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RESEARCH ARTICLE Open Access

A novel comparative pattern analysis
approach identifies chronic alcohol
mediated dysregulation of transcriptomic
dynamics during liver regeneration
Lakshmi Kuttippurathu1, Egle Juskeviciute2, Rachael P Dippold2, Jan B. Hoek1,2 and Rajanikanth Vadigepalli1,2*

Abstract

Background: Liver regeneration is inhibited by chronic ethanol consumption and this impaired repair response
may contribute to the risk for alcoholic liver disease. We developed and applied a novel data analysis approach to
assess the effect of chronic ethanol intake in the mechanisms responsible for liver regeneration. We performed a
time series transcriptomic profiling study of the regeneration response after 2/3rd partial hepatectomy (PHx) in
ethanol-fed and isocaloric control rats.

Results: We developed a novel data analysis approach focusing on comparative pattern counts (COMPACT) to
exhaustively identify the dominant and subtle differential expression patterns. Approximately 6500 genes were
differentially regulated in Ethanol or Control groups within 24 h after PHx. Adaptation to chronic ethanol intake
significantly altered the immediate early gene expression patterns and nearly completely abrogated the cell cycle
induction in hepatocytes post PHx. The patterns highlighted by COMPACT analysis contained several non-parenchymal
cell specific markers indicating their aberrant transcriptional response as a novel mechanism through which chronic
ethanol intake deregulates the integrated liver tissue response.

Conclusions: Our novel comparative pattern analysis revealed new insights into ethanol-mediated molecular changes
in non-parenchymal liver cells as a possible contribution to the defective liver regeneration phenotype. The results
revealed for the first time an ethanol-induced shift of hepatic stellate cells from a pro-regenerative phenotype to that of
an anti-regenerative state after PHx. Our results can form the basis for novel interventions targeting the non-parenchymal
cells in normalizing the dysfunctional repair response process in alcoholic liver disease. Our approach is illustrated online
at http://compact.jefferson.edu.

Background
Multi time-series microarray measurements examining
the temporal variation in gene expression across time
points are useful in exploring the molecular mechanisms
controlling biological processes. A variety of statistical
techniques and methods are available to analyze time
series transcriptomic data sets. Traditional statistical
methods utilized significance tests, clustering methods

and regression models to find differentially regulated genes.
However, the dynamic nature of the effects of experimental
perturbations makes it difficult to explore beyond the dom-
inant aspect of the data. Conventional analysis approaches
such as Linear Models for Microarray Data (LIMMA) [1],
significance analysis of microarray (SMA) [2], Analysis of
variance (ANOVA) [3] are based on statistical significance
tests to identify differentially regulated genes. These are
followed by clustering methods to classify gene expression
profiles into groups of similar co-expression patterns. For
instance, Short Time-series Expression Miner (STEM) tool
[4] and Weighted Gene Correlation Network Analysis
(WGCNA) [5] utilize a clustering based approach to
identify temporal patterns from gene expression data. In
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contrast, regression modeling [6–8] is used to bridge the
gap between the expression changes and a particular
phenotype. However, these methods focus on retrieving
the dominant gene expression profiles obtained from a dir-
ect comparison between the normal versus disease data
sets. In our study, we introduce a comparative dynamic
pattern analysis that can be a novel alternative with the po-
tential to uncover aspects that are masked or hidden in
conventional analyses. We applied this approach to a data
set from rat liver to investigate the effect of chronic ethanol
intake on the regeneration process following partial hepa-
tectomy (PHx).
The liver has a remarkable ability to regenerate after in-

jury. PHx is a widely used animal model to study the pro-
gression of regeneration, in which left lateral and medial
lobes are surgically removed [9–15]. Multiple factors and
signaling pathways work synergistically to achieve the goal
of successful liver regeneration. From the quiescent G0
state, hepatocytes enter G1, the pre-replicative phase
within 6 h post PHx. This is followed by hepatocyte and
non-parenchymal cell replication and G2-M phases (12–
96 h). This progression is continued until the termination
phase (96–168 h) when the liver restores its original tissue
mass [16, 17]. PHx induces activation of stress signals and
hemodynamic changes mediated by adrenergic and puri-
nergic agonists that drive liver cells from G0 phase to enter
the cell cycle and induce proliferation [9, 18, 19]. Various
factors important for the regeneration process are activated
in the immediate early phase, prior to cell cycle entry
[11, 20, 21]. These include signals from cytokines, growth
factors and proteases such as matrix metalloprotease-9
(MMP-9) [17, 22]. During this priming phase, Kupffer cells
release cytokines triggering a pro-inflammatory response,
following which hepatocytes enter the replicative phase,
followed by cytokine production of other non-parenchymal
cells such as hepatic stellate cells, cholangiocytes and si-
nusoidal endothelial cells [9, 12, 23]. A better understand-
ing of the regenerative process has potential clinical
relevance in tumor resection and liver transplantation. Sev-
eral experimental and computational studies have been
conducted to investigate the dynamic changes in liver of
multiple factors during liver regeneration [11, 13, 16, 17,
24–28]. However, despite its clinical importance, the
underlying molecular mechanisms that drive the damaged
liver to help restore its complex architecture are not com-
pletely understood.
Several external factors can cause damage to the liver

and can limit the speed and efficiency of regeneration
by disrupting the signals. Chronic ethanol consumption
is one such factor; metabolism of ethanol leads to bio-
chemical changes that affect the healthy functioning of
the liver. This can develop into alcoholic liver disease
(ALD), one of the primary causes of liver-related mor-
tality [29–31]. Studies examining the effect of ethanol

intake on liver function showed that chronic ethanol
intake has the potential to impair hepatocyte replica-
tion by affecting the G1/S and G2/M transitions of the
cell cycle [32] and can delay the process of regeneration
post PHx [33–41].
DNA microarray technology has been used to identify

global gene expression in the ethanol-adapted liver for dif-
ferent species [42–45]. A transcriptomic analysis of rat
liver revealed that chronic ethanol consumption regulated
mainly the genes implicated in the processes of signal
transduction, transcription, immune response, and amino
acid metabolism [45]. To our knowledge, a global level
study of the gene expression mediated regulatory changes
that take place in the liver during regeneration due to
chronic ethanol intake has not been undertaken. Using a
time series analysis of the early response phase (0-24 h) in
the rat, we detected the differentially regulated genes in
the chronic ethanol diet group compared to pair-fed con-
trols during the initial phase of regeneration.
In the present study, we introduce a novel approach to

the analysis of microarray data, and applied it to the ana-
lyzing the dynamic adaptation of the liver gene expression
to chronic ethanol intake. We investigated the effect of
ethanol intake on global gene expression at two levels: (i)
corresponding to chronic intake, and (ii) when acutely
perturbed from this adapted state through liver regener-
ation induced by 2/3rd PHx. Conventional clustering ap-
proaches were informative as a first order analysis at the
broad systems level, but fine-grained results on ethanol ef-
fects were eluding the typical cluster analyses due to the
complexity of interpreting the results from numerous
comparisons. To overcome this hurdle, we present a novel
approach based on analysis of discretized expression pat-
terns. Our approach compares the patterns of temporal
expression progression across dietary groups, and repre-
sents the results using a pattern count matrix and associ-
ated circular visualization, enabling straightforward and
intuitive identification of similarities and differences in the
expression programs due to chronic ethanol intake. This
approach permits us to focus on the results in a hierarch-
ical manner by masking patterns with larger number of
genes, revealing less obvious patterns with fewer gene
members. Our novel comparative pattern analysis revealed
new insights into ethanol-mediated molecular changes in
non-parenchymal liver cells as underlying the defective
liver regeneration phenotype.

Results
A novel approach for transcriptomic analysis by
comparing dynamic gene expression response patterns
across conditions
We developed a novel bioinformatics approach focusing
on comparative pattern counts (COMPACT) to enable a
hierarchical exploration, analysis and visualization of
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multi-dimensional transcriptomic data (Fig. 1). This
COMPACT approach was particularly suited to highlight
expression patterns that are typically “crowded out” in
conventional analyses. The approach considers an ex-
perimental design in which the transcriptomic effects of
two conditions, termed “Comparative Pair”, (e.g., Disease
versus Normal) are evaluated at multiple levels of an-
other factor, termed “Pattern Set”, (e.g., time points, drug
dose, weight group, cell type, etc.). The following explan-
ation considers Disease versus Normal comparison at
multiple time points, for illustration purposes. First, the

differential gene expression at each time point is com-
puted relative to appropriate, likely time point specific,
control conditions. The time series data is averaged
across replicates within each sample group, and discre-
tized into up-, down-, and no-regulation based on a
threshold of differential expression level. The sample
groups are divided into two sets based on the compara-
tive pair: Disease versus Normal. Within each set, the
discretized time series expression data is collated for
each gene into a pattern vector. The number of genes
corresponding to each of the patterns within Disease or

Comparative Pair

Pattern
Condition

Normal Disease
1 2 31 2 3

Calculate
Fold Changes

Discretization
into Pattern Vectors

1 2 3 1 2 3

Calculate
Two-way Histogram

Pattern Counts for each
Comparative condition

COMPACT matrix

Disease

N
or

m
al

Pattern
Condition

1 2 3 No. 1 2 3 No.

