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RESEARCH ARTICLE
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Abstract

Neuroendocrine prostate cancer (NEPrCa) arises de novo or after accumulation of genomic

alterations in pre-existing adenocarcinoma tumors in response to androgen deprivation ther-

apies. We have provided evidence that small extracellular vesicles released by PrCa cells

and containing the αVβ3 integrin promote neuroendocrine differentiation of PrCa in vivo and

in vitro. Here, we examined αVβ3 integrin expression in three murine models carrying a

deletion of PTEN (SKO), PTEN and RB1 (DKO), or PTEN, RB1 and TRP53 (TKO) genes in

the prostatic epithelium; of these three models, the DKO and TKO tumors develop NEPrCa

with a gene signature comparable to those of human NEPrCa. Immunostaining analysis of

SKO, DKO and TKO tumors shows that αVβ3 integrin expression is increased in DKO and

TKO primary tumors and metastatic lesions, but absent in SKO primary tumors. On the

other hand, SKO tumors show higher levels of a different αV integrin, αVβ6, as compared to

DKO and TKO tumors. These results are confirmed by RNA-sequencing analysis. More-

over, TRAMP mice, which carry NEPrCa and adenocarcinoma of the prostate, also have

increased levels of αVβ3 in their NEPrCa primary tumors. In contrast, the αVβ6 integrin is

only detectable in the adenocarcinoma areas. Finally, analysis of 42 LuCaP patient-derived

xenografts and primary adenocarcinoma samples shows a positive correlation between

αVβ3, but not αVβ6, and the neuronal marker synaptophysin; it also demonstrates that

αVβ3 is absent in prostatic adenocarcinomas. In summary, we demonstrate that αVβ3 integ-

rin is upregulated in NEPrCa primary and metastatic lesions; in contrast, the αVβ6 integrin is

confined to adenocarcinoma of the prostate. Our findings suggest that the αVβ3 integrin, but

not αVβ6, may promote a shift in lineage plasticity towards a NE phenotype and might serve

as an informative biomarker for the early detection of NE differentiation in prostate cancer.
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Introduction

Integrins are transmembrane adhesion receptors that are deregulated during cancer progres-

sion [1, 2]. Among others, αVβ6, αVβ3, α6β1, and α6β4 integrins are overexpressed in in pros-

tate cancer (PrCa) [3–6]; our group recently demonstrated that small extracellular vesicles

released from PrCa cells and containing the αVβ3 integrin induce neuroendocrine differentia-

tion (NED) in vitro and in vivo [7]. In contrast, the α5 and α7 integrin subunits have been

reported to be downregulated in PrCa [8].

The αVβ3 integrin, also known as the vitronectin receptor, is composed of two subunits,

αV and β3. It can bind a wide range of extracellular matrix components through its RGD

motif (Arg-Gly-Asp) [9] and promotes invasion and adhesion of cancer cells to extracellular

matrix proteins [2, 10, 11]. This RGD-integrin binding is also known to facilitate cell adhesion,

virus entry, and infection by many human viruses [12], including metapneumovirus [13] and

coxsackievirus [14]. According to a recent study, the interaction between the RGD motif in the

spike protein of the SARS-Cov-2 virus (responsible for COVID-19) and integrins may pro-

mote the entry of the virus into the host cells [15]. The αVβ3 integrin itself is involved in a vari-

ety of processes, including angiogenesis and tumor metastasis [16]. While present at very low

levels in normal prostate tissues, it is highly expressed in PrCa cells and in metastasis [7, 10,

17]. Given its widespread distribution in PrCa, αVβ3 has been explored as a therapeutic target

in some studies [18, 19].

Dysregulated expression of the αVβ6 integrin, another RGD binding integrin, has been

associated with poor outcomes in different types of cancer [20]. Previous studies from our

group showed that αVβ6 integrin is upregulated in PrCa and PrCa bone metastases [21, 22].

Neuroendocrine PrCa (NEPrCa), a subtype of PrCa that typically develops from subsets of

castrate-resistant PrCa (CRPrCa) cells, is highly aggressive and usually metastasizes [23].

