutations and implications for current treatment paradigms. J. Hematol.
Oncol. 2019, 12, 38. [CrossRef] [PubMed]

34. Jin, L.; Garcia, J.; Chan, E.; de la Cruz, C.; Segal, E.; Merchant, M.; Kharbanda, S.; Raisner, R.; Haverty, P.M.; Modrusan, Z.; et al.
Therapeutic Targeting of the CBP/p300 Bromodomain Blocks the Growth of Castration-Resistant Prostate Cancer. Cancer Res.
2017, 77, 5564–5575. [CrossRef]

35. Welti, J.; Sharp, A.; Brooks, N.; Yuan, W.; McNair, C.; Chand, S.N.; Pal, A.; Figueiredo, I.; Riisnaes, R.; Gurel, B.; et al. Targeting
p300/CBP axis in lethal prostate cancer. Cancer Discov. 2021. [CrossRef] [PubMed]

36. Adamovich, A.I.; Banerjee, T.; Wingo, M.; Duncan, K.; Ning, J.; Rodrigues, F.M.; Huang, K.-L.; Lee, C.; Chen, F.; Ding, L.; et al.
Functional analysis of BARD1 missense variants in homology-directed repair and damage sensitivity. PLoS Genetics 2019, 15,
e1008049. [CrossRef] [PubMed]

37. Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdóttir, H.; Tamayo, P.; Mesirov, J.P. Molecular signatures database
(MSigDB) 3.0. Bioinformatics 2011, 27, 1739–1740. [CrossRef]

38. Doultsinos, D.; Mills, I.G. Derivation and Application of Molecular Signatures to Prostate Cancer: Opportunities and Challenges.
Cancers 2021, 13, 495. [CrossRef] [PubMed]

39. Li, L.; Karanika, S.; Yang, G.; Wang, J.; Park, S.; Broom, B.M.; Manyam, G.C.; Wu, W.; Luo, Y.; Basourakos, S.; et al. Androgen
receptor inhibitor–induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci.
Signal. 2017, 10. [CrossRef] [PubMed]

40. Karnes, R.J.; Sharma, V.; Choeurng, V.; Ashab, H.A.-D.; Erho, N.; Alshalalfa, M.; Trock, B.; Ross, A.; Yousefi, K.; Tsai, H.; et al.
Development and Validation of a Prostate Cancer Genomic Signature that Predicts Early ADT Treatment Response Following
Radical Prostatectomy. Clin. Cancer Res. 2018, 24, 3908–3916. [CrossRef]

41. Urbanucci, A.; Barfeld, S.J.; Kytölä, V.; Itkonen, H.M.; Coleman, I.M.; Vodák, D.; Sjöblom, L.; Sheng, X.; Tolonen, T.; Minner, S.;
et al. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Rep. 2017,
19, 2045–2059. [CrossRef] [PubMed]

42. Saal, L.H.; Johansson, P.; Holm, K.; Gruvberger-Saal, S.K.; She, Q.-B.; Maurer, M.; Koujak, S.; Ferrando, A.A.; Malmström, P.;
Memeo, L.; et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor
pathway activity. Proc. Natl. Acad. Sci. USA 2007, 104, 7564–7569. [CrossRef]

43. Armstrong, A.J.; Li, X.; Tucker, M.; Li, S.; Mu, X.J.; Eng, K.W.; Sboner, A.; Rubin, M.; Gerstein, M. Molecular medicine tumor
board: Whole-genome sequencing to inform on personalized medicine for a man with advanced prostate cancer. Prostate Cancer
Prostatic Dis. 2021. [CrossRef]

44. Kato, M.; Hirakawa, A.; Kobayashi, Y.; Yamamoto, A.; Ishida, R.; Kamihira, O.; Sano, T.; Majima, T.; Ishida, S.; Funahashi, Y.; et al.
Response of intraductal carcinoma of the prostate to androgen deprivation therapy predicts prostate cancer prognosis in radical
prostatectomy patients. Prostate 2020, 80, 284–290. [CrossRef]

45. Deek, M.P.; Taparra, K.; Phillips, R.; Velho, P.I.; Gao, R.W.; Deville, C.; Song, D.Y.; Greco, S.; Carducci, M.; Eisenberger, M.;
et al. Metastasis-directed Therapy Prolongs Efficacy of Systemic Therapy and Improves Clinical Outcomes in Oligoprogressive
Castration-resistant Prostate Cancer. Eur. Urol. Oncol. 2020. [CrossRef] [PubMed]

http://doi.org/10.1101/gr.257246.119
http://www.ncbi.nlm.nih.gov/pubmed/33441414
http://doi.org/10.1038/s41467-017-01470-y
http://www.ncbi.nlm.nih.gov/pubmed/29123093
http://doi.org/10.3389/fonc.2019.01287
http://doi.org/10.1038/ncomms15180
http://www.ncbi.nlm.nih.gov/pubmed/28585546
http://doi.org/10.1038/nature17676
http://www.ncbi.nlm.nih.gov/pubmed/27135926
http://doi.org/10.1038/ng.3934
http://www.ncbi.nlm.nih.gov/pubmed/28825726
http://doi.org/10.1186/s13039-017-0348-y
http://doi.org/10.1016/j.trecan.2020.05.011
http://doi.org/10.1016/j.eururo.2016.11.033
http://doi.org/10.1186/s13045-019-0725-6
http://www.ncbi.nlm.nih.gov/pubmed/30975222
http://doi.org/10.1158/0008-5472.CAN-17-0314
http://doi.org/10.1158/2159-8290.CD-20-0751
http://www.ncbi.nlm.nih.gov/pubmed/33431496
http://doi.org/10.1371/journal.pgen.1008049
http://www.ncbi.nlm.nih.gov/pubmed/30925164
http://doi.org/10.1093/bioinformatics/btr260
http://doi.org/10.3390/cancers13030495
http://www.ncbi.nlm.nih.gov/pubmed/33525365
http://doi.org/10.1126/scisignal.aam7479
http://www.ncbi.nlm.nih.gov/pubmed/28536297
http://doi.org/10.1158/1078-0432.CCR-17-2745
http://doi.org/10.1016/j.celrep.2017.05.049
http://www.ncbi.nlm.nih.gov/pubmed/28591577
http://doi.org/10.1073/pnas.0702507104
http://doi.org/10.1038/s41391-021-00324-5
http://doi.org/10.1002/pros.23942
http://doi.org/10.1016/j.euo.2020.05.004
http://www.ncbi.nlm.nih.gov/pubmed/32536574


J. Pers. Med. 2021, 11, 330 17 of 18

46. Zhao, S.G.; Chang, S.L.; Erho, N.; Yu, M.; Lehrer, J.; Alshalalfa, M.; Speers, C.; Cooperberg, M.R.; Kim, W.; Ryan, C.J.; et al.
Associations of Luminal and Basal Subtyping of Prostate Cancer With Prognosis and Response to Androgen Deprivation Therapy.
JAMA Oncol. 2017, 3, 1663–1672. [CrossRef] [PubMed]

47. Switlyk, M.D.; Salberg, U.B.; Geier, O.M.; Vlatkovic, L.; Lilleby, W.; Lyng, H.; Seierstad, T. PTEN Expression in Prostate Cancer:
Relationship with Clinicopathologic Features and Multiparametric MRI Findings. Am. J. Roentgenol. 2019, 212, 1206–1214.
[CrossRef] [PubMed]
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