Chord diagram
Fig. 1 (See legend on next page.)
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Normal sets provides a univariate distribution of patterns.
The intersection between the Diseases versus Normal pat-
tern count distributions (i.e., the two-way histogram) ex-
haustively considers all possible comparative patterns,
yielding a COMPACT matrix. The elements of the COM-
PACT matrix are based on pair-wise gene counts of the
corresponding patterns, i.e., for the comparative pair Dis-
ease and Normal, the element at the ith row and jth column
of the matrix contains the number of genes that show an ith

expression pattern in Normal and jth expression pattern in
Disease. The diagonal of the matrix represents those genes
showing a common response and the off-diagonal elements
represent the genes showing an altered temporal response
between the two comparative conditions. The patterns are
arranged along rows and columns such that the null pat-
tern representing “No differential expression” broadly sepa-
rates the up- and downregulation at the first time point.
This approach allows us to take an overall view for systems
level differences in expression patterns between the Dis-
eases versus Normal groups and then systematically explore
the gene regulatory patterns that are altered in specific
ways. The organization of the COMPACT matrix lends
itself to a layered exploration of the genes with com-
mon, novel and altered differential expression patterns
between the conditions in the Comparative Pair, as il-
lustrated in the analysis below. The COMPACT matrix,
or subsets thereof, can also be visualized using a chord
diagram, providing additional means for layered explor-
ation of the data, particularly when the matrix is rela-
tively less sparse. Our approach is illustrated online at
http://compact.jefferson.edu
We utilized the novel COMPACT approach to analyze

and visualize changes in differential regulation of genes
in the rat liver during response to PHx, in control and
chronically ethanol-fed animals. We explored patterns in
the time-course of gene expression profiles; the major
findings are explained in the following sections.

Liver transcriptome shows nearly complete adaptation to
chronic alcohol consumption
Our initial focus was to identify the persistent gene ex-
pression changes and associated cellular functions that
are likely to be perturbed due to chronic ethanol feeding.
We considered two isocaloric controls where the dietary
calories derived from ethanol were replaced by carbohy-
drate or fat, respectively (Carbohydrate and High Fat
dietary groups). Analysis of the gene expression data ob-
tained from the liver samples (12 replicates per diet
group, 3 dietary groups) revealed a total of 400 differen-
tially regulated transcript clusters (334 annotated by
RefSeq ID) in ethanol-adapted animals compared to ei-
ther control diet (Fig. 2; Additional file 1: Table S1).
There were 220 upregulated and 180 downregulated
transcript clusters. Remarkably, nearly all of the average
gene expression changes were well below 2-fold, with a
wider range of expression across biological replicates.
There was no evidence that certain samples were more
likely to be on the higher or lower ends of the response
range over many genes. The ethanol group showed distinct
expression profiles and grouped separately from those of
the isocaloric Control groups (Fig. 2). By contrast, the ma-
jority of the isocaloric Carbohydrate and High Fat control
diet samples grouped together. However, within the two
large sample clusters, one of the sub-clusters with control
samples was in the same larger cluster as the ethanol group.
These apparent ‘outlier’ control samples showed gene ex-
pression profiles that were intermediate between the etha-
nol group and other controls, with a subset of genes
showing a differential expression trend that is similar to the
ethanol group. There were 36 transcripts with significant
differential gene expression in the isocaloric high fat sam-
ples relative to the isocaloric Carbohydrate samples, at aver-
age fold change > =1.5 and q-value < =0.2, i.e., there were
relatively few genes that were differentially expressed be-
tween the two isocaloric control groups, supporting the

(See figure on previous page.)
Fig. 1 A schematic representation of the comparative pattern count (COMPACT) analysis for multifactorial transcriptomic data. The approach
considers an experimental design in which the transcriptomic effects of two conditions, termed “Comparative Pair”, (e.g., Disease versus Normal)
are evaluated at multiple levels of another factor, termed “Pattern Set”, (e.g., time points, drug dose, weight group, cell type, etc.). The following
explanation considers Disease versus Normal comparison at multiple time points, for illustration purposes. First, the differential gene expression at
each time point is computed relative to appropriate, likely time point specific, control conditions. The time series data is averaged across replicates within
each sample group, and discretized into up-, down-, and no-regulation based on a threshold of differential expression level. The sample groups are divided
into two sets based on the comparative pair: Disease versus Normal. Within each set, the discretized time series expression data is collated for each gene
into a pattern vector. The number of genes corresponding to each of the patterns within Disease or Normal sets provides a univariate distribution of
patterns. The intersection between the Disease versus Normal pattern count distributions (i.e., the two-way histogram) exhaustively considers all possible
comparative patterns, yielding a COMPACT matrix. The elements of the COMPACT matrix are based on pair-wise gene counts of the corresponding
patterns, i.e., for the comparative pair Disease and Normal, the element at the ith row and jth column of the matrix contains the number of genes that
show an ith expression pattern in Normal and jth expression pattern in Disease. The diagonal of the matrix represents those genes showing a common
response and the off-diagonal elements represent the genes showing an altered temporal response between the two comparative conditions. The
organization of the COMPACT matrix lends itself to a layered exploration of the genes with common, novel and altered differential expression patterns
between the conditions in the Comparative Pair, as illustrated in the analysis below (e.g., Figs. 6 and 7). The COMPACT matrix, or subsets thereof, can
be visualized using a chord diagram, providing additional means for layered exploration of the data, particularly when the matrix is relatively less sparse
(e.g., as illustrated in Fig. 8)
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interpretation that the gene expression in the two control
groups is nearly indistinguishable. A total of 17 transcripts
in the ethanol-responsive set of 400 also showed a response
in the isocaloric high fat diet group. Eight genes in this set
showed an opposite response between the Ethanol and
isocaloric High Fat diet groups. Pathway analysis of differ-
entially regulated genes indicated significant alterations in
gene sets related to circadian rhythm, lipid and steroid me-
tabolism, endoplasmic reticulum (ER) membrane-related
functions, and mitochondrial functions, consistent with
observed phenotypes of fatty liver and a shift in circadian
rhythm in alcohol-adapted animals [46, 47]. These results
indicate that the liver gene expression shows an adaptive
response to chronic ethanol intake with relatively modest
changes in average steady state expression levels.

Partial hepatectomy induces broad changes in the liver
transcriptome
We investigated whether acute perturbation such as liver
regeneration induced by 2/3rd PHx would elicit differential
transcriptomic response across the three dietary groups.

Our analysis of the gene expression time series data re-
vealed a total of 6893 genes to be responsive to liver regen-
eration at one or more time points post PHx, in at least
one of the three dietary groups. Remarkably, all three diet-
ary groups showed broad transcriptomic changes inde-
pendent of the regenerative outcome, implying that the
regeneration deficiency observed in the Ethanol group may
not be due to lack of differential gene expression broadly
but due to an inappropriate transcriptional response along
particular pathways/functions.
We first sought to compare whether the dietary condi-

tion or PHx-induced temporal changes dominate the
system response. We employed the widely used Principal
Component Analysis (PCA) to identify putative sample
clusters in a data-driven approach. PCA permits a visual
and quantitative approach to investigating the similar-
ities and differences between the overall gene expression
responses across biological samples, and is particularly
suited for uncovering patterns in high dimensional data.
Our results reveal that the sample groups separate along
the first two principal components based on temporal

Endoplasmic Reticulum, 
Lipid Biosynthesis,
Cytochrome P450, 

Oxidation Reduction,
Fatty acid metabolism, 

Lipid localization,
PPAR signaling pathway, 

Response to ethanol,
Mitochondrion, 

Regulation of lipid 
synthesis,

Retinol metabolism

Circadian rhythm, 
Oxidation Reduction,

ER, Lipid Biosynthesis, 
PPAR- ,

Negative regulation of 
transcription,

Regulation of glucose 
metabolism

Ethanol Carbohydrate/High Fat

-1 1 0 
Relative expression

Fig. 2 Differential gene expression in the liver at the baseline state across the three dietary groups. The heat map includes 400 up-and down-regulated
genes in ethanol-adapted condition compared to the isocaloric Carbohydrate and High Fat diet samples. Ethanol group samples cluster separately from
the Carbohydrate and High Fat group samples, with Carbohydrate and High Fat group samples showing no obvious sub-grouping. The statistically
enriched processes, molecular functions and cellular localizations are shown next to the up-and downregulated gene sets
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progression during regeneration (Fig. 3a). The magni-
tude of gene expression differences between the dietary
groups appears to be less than that of time post PHx.
Ethanol samples did not clearly separate from the other
dietary groups within the first two PCs. However, the re-
sults demonstrated that the Ethanol group is most dis-
tinct from the Control group as shown by the qualitative
separation between the diet groups at the baseline (ex-
cised liver samples at 0 h) and at 1 h and 24 h post PHx.
The two control dietary groups clustered together at
these time points. The 24 h samples were located in-
between the 1 h and 6 h samples, as a large number of
genes showed a transient differential expression only at
6 h and not at 1 h or 24 h. This interpretation is

supported by the subsequent analysis of the gene counts
corresponding to dynamic patterns as below. We further
analyzed the differential gene expression response using
a minimum spanning tree approach (Fig. 3b). This ap-
proach improves significantly over the very commonly
used hierarchically clustering and is readily interpretable
for cellular phenotypes and subtypes, and was used by
us previously to organize trajectories of developmental
phenotypes altered by ethanol [48]. Consistent with the
PCA results, the minimum spanning tree structure was
largely oriented based on the time points post PHx, and
the dietary groups were distributed in distinct ways at
each time point. The Ethanol group was closer to 0 h
baseline samples at 1 h and at 24 h, indicating deficien-
cies in mounting a gene regulatory response to PHx.
However, the Ethanol group at 6 h was the furthest of all
the 6 h samples from the 0 h baseline group, suggesting
a more pronounced differential gene expression at 6 h in
the Ethanol group.