NEPrCa tumors may develop de novo or through the acquisition of alterations in pre-existing

epithelial tumors in response to therapies as outlined in the recent National Cancer Institute

workshop “Perspective on Lineage Plasticity and AR-independent PrCa” [24]. De novo
NEPrCa appears to result from lineage reprogramming of mature differentiated cells that do

not express androgen receptor (AR) or prostate-specific antigen (PSA) but instead express

neuron-specific proteins, such as aurora kinase A (AURKA), synaptophysin (SYP), and neu-

ron-specific enolase (NSE) [25–27]. These aberrations promote pro-tumorigenic pathways

independently from those activated by the AR [28]. Treatment-emergent NEPrCa has similar

characteristics but, at variance, it acquires expression of the AR [29]. From a clinical perspec-

tive, NEPrCa quickly develops resistance to chemotherapy and is associated with a life expec-

tancy of less than one year [25, 30].

Here we show, for the first time, that αVβ3 integrin expression is increased in NEPrCa, but

absent in prostatic adenocarcinomas (ADPrCa). Our immunohistochemical analysis of PrCa

samples reveals differential expression of the αVβ3 and αVβ6 integrins. We find that the αVβ3

integrin is highly expressed in metastases from NEPrCa patients while αVβ6 integrin is mostly

expressed in ADPrCa lacking neuroendocrine features. We also show that αVβ3 expression is

increased in a murine model that lacks the PTEN, RB1, and TRP53 genes and develops

NEPrCa resembling its human counterpart. Loss of PTEN and RB1, with intact TRP53, also

causes increased expression of αVβ3 integrin, although to a lower extent. Moreover, we report

increased αVβ3 integrin expression in the tumors of TRAMP (Transgenic Adenocarcinoma of

the Mouse Prostate) mice that develop NEPrCa together with castrate-sensitive ADPrCa. We

confirmed these results by screening of 42 LuCaP patient-derived xenografts (PDXs) [31, 32].

Our analysis uncovers a positive correlation between αVβ3 integrin and SYP but not between

αVβ6 and this NE marker. Our study provides novel insights into the identification of new
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pathways that might promote lineage plasticity among PrCa subtypes for which there is no

established therapeutic approach. The differential expression of these two lineage-restricted

integrins might also serve as a useful biomarker to predict neuroendocrine differentiation and

facilitate patient stratification in PrCa.

Materials and methods

Cell lines

PrCa C4-2B and LNCaP cell culture conditions have been previously described [10, 33].

Antibodies

Immunohistochemistry (IHC) analysis used two different rabbit monoclonal antibodies (Abs)

against β3 integrin subunit: one from Cell Signaling (13166S; Figs 1 and 2) and another from

AbCam (Ab75872; Fig 4). Moreover, a rabbit polyclonal Ab against SYP (Invitrogen, PA1-

1043) and a rabbit polyclonal Ab against chromogranin A (CgA, Invitrogen, 18–0094) were

used. For the β6 integrin subunit, a mouse monoclonal Ab against the β6 integrin subunit

(6.2A1) [34] was used for immunostaining of human samples, and a human/mouse chimeric

Ab against the β6 integrin subunit (ch2A1) [35] was used for SKO, DKO, and TKO murine

samples. Immunoblotting analysis used rabbit monoclonal Ab against β3 integrin subunit

(Cell Signaling, 13166S), rabbit polyclonal Abs against TSG101 (Abcam, ab30871), actin

(Sigma, A2066), and a mouse monoclonal Ab against the β6 integrin subunit (6.2A1).

Generation of mice carrying prostate-specific TRP53 and RB1 gene

deletions

Mice of genotype PB-Cre4 PTENloxP/loxP, PB-Cre4 PTENloxP/loxPRB1loxP/loxP, or PB-Cre4

PTENloxP/loxP RB1loxP/loxPTRP53loxP/loxP were generated as previously described [36, 37]. Briefly,

mice carrying different combinations of the PTENloxP, RB1loxP, and TRP53loxP alleles were

interbred, with the ARR2PB-Cre transgene from the PB-Cre4 line always carried through

males. Mice used in this analysis are on a C57BL/6 and 129SVJ mixed genetic backgrounds.