Dynamic response pattern analysis revealed opposite
regulation of proliferative and anti-proliferative processes
in the control of liver regeneration
In order to better understand the effect of dietary treat-
ment on gene expression during liver regeneration, we
further analyzed the data for differences in the temporal
patterns of differential gene expression response between
the dietary groups, using a dynamic response pattern ana-
lysis (Methods) to classify the differential gene expression
in the Carbohydrate control dietary group along 27 pos-
sible patterns (Fig. 4a). Investigation of statistically repre-
sentative cellular functions and processes in these gene
expression clusters yielded insights into the ordered pro-
gression through liver regeneration. The dominant pat-
terns with large number of genes corresponded to
differential expression at 6 h or 24 h time point post PHx
(Fig. 4b). In contrast, there were relatively few genes (516
out of 6893) that showed an immediate early response at
1 h. This distribution is in agreement with the previous
studies by our group and others that showed a significant
surge in gene expression response in the 6 h time frame
[24, 27, 49]. The immediate early liver regeneration re-
sponse at 1 h post PHx in the Carbohydrate control ani-
mals contained patterns with relatively fewer genes than
at later time points. A majority of these gene expression
changes were transient at 1 h (120 up regulated, 96 down
regulated), with a smaller fraction of genes showing a sus-
tained response until 6 h (87 up regulated, 34 down regu-
lated) or until 24 h (44 up regulated, 19 down regulated).
The up regulated gene expression clusters were enriched
for a number of transcription factors and regulators, as
well as signaling factors. For example, the transcriptional
regulators Fos, Fosb, Fosl2, Jdp2, Bach1, Klf2, Klf4, Klf11,

B

6h

24h

1h

0h

Ethanol
Carbohydrate
High Fat

Ethanol 
Carbohydrate 
High Fat 

PHx
LLM

+ 

0h, baseline 

1h
6h

24h

Principal Component 1 (54%) 

P
rin

ci
pa

l C
om
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ne

nt
 2

 (
19

 %
) 

A

Fig. 3 Ethanol-adapted liver shows distinct transcriptomic response
to PHx. a Principal Component Analysis revealed sample separation
across the first two components that captured most variability in the
data. The sample grouped largely based on time points following
PHx, with the Ethanol group separated from the control groups to a
lesser degree. The 6 h PHx samples group separately from the 24 h
samples indicating significant differences in gene expression over
time. b A minimum spanning tree demonstrating the distinct
clustering of the Ethanol group relative to the Carbohydrate and
High Fat groups. The 1 h and 24 Ethanol group samples were
located closer to the 0 h samples, relative to the Control groups at
these time points, indicating deficiencies in mounting a response to
PHx in the Ethanol group. The 6 h Ethanol group samples were
furthest relative to the control groups indicating a potential larger
scale of transcriptomic response at this time in the Ethanol group
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Nfkb2, Rel, Zfp36, and the signaling factors Il10, Hbegf,
Tgfb2, and Gdf15 were transiently up regulated at 1 h.
Other transcriptional regulators such as Jun, Jund,

Atf3, Klf6, Myc, Nr4a1, Crem, Srf, and factors Tgfb3,
Ctgf, showed a sustained up regulation until 6 h. A
smaller set of regulators such as Junb, Btg2, p21, Alpl,
Igfbp1, and Tgif1 showed a sustained up regulation until
the 24 h time point. Several of these genes have been
described to be critical to the initiation and progression
of liver regeneration [9, 50–52]. The 1 h down regulated
gene expression patterns were enriched for genes with
functional annotation as negative regulation of transcrip-
tion and protein degradation (Fig. 4c). These results indi-
cate that the liver response not only includes activation of
proliferative processes, but also contains an inhibition of
the negative regulators of these functions, indicating an
efficient tuning of the regenerative process.
Within the dominant expression patterns, a large major-

ity of genes showed a transient up regulation (1227 genes)
or down regulation (1025 genes) at the 6 h time point,
while a smaller set of genes showed a sustained up or
down regulation response from 6 h to 24 h (495 up and

532 down) (Fig. 4b). The sets of genes with transient or
sustained up regulation in the 6 h to 24 h time frame were
enriched for various processes critically supporting cell
proliferation, including ribosome biosynthesis, protein
biosynthesis, RNA processing, tRNA metabolism, cell
migration, regulation of cell death, response to lipopoly-
saccharide (LPS), etc. (Fig. 4c). The clusters with down
regulated genes at 6 or 24 h enriched for genes participat-
ing in lipid biosynthesis, regulation of hormone levels, and
for several Cyp450 family members.
Another dominant pattern was transcriptional up regu-

lation by 24 h (1044 genes) (Fig. 4b). This cluster was
enriched for genes participating in cell cycle, meiosis,
DNA replication, chromosome organization, regulation of
ligase activity, organelle localization, and microtubule ac-
tivity. Correspondingly, the components of centromere,
histone core, nucleosome core and replisome were over-
represented in this set (Fig. 4c). A smaller set of genes also
showed activation by 24 h but downregulation at 6 h (53
genes) or at 1 h (20 genes). These clusters were enriched
for DNA replication and cell cycle genes. The 24 h activa-
tion results indicate a progression through the DNA

1 6 24

Carbohydrate

h

Discretized 
Patterns

Regulation of transcription, Fos, Fosb, Fosl2, Jdp2, Cebpb, 
Bach1, Klf2, Klf4, Klf11, Nfkb2, Rel, Zfp36, Il10, Il1a, Hbegf, 
Tgfb2

Regulation of transcription, cell motion, angiogenesis, cell 
adhesion
Jun, Jund, Atf3, Klf6, Myc, Nr4a1, Mafk, Crem, Srf, Tgfb3, 
Ctgf

regulation of cell growth
Junb, Btg2, p21, Alpl, Igfbp1, Tgif1

Negative regulation of transcription, protein 
degradation

Negative regulation of transcription

Ribosome biosynthesis, protein biosynthesis, RNA 
processing, tRNA metabolism, regulation of cell 
proliferation, regulation of cell death, response to LPS, cell 
migration, nuclear transport

Lipid/sterol biosynthesis, ER, mitochondria, 
regulation of hormone levels, Cyp450

Cell cycle, meiosis, DNA replication, centromere, 
chromosome organization, regulation of ligase activity, 
organelle localization, microtubule activity, histone core, 
replisome,  nucleosome core

DNA replication, cell cycle

DNA replication, cell cycle

-1 1 0 

Number of
Genes

1 6 24 h

Relative expression
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Fig. 4 Differential gene expression patterns in response to PHx in the Carbohydrate group. a Average differential expression was computed at
each time point post PHx, based on comparing PHx samples and the corresponding excised LLM tissue at t = 0 from the same animals. The
genes are ordered based on the expression patterns shown in B. b A total of 27 discretized expression patterns based on three possible levels of
regulation (up, down and no change) at each of the three time points (1, 6 and 24 h post PHx). The pattern counts are based on a differential
regulation threshold of 1.75 fold. The majority of the genes were in the patterns that showed differential regulation at 24 h post PHx. A large set
of genes showed no change in the Carbohydrate samples, but were included here, as these genes show differential regulation in other dietary
groups. c A selection of statistically enriched processes and key genes in the discretized patterns
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replication phase of the cell cycle in this time frame, inline
with the expected physiological dynamics of rat liver
regeneration.

Novel comparative pattern analysis revealed dominant
and subtle differences in gene expression dynamics
One systems level question we addressed was whether
adaptation to chronic ethanol intake alters the distribution
of genes across the 27 expression patterns. We applied the
dynamic response pattern analysis approach (Methods) to
classify the differential gene expression in the three dietary
groups along the 27 patterns (Fig. 5a). For a majority of
the patterns, the number of genes was similar across the
three dietary groups. Notable exceptions across the dietary
groups were patterns with a 24 h differential response in
which the Ethanol group had significantly fewer gene
members (Fig. 5b). To assess the significance of differ-
ences in the gene counts between the ethanol and control
groups, we compared the proportions of genes in the two

diet groups using a two-tailed Z-test. A total of ten pat-
terns were significantly different in proportion between
the two groups (* p-value < 0.0002; Fig. 5b). The deficiency
of differential regulation at this time point is likely to alter
the proliferative response, as these sets were enriched for
cell cycle and proliferation related processes in the control
groups (Fig. 4c).
We compared the Ethanol and Carbohydrate groups

using our novel COMPACT matrix approach (Fig. 6).
We analyzed the structure of the COMPACT matrix for
various thresholds of discretization (Additional file 2:
Figure S1, Additional file 3: Figure S2, Additional file 4:
Figure S3, Additional file 5: Figure S4, Additional file 6:
Figure S5, Additional file 7: Figure S6 and Additional file
8: Figure S7). At a very high threshold (fold change > 4),
only the largest differential gene expression changes
remained and populated a few elements of the COMPACT
matrix (Additional file 2: Figure S1). As one continued to
reduce the stringency, more elements of COMPACT were

1 6 24 1 6 24 1 6 24

Carbohydrate High Fat Ethanol

h

Discretized
Patterns

Number of Genes

1 6 24h Carbohydrate High Fat Ethanol

-1 10
Relative expression

A B

#

#

#

#

*

*
*
**
**

*

Fig. 5 Differential gene expression patterns in response to PHx in the three dietary groups. a Average differential expression was computed at
each time point post PHx, based on comparing PHx samples and the corresponding excised LLM tissue at t = 0 from the same animals. The
genes are ordered based on the expression patterns in the Carbohydrate group. Coarse-grain visualization of the differential expression at this
scale suggests a broadly similar dynamic patterns of response in all the three dietary groups. The specific differences are explored systematically
using a COMPACT matrix (Fig. 6). Of note are the significantly lower upregulation at 24 h in the Ethanol group (highlighted by the asterisks). b A
total of 27 discretized expression patterns based on three possible levels of regulation (up, down and no change) at each of the three time points
(1, 6 and 24 h post PHx). The pattern counts are based on a differential regulation threshold of 1.75 fold. There appears to be a broad similarity of
dominant patterns across the three dietary groups. Of note are the significantly fewer genes in the Ethanol group for the dominant patterns
corresponding to 24 h upregulation (highlighted by the # symbol). (two-tailed Z-test *p-value <0.0002)
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populated (compare Additional file 2: Figure S1, Additional
file 3: Figure S2, Additional file 4: Figure S3, Additional file
5: Figure S4, Additional file 6: Figure S5, Additional file 7:
Figure S6 through Additional file 8: Figure S7, in that
order). However, beyond a threshold, the sparse structure
remained largely the same, without significantly adding to
the insights that can be gained from COMPACT analysis.
In the subsequent analysis, we chose a threshold of 1.5 that
allowed us to gain sensitivity in detecting the ethanol al-
tered patterns at the 1 h time point. Analysis of the COM-
PACT matrix revealed a significant number of off-diagonal

elements indicating many gene expression alterations in
the Ethanol group (4050 genes out of 6351 total). The
non-zero elements of the COMPACT matrix were sparsely
distributed with only 35 comparative patterns with 20 or
more genes (201 non-zero comparative patterns, out of
729 total). A total of 34 out of 35 largest comparative pat-
terns were present in the sections along the principal diag-
onal (sections a, e, and i of the COMPACT matrix, Fig. 6),
i.e., there were relatively few genes whose response was
altered from up- to downregulation and vice versa due to
ethanol treatment compared to the Carbohydrate control

h

a Similar down regulation at 1h

b CHO- down regulation at 1h

c Opposite regulation at 1h

d EtOH- down regulation at 1h

e No expression at 1h

f EtOH- up regulation at 1h

g Opposite regulation at 1h

h CHO- up regulation at 1h

i Similar down regulation at 1h

Ethanol

C
ar

bo
hy

dr
at

e
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d

g

b

e

c

f

i

Fig. 6 A 27 × 27 Comparative Pattern Count (COMPACT) matrix representing pair-wise counts of differential gene expression patterns comparing
Ethanol and Carbohydrate groups. First, the differential gene expression at each time point was computed relative to appropriate, likely time point
specific, control conditions. The time series data was averaged across replicates within each sample group, and discretized into up-(red), down-(green),
and no-regulation (white) based on a threshold (1.5) of differential expression level. The sample groups were divided into two sets based on
the comparative pair: Disease versus Normal. Within each set, the discretized time series expression data was collated for each gene into a
pattern vector. Pairs of diet groups were compared to count the number of genes that follow each of the 27 * 27 (=729) possibilities to
create a 27 × 27 matrix representing the comparative dynamic response pattern counts. The elements of the COMPACT matrix are based
on pair-wise gene counts of the corresponding patterns, i.e., the element at the ith row and jth column of the matrix contains the number
of genes that show an ith expression pattern in Carbohydrate group and jth expression pattern in Ethanol group. The diagonal of the matrix
(yellow) represents those genes showing a common response and the off-diagonal elements of the 27 × 27 matrix represent the genes
showing an altered temporal response between the two comparative conditions. The matrix was partitioned such that the pattern representing no
differential regulation at 1 h broadly separates the up-and downregulation in the early response to PHx at 1 h. This yielded 9 sections corresponding
to pair-wise combinations based on differential regulation at 1 h. The dominant patterns in section e reveal that the majority of the gene expression
response occurred at 6 h and 24 h, but not at 1 h post PHx. The difference in gene counts in this section is highlighted using white (smallest) to dark
brown (largest) set. Sections c and g corresponding to opposite regulation at 1 h between the dietary groups were nearly empty. Sections b, d, f and
h correspond to genes that showed 1 h response only in one of the dietary groups. Sections a and i correspond to similar direction of regulation at
1 h, with the off-diagonal counts in these sections corresponding to genes with ethanol-altered patterns of regulation at 6 h and 24 h. Section e can
also be subdivided based on differential regulation at 6 h, and showed similarities in overall structure, for example, with the largely empty anti-diagonal
subsections (c and g) corresponding to opposite regulation at 6 h
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(187 genes sparsely distributed in the sections along the
anti-diagonal) (sections c and g of Fig. 6). The dominant
patterns in section (e) reveal that the majority of the gene
expression response occurred at 6 h and 24 h, but not at
1 h post PHx. This section was almost entirely structured
along the diagonal indicating that very few genes show op-
posing responses between Ethanol and Carbohydrate
groups, similar to the overall structure of expression pat-
terns found in the immediate early response. This indicates
that switching between upregulation and downregulation
is not a major component of the overall effect of ethanol
intake on response to PHx. The structure of the COM-
PACT matrix focused on comparing the Ethanol and High
Fat groups is included in the Additional file 9: Figure S8.
As a comparison to an unsupervised clustering ap-

proach, we considered WGCNA for identifying gene co-
expression clusters [5]. WGCNA computes gene expres-
sion correlation and uses a threshold to detect modules
that are subsequently merged based on an eigen-gene
analysis that identifies representative gene expression
patterns based on PCA. WGCNA identified 16 gene co-
expression modules that were subsequently merged into
5 modules at a co-expression threshold of 6 and similar-
ity threshold of 0.25 for module merging (Additional file
10: Figure S9). We exhaustively enumerated the intersec-
tions between the WGCNA module membership and
COMPACT groups and represented the results using a
COMPACT matrix-like structure (Additional files 11:
Table S2 and Additional files 12: Table S3). Our analysis
indicated that there was not a direct one-to-one corres-
pondence between the WGCNA and COMPACT groups.
However, the dominant patterns identified by COMPACT
were largely within individual WGCNA modules. The most
notable difference was that several COMPACT groups with
relative low counts were contained within the larger
WGCNA modules, and were not as readily distinguishable.
A total of 26 out of the 35 largest comparative patterns

in Fig. 6 were based on a lack of immediate early re-
sponse at 1 h, as highlighted in the central square of the
COMPACT matrix in Fig. 6. (19 of the 20 largest com-
parative patterns, and 5611 of 6351 genes were in this
square). These results reveal that the dominant aspects
of ethanol-dependent gene expression alterations occur
during the transitional and replicative phases of liver
regeneration between 6 to 24 h post PHx. We explored
these dominant patterns as well as relatively subtle im-
mediate early patterns as detailed below. In the following
analysis, the term “novel” corresponds to a set of genes
showing differential expression only in the Ethanol
group but not in the Carbohydrate control group. Simi-
larly, the term “missing” corresponds to genes that do
not show differential expression in Ethanol group, but
are differentially regulated only in the Carbohydrate
control. The term “common” is used to denote the genes

with similar patterns of differential expression between
the two dietary groups.

Ethanol adaptation induces aberrant immediate early
response to partial hepatectomy
We initially focused on the immediate early response at
1 h when the gene expression changes were relatively
less extensive. We masked the central section of the
COMPACT matrix and highlighted the dominant pat-
terns with the immediate early response (Fig. 7). A total
of 17 out of 648 comparative patterns (=729 total – 81
in central section) contained 10 or more genes. The ma-
jority of the responses in the Carbohydrate and Ethanol
groups were distributed along four patterns (transient
up-or downregulation at 1 h, upregulation at 1 h that is
persistent at 6 h only, or at both 6 h and 24 h). The
novel and missing response patterns in the Ethanol
group were largely distributed along the 1 h transient
with a notable exception of 17 genes that showed a
novel persistent response that was lacking in the con-
trols (Fig. 7a).

Novel/missing in ethanol diet
A large fraction of the 1 h transient differential regula-
tion response was lacking in the Ethanol group (Fig. 7a;
61 downregulated genes, 36 upregulated genes). There
were several novel responses in the Ethanol group (36
upregulated, 20 downregulated) with notable genes such
as Decorin, Klf7, Klf10, Cxcl10, Tlr7, Cd86, Thrombin
receptor, platelet factor 4, in the upregulated set (Fig. 7d).
These sets included key genes such as Hbegf, Klf4 and
Nfkb2 in the lack of upregulation and Smad7, Ttrap,
Sall1, Fkbpl, in the lack of downregulation.

Transient at 1 h
A total of 40 immediate early genes showed a common re-
sponse between the Ethanol and Carbohydrate groups
(Fig. 7b), with similar magnitude of differential regulation
between the groups. This set included key regulators such
as Fos, Jdp2, Cebpb, and Rel (Fig. 7e). Fos is a component
of the AP-1 family of regulators and is a widely observed
characteristic signature of immediate early response
[53, 54]. JDP2 functions as a dominant negative factor by
binding to c-JUN (another member of AP-1 family) and
inhibiting the transcriptional regulatory activity [55]. The
observed upregulation of Jdp2 is likely relevant as control-
ling the duration of AP-1 activity in the early phase of the
regenerative response. NF-kB activation in the Kupffer
cells, followed by hepatocytes, is a well-described immedi-
ate early response to partial hepatectomy, and is critical to
initiate transitional processes during the early phase of liver
regeneration [24]. Our results implicate concomitant gene
expression changes in this regulator. C/EBP-beta is critical
to driving the hepatocyte response to liver regeneration
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[21, 56]. Cebpb knockout mice show a significantly blunted
regenerative response correlating with altered expression
of cell cycle genes [21].
A set of 20 genes was altered in the Ethanol group to

remain persistently upregulated at 1 h and 6 h (Fig. 7b).
This set included genes such as Adamts1 and Nfkbiz
(Fig. 7e). HB-EGF has been shown to be critically re-
quired in transitioning to late G1 phase [57]. SMAD7 is
an inhibitor of SMAD2/3 activation by TGF-beta. Lack
of downregulation of Smad7 in the Ethanol group might
lead to inhibited or reduced activation of SMAD2/3 dur-
ing liver regeneration. While a role for SMAD3 in the
early and transitional phases of liver regeneration re-
mains to be characterized, it has been speculated that
SMAD3 activity is required to suppress inhibitors of

differentiation genes, Id1, Id2, and Id3 [13]. In our
results, Id1 showed an early and persistent upregulation
in the Ethanol group, but only a transient increase at
6 h in the Carbohydrate group (Fig. 7f ). Id2 and Id3
were upregulated at 6 h by 2-fold in Carbohydrate
group alone, and Id2 was downregulated at 24 h by >2-
fold in both groups.
NF-kB2 p100 plays a key role in down regulating the