Mice were backcrossed to the C57BL/6 strain for at least 5 generations. Genotypes were desig-

nated as SKO (single PTEN knock-out), DKO (double PTEN:RB1 knock-out), and TKO (triple

PTEN:RB1:TRP53 knock-out). Non-recombinant littermates were used as a control. The mice

were euthanized using CO2 and cervical dislocation when the tumor length was approximately

2 cm. All of these mice were maintained following guidelines of the Institutional Animal Care

and Use Committee (IACUC), and were bred and kept at Roswell Park Comprehensive Can-

cer Center (Buffalo, NY, USA).

TRAMP (Transgenic Adenocarcinoma of the Mouse Prostate) mice

Male TRAMP mice were generated as described previously [38]. Twenty-four male TRAMP

mice were used. No female mice were analyzed in this study. The mice were euthanized using

CO2 and cervical dislocation when the tumor volume was approximately 10,000 mm3. Care of

animals was in compliance with standards established by the Office of Laboratory Animal

Welfare, NIH, Department of Health and Human Services. All mice were maintained follow-

ing recommendations of the IACUC. Experimental protocols were approved by IACUC.

PDX establishment

The acquisition of PrCa patient tissues and their use to establish PDX models have been

described [32]. The vast majority of implanted tissues was from metastatic foci obtained at
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tissue acquisition necropsy in a manner which limited warm ischemic time as much as possible

(aiming for 4–8 hours after death). A few samples of primary PrCa were obtained from surgical

procedures. Harvested tumor tissues were evaluated by pathologists, and viable tumor tissue

was macro-dissected to minimize content of stroma, fat, and necrotic tissue. Tumor fragments

were implanted subcutaneously in 6- to 8-week-old intact male athymic Nu/Nu (NU-

Foxn1nu) or CB-17 severe combined immunodeficient (SCID, CB17/Icr-Prkdcscid/IcrCrl)

mice (Charles River Laboratory). Tumor samples were harvested from later passages (>3) and

frozen or embedded in paraffin for characterization. LuCaP PDXs are maintained by constant

passaging in SCID mice. The levels of SYP in the LuCaP PDX were assessed by IHC analysis.

Fig 1. αVβ3 integrin is selectively upregulated in the primary tumors of mice carrying neuroendocrine prostate cancer. Immunostaining of the αVβ3 integrin (top

panels), αVβ6 integrin (middle panels), and SYP (bottom panels) in prostate tumors from murine models with genetic knockdown of PTEN (SKO; n = 5), PTEN and

RB1 (DKO; n = 5), and PTEN, RB1, and TRP53 (TKO; n = 5) in the prostatic epithelium. The bar at the bottom right corner of each panel represents 50 μm. First

column: SKO; second column: DKO; third column: TKO.

https://doi.org/10.1371/journal.pone.0244985.g001
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Immunohistochemistry (IHC)

IHC was performed on tissue sections from SKO (n = 5), DKO (n = 5), and TKO (n = 5) pros-

tate tumors and lung metastases, from TRAMP murine primary tumors, and on LuCaP PDX

TMA containing 42 PDX models. Of the 24 TRAMP mice analyzed, 13 exhibited a NE pheno-

type, 11 presented adenocarcinoma lesions, and 5 displayed both characteristics. The tissue

sections were baked at 60˚C for 1 hour, followed by deparaffinization with xylene (3 min × 2),

and rehydration through a graded ethanol series (100%, 90%, 70%, 50%, 30% for 3 min each)

followed by deionized water (3 min × 2). The sections were incubated with 3% H2O2 solution

for quenching endogenous peroxidase activity, followed by heat-induced antigen retrieval for

the β3 integrin subunit, SYP or chromogranin (CgA) that was performed in citrate buffer (10

mM sodium citrate, 0.05% Tween 20, pH 6.0) at 95˚C for 15 min. For β6 integrin subunit

immunostaining, antigen retrieval was performed using pepsin (0.5% in 5 mM HCl) digestion

for 15 min at 37˚C. Sections were washed once with deionized water for 5 min, followed by a

phosphate buffer saline (PBS) wash for 5 min, and blocked with 5% goat serum in PBST (PBS,

0.1% Tween20) for 2 hours. The tissue sections were incubated overnight at 4˚C with Abs

against β3 integrin subunit (1:25), β6 integrin subunit (2 μg/ml), CgA (1 μg/ml), SYP (5 μg/

ml), or the respective IgG isotype, which was used as negative control. The following day, the

tissue sections were washed with PBST (5 min × 2), followed by PBS (5 min), and incubated

with secondary Abs (biotinylated goat anti-rabbit IgG in PBST for β3 integrin, SYP, or CgA,

and biotinylated goat anti-human or horse anti-mouse IgG for β6 integrin, 10 μg/ml in PBST)

for 30 min at room temperature. The unbound secondary Ab was washed with PBST (5

min × 2), followed by PBS (5 min). The tissue sections were incubated with streptavidin horse-

radish peroxidase (SAP, 5 μg/ml in PBS) for 30 min at room temperature and the unbound

SAP was washed with PBST (5 min × 2), followed by PBS (5 min). The chromogenic reaction

product was developed by adding substrate chromogen 3,30-diaminobenzidine solution (DAB

substrate kit). The DAB reaction was stopped by rinsing the tissue sections in deionized water.

The sections were counterstained with Harris hematoxylin, dehydrated in a graded ethanol

series (30%, 50%, 70%, 90%, 100% for 5 min each) followed by xylene (5 min × 2), dried, and

finally mounted with Permount (Vector Laboratories).

LuCaP TMA immunohistochemical assessment and statistical analysis

LuCaP PDX TMA immunostaining was scored by multiplying each staining intensity level (“0”

for no stain, “1” for faint stain, and “2” for definitive stain) by the percentage of cells at each stain-

ing level. The multiplicands provided a final score for each sample (score range was 0 to 200). The

score for each LuCaP core was the average of the scores of each triplicate. Relative detection levels

of SYP were provided by Dr. Corey and defined as 0 (-), 1 (+), 2 (++), and 3 (+++). The normali-

zation was performed by assigning to the higher score for each immunostaining (αVβ3, αVβ6,

and SYP) a value of 100. Correlation analysis between the integrin scores and the expression levels

of SYP and its significance was performed using Spearman correlation (Matlab v.R2016a).

RNA-sequencing (RNA-seq)

RNA-seq was performed as previously reported in [39] and publicly available on GEO Expres-

sion Omnibus (accession number: GSE90891). Briefly, RNA-seq was performed on SKO

Fig 2. αVβ3 integrin is selectively upregulated in lung metastases of mice carrying neuroendocrine prostate cancer. Immunostaining of the αVβ3 integrin (top

panels), αVβ6 integrin (middle panels), and SYP (bottom panels) in the lung metastases from murine models with genetic knockdown of PTEN and RB1 (DKO; n = 5)

and PTEN, RB1, and TRP53 (TKO; n = 5) in the prostatic epithelium. The bar at the bottom right corner of each panel represents 20 μm. First column: DKO; second

column: TKO.

https://doi.org/10.1371/journal.pone.0244985.g002
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(n = 4), DKO (n = 5), and TKO (n = 4) prostate tumors and on normal prostate (n = 4) by the

Roswell Park Cancer Institute Genomics shared resource. Sequencing libraries were prepared

with the TruSeq Stranded Total RNA kit (Illumina Inc) from 1 μg total RNA following manu-

facturer’s instructions. After ribosomal RNA depletion, RNA was purified, fragmented, and

primed for cDNA synthesis. Fragmented RNA was reverse transcribed into first-strand cDNA

using random primers. AMPure XP beads were used to separate the cDNA from the second-

strand reaction mix resulting in blunt-ended cDNA. A single ‘A’ nucleotide was then added to

the 3’ ends of the blunt fragments. Multiple indexing adapters, containing a single ‘T’ nucleo-

tide on the 3’ end of the adapter, were ligated to the ends of the cDNA to prepare them for

hybridization onto a flow cell. Libraries were purified and validated for the appropriate size on

a 2100 Bioanalyzer High Sensitivity DNA chip (Agilent Technologies, Inc.). The DNA library

was quantitated using KAPA Biosystems qPCR kit and normalized to 2 nM prior to pooling.