NF-kB transcriptional regulatory activity by inhibiting
NF-kB p65 via dimerization [58]. TDP2 (also referred to
as TTRAP, Traf and Tnf receptor associated protein) has
been shown to associate with TNF receptor to inhibit
activation of NF-kB [59]. Lack of downregulation of
Tdp2, lack of upregulation of Nfkb2, and persistent up-
regulation of Nfkbiz in the Ethanol group indicates an
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Fig. 7 Analysis of a subset of the overall COMPACT matrix comprised of comparative patterns corresponding to differential regulation at 1 h in either
dietary group. A set of 740 genes was distributed across the selected subset of patterns. a Differentially regulated genes that are novel or missing in
the ethanol group are highlighted respectively in the middle column and row of the COMPACT matrix. Of the 93 genes with ethanol-specific response
patterns, 36 showed transient upregulation, 20 showed transient down regulation, and 17 showed persistent up regulation until 6 h. Select key genes
in these sets are indicated in D. Of the 130 genes with differential response that are missing in the ethanol group, 61 genes showed transient down
regulation and 36 genes showed a transient up regulation at 1 h in the carbohydrate control group. b Comparative patterns corresponding to 1 h
transient differential regulation in either dietary group are highlighted. The dominant patterns corresponded to gene sets with similar transient up or
down regulation (sets f and h, respectively), as well as gene sets with ethanol-altered pattern of expression with shift towards differential regulation at
6 h (sets g and i). c Comparative patterns corresponding to 1 h and 6 h changes only (i.e., no differential regulation at 24 h) in at least one dietary
group are highlighted. The dominant comparative pattern with 50 genes corresponded to similar direction of up regulation between the dietary
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regulation. d, e, f Heat map representation of gene expression patterns corresponding to the highlighted gene sets from panels a, b, and c,
with select key genes indicated in each set
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aberrant NF-kB activity in the early and transitional
phases of regeneration. Understanding the integrated
impact on NF-kB activity requires further
characterization of relative contributions of the inhibi-
tory factors and potential cell-type specific differences
between parenchymal and non-parenchymal cells.

Persistent at 1 h and 6 h
A total of 50 genes showed a common persistent upreg-
ulation in the Carbohydrate and Ethanol groups (Fig. 7c).
Of these genes, a set of 15 genes showed higher magni-
tude of upregulation at 6 h in the Ethanol group com-
pared to the Carbohydrate group. The set of 50 genes
included regulators such as Atf3, Crem, Myc and Klf6,
and Ctgf, Gadd45a, and Got1 (Fig. 7f ). CTGF has been
shown to decrease the availability of SMAD7 and in-
crease SMAD2 activity in kidney tubule cells [60] and
hence promotes TGF-beta signaling. However, Smad7
was downregulated in Carbohydrate but not in Ethanol
group (Fig. 7d, detailed above). In contrast, Gdf15 was
similarly upregualted transiently at 1 h in Ethanol and
Carbohydrate groups. GDF15, also known as MIC-1 is a
member of TGF-beta superfamily known to counteract
CTGF by direct binding [61] and to inhibit hypertrophy
via activation of SMAD2/3 [62]. Gdf15 is expressed only
by hepatocytes within 30 mins after PHx and normalized
to basal levels by 2 h, with potential redundant functions
during liver regeneration [63].
A group of 31 genes showed an altered response that

was immediate early and persistent in the Ethanol group,
but showed a transient response only at 6 h in the Carbo-
hydrate group (Fig. 7c). This set included genes such as
Tgfb2, Btg3, Cd38, Id1 (Fig. 7f), and several Small nucle-
olar RNA. Cd38 is constitutively expressed in the hepatic
stellate cells and is upregulated upon activation, inducing
Il6, and adhesion molecules [64]. Consistent with these re-
sults, Vcam1 showed a persistent upregulation at 1 and
6 h in the Ethanol group, but did not change in the Carbo-
hydrate group.

Ethanol effects on gene expression changes during the
transitional and replicative phases reveal deficiencies in
system-wide transcriptional programs
We extended our findings from the immediate early re-
sponse to later time points during the transitional (6 h) and
replicative (24 h) phases. We employ the term “transitional”
to refer to the 6 h time point, when cells are transitioning
into the early G1 phase, as an intermediate phase separat-
ing the immediate early 1 h time point and the 24 h time
point with the ongoing cell cycle [24]. In rats, the hepato-
cytes are in the peak DNA synthesis phase at 24 h following
PHx, and hence we refer to the 24 h time point as “replica-
tive” phase in the following analysis. In order to explore the
systems-level gene expression impacted by chronic ethanol

intake in the transition and replicative phases, we focused
on the subset of overall COMPACT matrix corresponding
to gene expression response only at later time points, 6 h
and 24 h (section e of Fig. 6). This matrix was less sparse
than that of the immediate early response at 1 h. However,
the lack of population along the anti-diagonal indicates
that even in the transitional and replicative phases, the
systems level deficiencies in gene expression changes in
the Ethanol group largely are not characterized by
switching between activation and inhibition compared
to Carbohydrate controls.
We utilized a chord diagram representation of the tran-

sition and replicative phase COMPACT matrix to guide
our subsequent exploration of systems-level gene expres-
sion changes (Fig. 8a). We utilized the Circos software for
this purpose [65]. While Circos has been largely used to
visualize genomic and other sequence datasets, e.g., gen-
omic synteny, structural variation, next-gen read sequence
mapping, etc., it has been recently used for visualization
of generic tables in a few instances [66]. We adapted this
functionality to develop a structured statistical graphic to
highlight the underlying systems-level organization of the
gene expression results (e.g., as illustrated in Fig. 8). In this
visual, the segmented arcs of a circle correspond to the in-
dividual expression patterns (i.e., rows and columns of
COMPACT matrix), with the length of an arc segment
proportional to the number of genes exhibiting the corre-
sponding expression pattern. We organized the Compara-
tive Pair across the ‘meridian’ to readily enable parallel
comparison of individual as well as cumulative pattern
sizes (based on arc lengths). Within each dietary group,
the arcs for up- and downregulatory expression patterns
were separated by a null pattern representing ‘No differen-
tial expression’. This enabled easy identification of any
gene sets that switched from up-to downregulation be-
tween the groups in the Comparative Pair, as these would
appear as ‘ribbons’ crossing the ‘equatorial’ midline area.
This representation readily highlights the overall defi-
ciency of upregulation in the Ethanol group (compare the
cumulative length of left vs. right arcs in top and bottom
halves of Fig. 8b). Within the upregulation patterns, the
Ethanol group had significantly fewer genes showing late
or persistent upregulation (compare left vs. right arc
lengths at the same level in Fig. 8a). The overall downreg-
ulation is subtly higher in the Ethanol group without
major differences in the individual patterns.
Within each dynamic pattern, the majority of genes fell

into one of four pairwise comparative patterns: unique to
one or the other dietary group, or common to both groups,
or persistent regulation in one group turning to a transient
one in the other group. The last feature or aberrant tem-
poral activation/inhibition was more prevalent in the
downregulation patterns than in the upregulation patterns.
Interestingly, there were very minor fractions of genes that
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Fig. 8 Analysis of comparative patterns corresponding to differential regulation at 6 h and 24 h, but not earlier at 1 h. A set of 5611 genes was
distributed across the selected subset of patterns from section e of the overall COMPACT matrix shown in Fig. 7. a Circular representation of the
comparative patterns using the CIRCOS tool. The length of the arcs is proportional to the number of genes showing the corresponding pattern.
The width of the ribbons connecting the arcs corresponding to the comparative pattern count, i.e., the number of genes showing the corresponding
differential regulatory patterns in the two dietary groups. The arcs are arranged such that the no-differential-regulation pattern separates the upregulated
patterns (upper segment) and the down regulatory patterns (lower segment). Absence of dominant ribbons crossing the two segments demonstrates
that relatively few genes switch the direction of PHx-induced differential regulation between the dietary groups. b Ethanol group shows a lower number
of up regulated genes (2021) than the Control group (2675), as indicated by the net sum of corresponding arc lengths. In comparison, the difference was
lower in the total down regulation between the Ethanol (1982) and Carbohydrate (1764) groups. c-h The dominant gene sets within the six differential
expression patterns are highlighted: c transient upregulation, d transient downregulation, e persistent upregulation, f persistent downregulation, g late
upregulation, and h late downregulation. In each set, a select list of statistically over-represented functional annotation information is indicated
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showed a temporal shift in response from 6 h transient to
24 h late differential regulation between Ethanol and
Carbohydrate groups (note the relatively little connectivity
between corresponding patterns in Fig. 8a).
These results based on overall pattern counts indicate

that chronic ethanol effects are mediated by a deficiency
in overall activation signals in the regulatory networks
driving liver regeneration. However, as we examined the
representative processes in these groups we found that
the Ethanol group shows deficiencies as well as novel
regulation in contrasting aspects of key pathways, as de-
tailed below.