Libraries were pooled in an equimolar fashion and diluted to 10 pM. Library pools were clus-

tered and run on a HiSeq2500 rapid mode sequencer according to the manufacturer’s recom-

mended protocol (Illumina Inc.).

Raw sequencing reads passing the Illumina RTA quality filter were pre-processed using

FASTQC for sequencing base quality control. Reads were mapped to the mouse reference

genome (mm9) and RefSeq annotation database using Tophat. A second round of quality con-

trol using RSeQC was applied to mapped bam files to identify potential RNA-seq library prep-

aration problems. The number of reads aligning to each gene was calculated using HTSeq, and

for each gene, the corresponding RPKM value was calculated.

For differential gene expression analysis, RNA-seq counts were processed to remove genes

lacking expression in more than 80% of samples. Scale normalization was done using the

Limma package in R. After Voom transformation, data from primary SKO, DKO, and TKO

tumors were compared to generate differentially expressed gene lists with P < 0.05 and

logFC > 1.5.

Human subject inclusion criteria

Three metastatic ADPrCa tissue samples (Gleason Score GS 9 [n = 1] and GS 10 [n = 2]) were

obtained from the Department of Pathology at Thomas Jefferson University (Philadelphia,

PA). Additionally, four human malignant ADPrCa tissue samples (GS 7 [n = 3] and GS 10

[n = 1]) were obtained from the Cooperative Human Tissue Network (CHTN) Western Divi-

sion at Vanderbilt University Medical Center, TN, or Mid-Atlantic Division at University of

Virginia, VA. The CHTN is funded by the National Cancer Institute and other investigators

may have received specimens from the same subjects. All specimens were de-identified and

discarded in accordance with IRB-approved protocols.

siRNA transfection and immunoblotting analysis

Downregulation of AR was accomplished using siRNA SMARTPool (Dharmacon, L-003400-

00-0005) and non-targeting siRNA as a control (Dharmacon, D-001810-10-05). Transfection

of siRNA and immunoblotting analysis were performed as previously described [21].

Results

The αVβ3 integrin is selectively upregulated in NEPrCa murine models

In a recent study, we have shown that the αVβ3 integrin is found in small extracellular vesicles

released by cancer cells and that small extracellular vesicles containing αVβ3 have a unique

ability to promote NED of PrCa in vivo [7]. Based on these findings, we hypothesized that
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elevated expression levels of αVβ3 might correlate with NED in PrCa. We tested this hypothe-

sis by analyzing the levels of αVβ3 and αVβ6 integrins in primary tumors, as well as lung meta-

static lesions, from NEPrCa mice carrying PTEN, RB1, and TRP53 triple conditional knock-

outs in the prostatic epithelium (PBCre4 PTENloxP/loxP RB1loxP/loxPTRP53loxP/loxP, TKO). This

model has been reported to develop NEPrCa similar to its human counterpart [39]. We com-

pared the TKO model to a double knock-out model lacking PTEN and RB1 in the prostate

(PBCre4 PTENloxP/loxP RB1loxP/loxP, DKO). In addition, we analyzed a PTEN single conditional

knock-out mouse model (PBCre4 PTENloxP/loxP, SKO) whose gene expression signature has

been shown to be comparable to human ADPrCa [39]. The immunostaining analysis reveals

high levels of the αVβ3 integrin (Figs 1 and 2, top panels) which correlate with SYP expression

(Figs 1 and 2, bottom panels) in the prostate tumors (Fig 1) and lung metastatic lesions (Fig 2)

of DKO and TKO mice (n = 5 for each group). The results are consistent in all samples except

for one of the DKO samples which does not exhibit detectable αVβ3 integrin expression. In

the tumors from the SKO mice, the αVβ3 integrin is not detectable (Fig 1, top panels), whereas

the αVβ6 integrin is highly expressed in SKO prostate tumor samples (Fig 1, middle panels),

and is low with some patchy positivity in the DKO and TKO primary tumors (Fig 1, middle

panels). Consistent with these results, lung metastatic lesions from DKO and TKO mice show

some patchy positivity for the αVβ6 integrin (Fig 2, middle panels) but at a considerably lower

level than for αVβ3. We did not observe any metastases in SKO mice.

Consistent with the immunostaining results, RNA sequencing analysis of the publicly avail-

able datasets on Geo Expression Omnibus (GSE90891, [39]) reveals higher levels of the β3

integrin subunit (ITGB3) expression in DKO and TKO tumors compared to SKO samples.

Moreover, ITGB3 mRNA is upregulated in SKO compared to normal prostate (wild type, WT;

Table 1), although our immunostaining analysis does not detect the αVβ3 integrin in the SKO

samples analyzed (Fig 1). These results indicate that, although the ITGB3 mRNA is present in

SKO tumors, the mRNA is likely to be unstable. In addition, the levels of the αV integrin sub-

unit (ITGAV) and β6 integrin subunit (ITGB6) are lower in DKO and TKO tumors compared

to SKO, although noticeably higher in all three knock-out genotypes compared to normal

prostate (WT) samples (Table 1).

NEPrCa expresses elevated levels of PARP1 which is a nuclear enzyme involved in DNA

repair, DNA replication, inflammation, and chromosome organization [40, 41]. Consistent

with these previous publications, PARP1 expression is upregulated in DKO and TKO tumors

(Table 1). Although PARP1 mRNA is also upregulated in SKO samples compared to the WT

control, the levels of PARP1 mRNA are not as elevated as in DKO and TKO tumors (Table 1).

In addition, another gene involved in NED (BRN4 [POU3F4]) [42] is upregulated in DKO and

TKO samples but not in SKO (Table 1). These results demonstrate that high expression of

ITGB3 and of genes implicated in NED co-occur in DKO and TKO tumors.

Table 1. RNA sequencing analysis shows increased expression of ITGB3 mRNA in DKO and TKO tumors.

WT (n = 4) SKO (n = 4) DKO (n = 5) TKO (n = 4)

ITGB3 23.8 1145.5 3536.4 3018

ITGAV 764.3 22121.3 3262.6 4857.3

ITGB6 22.8 3652.5 2113.8 1033

PARP1 580.8 4434.3 15946.2 10862.5

POU3F4 0 0 86.6 75.5

Normalized read counts for the β3 integrin subunit (ITGB3), αV integrin subunit (ITGAV), β6 integrin subunit (ITGB6), PARP1, and BRN4 (POU3F4) RNA levels in

normal prostate (WT), as well as in SKO, DKO, and TKO prostate tumor samples.

https://doi.org/10.1371/journal.pone.0244985.t001
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We also performed immunohistochemical analysis of tumor samples from TRAMP mice to

assess the levels of αVβ3 and αVβ6 integrin expression in their tumors. This mouse model,

which is known to have RB and p53 inactivated, develops NEPrCa together with ADPrCa [43,

44]. Our immunostaining shows that the NE marker chromogranin A (CgA) co-occurs with

the αVβ3 integrin in 10 of the 13 TRAMP NE tumor samples analyzed (Fig 3). The αVβ6

integrin, however, is not detected in the NE tumors from the TRAMP model (Fig 3). In con-

trast, the αVβ6 integrin is detected exclusively in the ADPrCa, NE-negative areas of the

TRAMP tumor samples (Fig 3). Our results, from the DKO and TKO NE mouse genetic mod-

els as well as the TRAMP mice, taken together, clearly demonstrate a consistent correlation

between the high expression of αVβ3 integrin and NEPrCa occurrence. Conversely, ADPrCa

tumors are consistently associated with expression of the alternative αVβ6 integrin subtype.

Expression of αVβ3 integrin and synaptophysin correlates in patient-

derived xenografts

To confirm these results in human specimens, we conducted an immunohistochemical analysis

of 42 LuCaP PDXs [31, 32]. These PDX models were generated by implanting primary PrCa or

metastatic lesion tumor fragments from PrCa patients into immunocompromised mice [32], and

the resulting PDX models were subsequently characterized for their expression of NE markers

[31]. We assessed the presence of αVβ3 or αVβ6 integrin using immunohistochemical analysis

and scored the immunostaining intensity of each LuCaP core in the tumor micro-array (TMA)

using the scoring system described in the Materials and Methods section. We observe a positive

correlation between the αVβ3 integrin and the NE marker SYP (Fig 4A and 4B, r = 0.42;

P = 0.0046). In contrast, the αVβ6 integrin shows no correlation with SYP (Fig 4A and 4B,

r = 0.22; P = 0.1622), confirming the results described above obtained for mouse tumor samples.