Transition phase (6 h) expression patterns reveal
deficiencies and alterations in multiple pathways due to
ethanol treatment
A majority of genes with a transient expression at 6 h were
common between the Ethanol and Control groups (803
genes). Of these, a set of 96 genes showed larger magnitude
of upregulation in the Ethanol group than in the Control
group. However, a substantial number of genes were miss-
ing (333 genes) or showed novel upregulation (381 genes)
in the Ethanol group (Fig. 8c). The common 803-gene set
was enriched for processes including cell cycle (particularly
mitotic phase); chromosome organization; biosynthesis of
tRNA, protein and ribonucleoprotein complex; helicase ac-
tivity; cell projection; MAPKKK cascade; and, leukocyte mi-
gration. The missing response included processes such as
positive regulation of cell proliferation; chaperone mediated
protein folding; immune cell effector processes including
leukocyte activation and proliferation; positive regulation of
cytokine (including interferon gamma) production; lipid
biosynthetic process; positive regulation of cell differenti-
ation; and, regulation of apoptosis. In contrast, the Ethanol
group showed novel upregulation of 381 genes involved in
processes such as negative regulation of cell cycle, helicase
activity, RNA processing (particularly via spliceosome), and
tRNA metabolic and acetylation process. We found an in-
teresting contrast in which upregulation of genes involved
in “positive regulation of cell proliferation” was missing in
the Ethanol group, whereas genes involved in “negative
regulation of cell proliferation” were uniquely upregulated
in the Ethanol group (Fig. 8c). These results demonstrate a
coordinated upregulation of inhibitors coupled with a lack
of upregulation of activators as underlying the inhibition of
proliferation in the Ethanol group as early as 6 h during the
transitional stage of liver regeneration.
As similar processes were representative of the gene

groups unique to one of or common to both Ethanol and
Carbohydrate groups, we further investigated the specific
genes in the deficient or aberrant upregulation set in the
Ethanol group (Fig. 8d), While genes involved in immune
cell migration showed an upregulatory response common
to Ethanol and Carbohydrate groups, the genes driving

immune cell proliferation (interleukins Il7 and Il13, Cxcr2,
Csf1, Btc betacellulin, Nbn, Jnk2, etc.), as well as in positive
regulation of cytokine production (Jnk2, Gata3, Bcl3, simi-
lar to Hsp60) were uniquely upregulated only in the
Carbohydrate controls. Six genes involved in lipid biosyn-
thetic process were upregulated only in the Carbohydrate
controls. Several genes corresponding to the protein fold-
ing function were upregulated in the Carbohydrate group
but not in the Ethanol group. In agreement with the earl-
ier studies of ethanol induced ER stress [67, 68] these re-
sults indicate that the Ethanol group may not have
sufficient capacity to appropriately process the protein
products downstream of translation, which could further
exacerbate the deficiency in regenerative response.
We further visualized the novel, common and missing

regulation of the set of genes that showed persistent
regulation. Both persistent upregulation (Fig. 8e) and
downregulation (Fig. 8f ) showed a relatively low novel
response. Notable is the presence of a set of anti-
apoptosis/apoptosis related genes that is missing in the
both upregulated/downregulated set of genes in the
Ethanol groups. Genes involved in homeostasis showed
missing responses in persistent upregulation and we
found a set of cell cycle genes (Gadd45a, Myc, Tgfb3)
showing a common response. While the common set in
persistently downregulated genes showed association
with important functions like oxidation-reduction, drug
metabolism and lipid synthesis, late (24 h) up regulation
showed a substantial number of missing genes (645) par-
ticipating in crucial functions like cell cycle and DNA
metabolism (Fig. 8g) Late down regulation showed rela-
tively more novel (163) genes compared to missing (121)
with 89 genes common between the diet groups (Fig. 8h).
We analyzed these gene sets further for functional path-
ways and putative cell type specific contributions, as
discussed below.

Replicative phase (24 h) expression patterns reveal
deficiencies and alterations in the cell proliferation/cycle
pathways due to ethanol action
Ethanol effects on gene expression are most evident in the
response at 24 h with 645 genes (largest element of the
COMPACT matrix) showing no differential expression in
the Ethanol group (Fig. 9a). This set contained 75 genes
involved in cell cycle (particularly the mitotic phase). For
example, some of the mitotic cell cycle related genes
included Cdc123, Cdca8, Ccnb2, Psmd8, Pola1, Nde1,
Anapc1 and Anapc5. Other functions included those driv-
ing chromosome organization (kinetochores) (Dsn1,
H2afz, Cenp1, Cenpa, Cbx5), microtubule-based processes
such as kinesins (Kif11, Kif15, Kifc1, Kif2c, Prkcz), DNA
metabolic process and DNA repair (Mgmt, Psip1, Cdc7,
Mdc1, Tdp1, Rpa3, Rfc4), replication fork members
(Dnmt1, Pola1, Pola2) etc. A set of 267 genes showed
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upregulation in Ethanol and Carbohydrate groups, how-
ever the magnitude of the response is significantly lower
in the Ethanol group. This set contained genes involved in
functions such as ribosome (Rps19, Rps16, Rps15, Rps12),
chromosome organization (Prim1, Hist1h2bm, Mcm2,
Rfc3), cell division (Cdc2, Nuf2, Anln, Pttg1, Ccnb1), cell
cycle related (Smc2, Mad2l1, Plk1), DNA replication
(Roa2, Ccne1, Rfc3, Mcm7, Rrm1, Pold2) and DNA meta-
bolic processes. Differential expression of the set of genes
at 24 h post PHx in our data is also largely reflective of
the replicative stage of the cell cycle. This is consistent
with earlier expression studies on liver regeneration
showing that genes induced at 24 h are cell cycle genes
and are involved in DNA replication and chromosomal
organization [69]. Our data is also in agreement with

the previous work showing that chronic ethanol treat-
ment inhibits cell proliferation in the mouse as it does
in the rat [36], specifically cell cycle progression
through S phase (which peaks at 22–24 h. in the rat).
Our gene expression signature at 24 h post PHx dem-
onstrated robust cell cycle induction in the control diet
compared to the Ethanol group. We speculate that the
negative regulation of these replicative genes could
contribute to inhibition of regeneration. Recent studies
emphasized the importance of the contribution of mul-
tiple cell types and microRNAs to the damage repair
mechanisms of the liver after chronic ethanol intake
[70]. We investigated the cell type specific response by
exploring differentially expressed genes for cell type
specific markers.

Cell cycle genes (75)
e.g., Cdc123, Cdca8,
Ccnb2, Psmd8, Pola1,
Nde1, Anapc1, Anapc5 

HSC activation
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Fig. 9 Analysis of comparative patterns corresponding to up regulation at 24 h, but not earlier at 1 h and 6 h. a The expression patterns of gene
sets with missing and novel differential up regulation are shown in the heat map. Select key genes in each set are indicated. b Real-time PCR based
evaluation of differential expression of genes corresponding to HSC activation state at 24 h post PHx.–ΔΔCt values are shown as compared to Gapdh
expression within each sample, and compared to the corresponding LLM paired-samples within each dietary group. N = 3 biological replicates. Error
bars: +/− standard error of the mean. * p < = 0.05)
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Hepatic stellate cell response mediated by ethanol intake
at 24 h post PHx
A set of 124 genes showed a novel upregulation in the
Ethanol group at 24 h post PHx. Our initial pathway ana-
lysis showed enrichment in broader functional categories
such as structural constituent of ribosome (Rps26, Rps28,
Rpsa), intracellular protein transport (Tmed2, Fxcl, Fxcl-
ps1, Gosr2, Vcan, Sels) and protein biosynthesis (Eef1g,
Ehd2, Eef1b2). The initial round of hepatocyte replication
during liver regeneration is followed by proliferation of
the non-parenchymal cells by approximately 48 h [23, 71].
However, the effect of ethanol intake on such selective ac-
tivation is still a topic of research. It is known that chronic
ethanol intake can lead to characteristic differences in cell
type-specific responses [72, 73]. Closer inspection of the
gene set revealed several hepatic stellate cell (HSC) spe-
cific transcripts showing aberrant up regulation, albeit
with relatively weaker signals, in the Ethanol group
(Fig. 9a). These genes include Vcan (versican), Ntf3 (neu-
rotrophin-3), S100a6 (S100 calcium binding protein A6),
Spp1 (osteopontin), Pcdh17 (protocadherin-17), Csrp2
(cysteine and glycine-rich protein 2), Cygb (Cytoglobin),
Cbr1 (cannabinoid receptors type 1) and Fkbp7 (FK506
Binding Protein 7). Recent studies have shown the pres-
ence and activation of these factors in HSCs. A few of
these factors are established markers of HSCs, while
others have been predicted using high throughput gen-
omic and proteomic analysis. For example, Cygb is a
known to be a marker for activated stellate cells in human
HSCs [74]. Osteopontin, an inflammation marker, is one
of the genes upregulated in cultured activated rat HSCs
[75]. Analysis of human hepatic mRNAs from patients
with progressive stages of ALD showed that inhibition of
osteopontin-receptor mediated signaling partially inhib-
ited ethanol induced HSC activation [76]. Other factors
that are upregulated in cultured activated rat HSCs in-
clude Protein S100-A6 [77], Versican [78], Protein Fkbp7
[79] and neurotrophin [80]. In order to validate the micro-
array findings, we performed high throughout qPCR for
several HSC functional state marker genes including
Acta2 (α-SMA), Serpine1 (PAI-1) and S100a6. We found
the results to be consistent with microarray data (Fig. 9b).
One exception was Acta2 (α-SMA) that showed upregula-
tion in the qPCR analysis, which was not predicted as
differentially regulated by the microarray data analysis.
Taken together, our results uncovered a new finding on a
putative role for HSC stimulation in ethanol-mediated
suppression of the regenerative response following PHx.