We further validated the results obtained using the LuCaP PDX TMA by screening PrCa

samples from the Department of Pathology at Thomas Jefferson University and the Coopera-

tive Human Tissue Network. Of the 7 ADPrCa primary tumors none expresses αVβ3 (Fig 4C).

On the other hand, as previously reported [21], most of the ADPrCa express αVβ6 which was

used as positive control. These findings suggest a differential expression of these two αV integ-

rins during PrCa progression, whereby the αVβ3 integrin is specifically expressed in NEPrCa

samples, and in contrast, the αVβ6 integrin is specifically expressed in ADPrCa samples lack-

ing NE characteristics.

Loss of androgen receptor signaling does not result in upregulation of

αVβ3 or αVβ6 integrin expression in PrCa cell lines

NEPrCa is characterized by the activation of pro-tumorigenic pathways independently from

the AR signaling [28]. We hypothesized that loss of AR signaling might induce upregulation of

the αVβ3 integrin in LNCaP and C4-2B, two AR positive PrCa cell lines. To test our hypothe-

sis, we downregulated AR expression in LNCaP and C4-2B cells using siRNA. Our results

show that downregulation of AR in C4-2B or LNCaP cells does not upregulate αVβ3 (Fig 5A)

or αVβ6 integrin (Fig 5B) expression. Thus, it is possible that other factors in the tumor micro-

environment contribute to the regulation of αVβ3 integrin and αVβ6 integrin expression after

AR signaling loss.

Discussion

Our results demonstrate that increased expression of the αVβ3 integrin correlates with the

occurrence of NE markers in human patients’ samples and murine models. In contrast, the
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Fig 3. Selective upregulation of αVβ3 integrin in the TRAMP (Transgenic Adenocarcinoma of the Mouse Prostate) mice. IHC staining

of αVβ3 (first row), αVβ6 (second row), and chromogranin A (CgA, third row) of prostate tumors from TRAMP mice (n = 24). Of the 24

samples analyzed, 13 show only a NE phenotype, 11 show only ADPrCa lesions, and 5 show both characteristics. IgG was used as negative

control (last row). The bar at the bottom right corner of each panel represents 50 μm. Left column, ADPrCa; right column, NEPrCa.

https://doi.org/10.1371/journal.pone.0244985.g003
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Fig 4. Increased expression of the αVβ3 integrin, but not αVβ6, correlates with the neuroendocrine marker SYP in LuCaP PDXs and human prostate tumor

samples. Immunohistochemical analysis of 42 LuCaP PDX models. (A) representative IHC staining for αVβ3 (left) or αVβ6 (right) integrin of SYP positive (top row) or

SYP-negative (bottom row) LuCaP PDX models is shown. The bar at the bottom right corner of each panel represents 20 μm. (B) Heat map of the signature score for SYP,

αVβ3 or αVβ6 integrin of each LuCaP is shown. Raw data are reported in the S1 Table. (C) Immunostaining analysis of αVβ3 and αVβ6 integrins and SYP primary

tumors from ADPrCa patients. The bar at the bottom right corner of each panel represents 20 μm.

https://doi.org/10.1371/journal.pone.0244985.g004
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αVβ6 integrin is expressed in human and murine ADPrCa, suggesting that the αVβ3, but not

αVβ6, integrin might serve as a suitable biomarker to characterize NED in the context of PrCa.