Discussion
We developed a novel comparative pattern analysis ap-
proach (COMPACT) to systematically and exhaustively
evaluate the gene expression results to identify key gene
groups that are altered by external perturbations. In the

present study, we employed a ternary discretization of
average gene expression (+1, 0, −1) for each diet group as
an input to COMPACT analysis. However, the COM-
PACT approach is not limited to a ternary approximation
(up, down, no change). For example, one can consider two
levels of up or down (e.g., at two different thresholds), or
unequal levels between up versus down, etc., to form the
disecretized patterns. The “information loss” that may
occur from discretization is balanced by the “information
gain” in the exhaustive comparative grouping of the pat-
terns. The core idea is to develop the COMPACT two-
way histogram that can then be mined for key gene
groups. The underlying and expected biological correla-
tions in the data will be reflected in the sparse structure of
the COMPACT matrix, guiding subsequent analysis. We
utilized this novel approach to investigate the temporal
gene expression changes in the rat liver due to chronic
ethanol intake. We visualized and quantified systems level
differences to elucidate changes in diet-specific gene ex-
pression during the time course of liver regeneration.
Systematic parsing using this approach helped to identify
the dominant alterations as responses to the ethanol diet,
and by masking these prominent responses we were able
to uncover the subtler gene expression patterns that
were informative, for instance, on the non-parenchymal
cellular responses.
The ethanol-adapted liver showed modest expression

changes for a number of genes compared to control
livers. The additional perturbation induced by PHx
caused significant changes in the liver transcriptome.
Ethanol adaptation induced an aberrant immediate
early response to partial hepatectomy. However, we
found that ethanol intake affects the complex process
of liver regeneration, largely during the transitional and
replicative phases, between 6 to 24 h post PHx. This
was substantiated by the significant participation of
replicative genes at 24 h post PHx. We also discovered
differential expression of HSC specific genes in the
Ethanol group samples at 24 h post PHx. We speculate
that chronic alcohol consumption dynamically shifts
HSCs into a distinguishable anti-regenerative activation
phenotype post-partial hepatectomy, thereby altering
the balance between pro-regenerative and anti- regen-
erative hepatic stellate cells.
Overall, the liver transcriptome showed a strong adapta-

tion to chronic ethanol intake. Distinct clustering of the
Ethanol group compared to the Carbohydrate and High
Fat diet groups ruled out the possibility that this may be a
result of the caloric response (Fig. 3a). However, the Etha-
nol group does not show hepatocyte proliferation unlike
the robust proliferation seen in controls. In the adapted
state, we observed ethanol-induced alterations in meta-
bolic processes such as lipid and sterol accumulation.
Metabolic genes are known to be regulated on the
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circadian time scale [81]. The robust and stable changes in
lipid homeostasis driven by differentially regulated circa-
dian genes may be altering the regulatory network and
suppressing normal regenerative response, by disrupting
the molecular circadian clock in the liver. Our findings are
in agreement with recent studies exploring ethanol’s abil-
ity to influence circadian rhythm [46, 82, 83].
The initial stages of liver regeneration are tightly regu-

lated with G0-G1 transition phase followed by prolifera-
tive S phase. The secondary perturbation introduced by
PHx created broader changes to the gene expression land-
scape, independent of the diet group as demonstrated by
the transition to higher magnitude of gene expression post
PHx (Fig. 3a). Such an altered sensitivity is a characteristic
defense response of the organ to external damage and has
been studied under various conditions in rats and other
species [16, 25]. Our analysis revealed that ethanol adapta-
tion induces aberrant immediate early responses to PHx.
We found that most of the immediate early genes were
activated in both Control and Ethanol groups, while some
of the genes that are activated to promote regenerative
response were Control-specific. We speculate this reflects
the early signs of a delayed regenerative response in the
chronic ethanol adapted liver. Our results also pointed to
potential changes in non-parenchymal cells, particularly in
the ethanol group.
Cell cycle is the dominant theme in the replicative

phase, as demonstrated by the change in mRNA levels for
a number of genes important for cell cycle process altered
by ethanol intake. Ethanol-mediated inhibition of liver re-
generation is cell cycle dependent, with hepatocytes being
most responsive to the ethanol-induced damage during
the early G0-G1 phase [32]. Hence, the aberrant mistimed
early and persistent upregulation within 1–6 h in the alco-
hol group can not be seen as a compensatory response,
but may be originated by the lack of capacity to mount
appropriately timed response. Ethanol intake drives liver
to have an insufficient preparation for hepatocytes to enter
the cell cycle. This may very well be an early indicator of
later activation of anti-proliferative processes, followed by
the significant deficiency in upregulation of gene expres-
sion during the replicative phase. Such favoring of anti-
proliferative responses induced by the combined stimuli
of ethanol and PHx may lead to the disruption of the strict
regulation of hepatocyte proliferation at the early stages of
regeneration. This is in agreement with previous findings
that ethanol intake causes a delay in regeneration poten-
tially by inhibiting cell cycle entry [33, 34, 36].
Our analysis revealed the putative contribution of non-

parenchymal cells to compensate for the inhibition of hep-
atocyte replication. We utilized whole tissue samples in
our analysis, restricting the ability to detect and localize
gene expression changes occurring in NPCs. However, we
overcame some of these limitations by exhaustively

enumerating even the subtle alterations using our COM-
PACT approach. This yielded multiple temporal patterns
that could be attributed to an NPC response, in particular
that of HSC activation. We found changes in the expres-
sion pattern of members of the KLF family of transcrip-
tional regulators that are known to play a role in the stem
cell or progenitor response during development and dif-
ferentiation [84, 85]. One interpretation of aberrant ex-
pression of KLF family members in the Ethanol group is
as an indicator of potential progenitor-like response dur-
ing the initiation phase. There has been evolving literature
on the contribution of progenitors to liver regeneration.
Recent studies point to a lack of progenitor contribution
to liver regeneration in multiple injury models [86, 87].
However, there is evidence for a progenitor contribution
to long-term homeostatic tissue renewal in the case of
hepatocyte senescence [88]. Other studies suggest the ex-
istence of hepatocytes with progenitor cell properties [89].
Interestingly, a recent study revealed the existence of hy-
brid periportal hepatocytes that proliferate and replenish
liver mass following chronic hepatocyte-depleting injuries
[90]. Our results are consistent with other studies on the
modest contribution of progenitor cells in response to
PHx under normal conditions.
Our results point to HSC gene expression changes as

underlying the regeneration deficiency in the Ethanol
group. Activated HSCs contribute to regeneration through
production of angiogenic and pro-proliferative factors
such as HGF to stimulate hepatocyte proliferation, as well
as by ECM remodeling [91]. It is known that in the case of
ethanol-induced liver injury, there are characteristic differ-
ences in cell type-specific responses, including HSCs and
KCs indicating that ethanol treatment affects the interac-
tions between hepatocytes and NPCs that are essential for
a coordinated and integrated repair response [73]. The
nature of those interactions and the factors that mediate
them are only partially understood and little is known as
to how ethanol intake affects those interactions. It was
previously shown that treatment with acetaldehyde in-
creased the production of Collagen I, leading to HSC pro-
liferation [72]. Delineating the regulatory changes induced
by chronic ethanol intake in multiple liver cell types at dif-
ferent stages in the regenerative process requires cell-type
targeted experiments. However, using our novel COM-
PACT analysis, we could identify gene expression changes
that could serve as NPC response signatures at various
stages of regeneration. We found cell type specific partici-
pation in the immediate early (1 h post PHx) and transi-
tional (6 h post PHx) phases of regeneration indicating a
participation of non-parenchymal cells such as HSCs in
the early phase of regeneration. Early time markers in the
Ethanol groups were, decorin at 1 h, Npy, Col4a1, Fn1,
Serpine1 (PAI-1) at 6 h post PHx and persistent upregula-
tion of Vcam1. This is in agreement with the finding that
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chronic ethanol intake induced an imbalance in the im-
mune response, resulting in overproduction of TNF-α in
Kupffer cells leading to changes in SREBP-1 and PAI-1 ex-
pression in HSCs [92]. Interestingly, we found a strong
signature for aberrant HSC regulation at 24 h in the Etha-
nol group samples (although a modest upregulation of this
cluster was also evident in the Carbohydrate controls).
We further validated our results for the activation of some
of the known HSC markers in the Ethanol group at 24 h
post PHx (Fig. 9b).
The significant degree of HSC activation occurring after

PHx in the Ethanol group indicates that ethanol treatment
could be modifying the interactions between hepatocytes
and HSCs that are essential for the coordinated and inte-
grated tissue repair response and may therefore be dis-
rupting the switch that maintains the HSCs de-activated.
Such a combinatorial mechanism may lead to a feedback
loop where there is limited cell cycle entry and increased
HSC activation, which increases the ECM production that
causes a further increase in growth factor sequestration,
limiting the hepatocytes from entering cell cycle. This sug-
gests that adaptation to ethanol intake is leading to a regu-
latory state of the tissue that is mounting an excessive/
mis-timed HSC response, which underlies the deficient re-
generative response observed. We hypothesize that these
HSC-specific gene activations, by altering the push-pull
balance between pro-regenerative phenotype and that of
an anti-regenerative molecular state, helps to fine-tune the
proliferation-inhibitory response associated with ethanol
adaptation. Utilization of computational modeling [93–95]
can further help characterize and understand how dynamic
alterations in microenvironment and HSC activation within
the liver contribute to deficient liver regeneration.
Our novel COMPACT approach can be applied more

broadly to analyze biomedical and clinical Big Data. The
tool organizes the data in unique ways to enable a broad
systems-level analysis as well as pinpoint key aspects for
deep mining. In an unsupervised analysis, disease or
treatment relevant differences involving subtle changes
in small groups of co-regulated genes are difficult to
identify, if not entirely impossible to find. COMPACT
overcomes the limitations of typical differential analysis
and clustering methods that yield several long lists with-
out a systematic way to sort out how these are interre-
lated and where to prioritize follow-up analysis.
COMPACT exploits the statistical and visual paradigms
that have been successful in other Big Data analysis con-
texts and adapts them for analyzing typical large-scale
data on transcriptomics, proteomics, regulomics, meta-
bolomics, etc. For example, the patterns could be formed
from any sample annotation, including time series, dose
response, demographic groups, etc. The comparative
groups would be selected as appropriate to the particular
study, for example, treatment versus control, male versus

female, disease versus normal, drug A versus drug B, etc.
Depending on the goals of the analysis, the sample an-
notation used for pattern formation and comparative
groups can be switched. For instance, comparing pat-
terns of expression across sample groups between two
time points. Additional extensions include formation of
patterns based on multi-modal data sets in which por-
tions of the pattern vector are based on discretized
quantitative data from multiple data types, while a sub-
set of the pattern vector could be based on categorical
information (‘responder’ versus ‘non-responder’, etc.).
Thus, the two-way histogram approach of COMPACT
is highly generalizable to a wide range of data analysis
contexts.

Conclusions
We developed a novel method, termed COMPACT, to
analyze global gene expression time series data to identify
key response patterns to perturbations. We applied our
approach to assess the effect of chronic ethanol intake on
the global gene expression response of liver to acute in-
jury. We found that PHx induces broad changes to the
liver transcriptome even during the deficient regeneration
caused by chronic ethanol intake. Our results provide new
insights into the mechanisms underlying ethanol-induced
suppression of the regenerative response. Several tran-
scriptional regulators and genes corresponding to meta-
bolic processes, RNA processing, inflammatory response,
ribosome, chromosome organization etc. showed similar
differential regulation in Ethanol and Control groups.
COMPACT analysis identified key gene expression pat-
terns that were altered by ethanol treatment, correspond-
ing to several important regulatory pathways including
deficient cell cycle induction and non-parenchymal cell
activation. Our results yielded a novel prediction on the
potential role of HSC response and activation process
in driving the ethanol-mediated defective regeneration
phenotype.

Methods
Animals and tissues
Adult Sprague–Dawley rats were held in a climate con-
trolled, 12-h day/night cycle in accordance with accepted
animal handling practices. Animals were fed using the
Lieber-DeCarli pair-feeding model [96] in which rats
were fed a nutritionally adequate liquid diet containing
36 % of total calories derived from ethanol for 5 weeks
(Ethanol group), with the pair-fed calorie-matched litter-
mate controls receiving liquid diets in which ethanol
calories were replaced by maltose dextran (Carbohydrate
group). Rats (275–350 g) were anesthetized and sub-
jected to 2/3rd PHx by surgical removal of left lateral
and median lobes (LLM) as previously described
[19, 70]. The remnant liver was allowed to regenerate and
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the liver samples were harvested at 1, 6 and 24 h post
PHx and harvested (Additional file 1: Table S1). The
excised liver samples at t = 0 served as within-animal con-
trols. Collected liver samples were freeze-clamped in li-
quid nitrogen-cooled aluminium clamps for preparation
of tissue lysates. Total RNA was isolated using TRIzol re-
agent (Invitrogen, Carlsbad, CA) according to the manu-
facturer’s instructions. All animal studies were approved
by the Institutional Animal Care and Use Committee
(IACUC) at Thomas Jefferson University.

Microarray hybridization and data acquisition
We employed the Affymetrix Rat Gene 1.0 ST arrays
with ~25000 probe sets for obtaining the transcrip-
tomic profiles from each liver sample at the Genom-
ics Core Facility, Thomas Jefferson University, yielding
a total of 72 arrays (N = 4 biological replicates per
group). The hybridizations were performed in three
separate batches on separate days due to throughput
limitations. Each batch of hybridizations included 4
replicates of t = 0 controls from each of the three diet
groups permitting batch effect removal analysis to
minimize the impact of variability potentially arising
from multiple processing batches. MIAME compliant
microarray gene expression data from 72 arrays were
deposited in the Gene Expression Omnibus database.
Accession # GSE33785 no. [70].

Data normalization and outlier removal
The data normalization and statistical analysis to identify
differentially expressed genes were performed using Partek
Genomics Suite (Partek Inc., St. Louis, MO). The raw gene
expression data was normalized using the standard Robust
Multichip Average (RMA) approach [97]. Principal Compo-
nent Analysis revealed outlier samples and these were
excluded in further study. The RMA normalization was re-
peated for the remainder of the arrays after removal of the
outlier samples.

Differential gene expression
The normalized data was analyzed using a mixed effects
ANOVA that considered the following two variables and
their interactions as fixed effects: (1) Diet (Ethanol, High
Fat and Carbohydrate), (2) Time post PHx (0, 1, 6 and
24 h). The microarray batch (three separate runs, as
reflected in the array scan date) was considered as the
random effect to account for run-to-run differences across
arrays. Differentially expressed genes were identified based
on statistically significant effects of Time post-PHx, Diet or
an interaction between these two factors. The raw p-values
from ANOVA were corrected for multiple testing using the
standard q-value approach that estimates the proportion of

non-differentially regulated genes and hence improves the
sensitivity of the analysis [4].

PHx-responsive genes
The list of differentially expressed genes from ANOVA
was filtered based on a minimum fold change threshold of
1.5 up or down regulation in response to PHx, at any of
the three time points, in Ethanol, High Fat or Carbohy-
drate dietary group animals. The fold-change filtered dif-
ferentially expressed genes were considered further in the
clustering, Principal Component Analysis and Pathway
Analysis. In the heat map visualizations of these data sets,
hierarchical clustering using complete linkage and Pearson
correlation similarity metric was performed using the
MeV software [98]. Clusters of genes were identified based
on the expression pattern across all experimental groups
including individual biological replicates.

Visualization of sample groups
The differential gene expression data was used in an
established Principal Component Analysis (PCA) ap-
proach using the princomp function implemented in the
Bioconductor libraries [99] for the R Project for Statis-
tical Computing. The samples were annotated based on
a combination of Diet and Time post PHx, yielding nine
distinct sample groups.

Dynamic response pattern analysis and COMPACT matrix
Within each dietary group, for each time point post
PHx; the gene expression data was normalized by sub-
tracting the average of the corresponding LLM samples.
The average differential gene expression data for each of
the PHx groups was discretized to three levels (+1, 0,−1)
based on a fold change threshold of 1.5 up or down
regulation. Within each diet group, this discretization
yielded a dynamic response pattern vector for each gene,
encoded by one of 27 possible ordered sets of the three
levels: +1, 0, and − 1. Pairs of diet groups were compared
to count the number of genes that follow each of the 27
* 27 (=729) possibilities; to create a 27 × 27 matrix repre-
senting the comparative dynamic response pattern
counts (COMPACT). For a given COMPACT matrix of
comparative conditions C1 and C2, the element at the
ith row and jth column of the matrix contains the num-
ber of features that show an ith pattern in C1 and jth
pattern in C2. This pattern count matrix was visualized
by adapting the Table Viewer functionality of the CIR-
COS software [65].

Pathway analysis
The PHx-responsive Genes were analyzed for over-
represented biological pathways, networks and other func-
tional annotation using the DAVID software [100]. The list
of genes on the Affymetrix Rat Gene 1.0 array was used as

Kuttippurathu et al. BMC Genomics  (2016) 17:260 Page 19 of 23



the background reference in DAVID. The gene expression
clusters were considered separately in the DAVID analysis.

Quantitative validation using high throughput qPCR

Total RNA was isolated from frozen liver samples
(~100 mg) using TRIzol (Invitrogen, Carlsbad, CA) ac-
cording to the manufacturer’s directions. RNA concentra-
tion was measured by ND-1000 (NanoDrop, Wilmington,
DE). High throughput qPCR was performed following
standard BioMark (Fluidigm, South San Francisco, CA)
qPCR protocol. Briefly, 1.2 μg of total RNA was reverse-
transcribed using EasyScript Plus cDNA Synthesis Kit
(Applied Biological Materials, Richmond, BC) and cDNA
was stored at − 20 °C. 100 ng of synthesized cDNA was
pre-amplified for 12 cycles using TaqMan PreAmp Master
Mix (Applied Biosystems). Primers were designed using
Universal Probe Library Assay Design Center (Additional
file 13: Table S4). qPCR was performed using BioMark
Dynamic Arrays (Fluidigm) with 40 cycles of amplification
(15 s at 95 °C, 5 s at 70 °C, and 60s at 60 °C). Ct values
were calculated by the Real-Time PCR Analysis Software
(Fluidigm) and software-designated failed reactions were
discarded from analysis. Relative gene expression was
determined by the ΔΔCt method. Mrpl16, Ubqln1 and
Idh3B were used as housekeeping genes. Statistical signifi-
cance was assessed using a two-tailed Student’s T test with
unequal variances to compare the PHx-induced differen-
tial gene regulation between the Ethanol and Control
groups at the 24 h time point.

WGCNA analysis
We used the WGCNA method [5] to identify modules
of highly correlated genes. We used a soft threshold
value of 6 to identify the initial modules, and used a dis-
similarity threshold of 0.25 for merging the initial mod-
ules into the final set of gene co-expression modules.

Availability of supporting data/additional files
The data sets supporting the results of this article are
available in the Gene Expression Omnibus (GEO) reposi-
tory (Accession number: #GSE33785) and are publicly
available at www.ncbi.nlm.nih.gov (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE33785).
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