Here, we show that these two integrins are differentially expressed in ADPrCa and NE can-

cers. Specifically, expression of the αVβ3 integrin in primary prostate tumors and metastatic

lesions of mice carrying deletions of the PTEN (SKO), RB1 and PTEN (DKO) or RB1, PTEN,

and TP53 (TKO) inversely correlates with αVβ6. Expression of the αVβ3 integrin in primary

prostate tumors of mice carrying deletions of the PTEN (SKO) is undetectable, while it is sig-

nificantly increased in DKO or TKO tumors and metastatic lesions. This indicates that RB1
loss, and consequent activation of transcription factors of the E2F family [45–47], is sufficient

to induce αVβ3 expression in these models. This integrin expression persists in TKO tumors

which, in contrast to DKO tumors exhibiting both SYP and AR expression, develop homoge-

nous AR-negative NEPrCa, similar to its human counterpart [39]. It remains to be investigated

whether downregulation of αVβ6 and gain of the αVβ3 integrin occur in CRPrCa since RB1 is

known to influence integrin expression [48, 49], and its loss occurs frequently in human

CRPrCa [50, 51].

A factor that may influence the processing of the αVβ3 integrin, is the expression of the αV

subunit which is required for the heterodimeric complex. The RNA analysis summarized here

(Table 1) indicates that the levels of the αV integrin subunit (ITGAV) become limiting and

that β3 acts in a dominant fashion over the β6 integrin subunit.

Fig 5. Downregulation of androgen receptor does not increase αVβ3 or αVβ6 integrin expression. Immunoblotting analysis

of C4-2B and LNCaP cell lysates after AR downregulation by siRNA to AR. (A) Expression levels of αVβ3 integrin in C4-2B and

LNCaP cells after AR downregulation. Immunoblotting was performed under reducing conditions. (B) Expression levels of

αVβ6 integrin in C4-2B and LNCaP cells after AR downregulation. Immunoblotting was performed under non-reducing

conditions. Actin or TSG101 serves as loading controls. NS, non-silencing.

https://doi.org/10.1371/journal.pone.0244985.g005
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We also detect high αVβ3 integrin expression in the NE areas of primary tumors from

TRAMP mice that develop NEPrCa together with ADPrCa. In contrast, we detect the related

αVβ6 integrin in the ADPrCa areas of the TRAMP tumors. Our findings underline the speci-

ficity of the αVβ3 integrin in NEPrCa, nominating this integrin as a potential biomarker for

patient stratification in PrCa treatment. Our future studies will benefit from the use of mice

carrying deletion of the αVβ3 integrin crossed with the DKO, TKO, or TRAMP mice, in order

to shed new light on the mechanism of action of the αVβ3 integrin in NEPrCa development

and/or metastatic progression.

Multiple strategies have been developed to target the αVβ3 integrin due to its role in tumor

angiogenesis and tumor growth [16]. For example, LM609, an inhibitory antibody against the

αVβ3 integrin, reduced angiogenesis and tumor growth in a SCID mouse/human chimeric

model for breast cancer [52]. Its humanized counterpart JC-7U IgG1 has been reported to inhibit

tumor growth in a Kaposi sarcoma mouse model and was also able to inhibit, in part, the binding

of human immunodeficiency virus (HIV-1) Tat protein to αVβ3 integrin, which is necessary to

stimulate Kaposi sarcoma growth [16, 53]. Previous studies also reported the ability of the αVβ3

integrin to support metastasis in PrCa [54] as well as other cancers [55–58]. Likewise, the expres-

sion of the αVβ3 integrin conceivably facilitates the metastatic behavior of NEPrCa. In support of

this idea, our SKO mouse model (PB-Cre4 PTENloxP/loxP) does not metastasize and expresses low

levels of αVβ3 integrin, whereas DKO and TKO, the two NE models that acquire αVβ3 integrin

expression as a consequence of additional RB1 knock-out, develop metastases in the lungs [39].

We can speculate that upon RB1 loss, downregulation of αVβ6 and gain of the αVβ3 integrin are

required in the primary tumors in the early stages of NED to confer upon NEPrCa the ability to

metastasize in different sites (Fig 6). Upon metastasizing, the αVβ3 integrin expression is sus-

tained as shown here and as previously described [7] in NEPrCa bone metastasis, indicating addi-

tional pro-survival functions provided by this integrin.

Whether one or more of the many pathways activated by the αVβ3 integrin is involved in

NED remains to be established. For example, the expression of the αVβ3 integrin reportedly

stimulates cell migration by activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway

[59]. Other studies have demonstrated that AKT1 is involved in stabilizing N-MYC [60, 61], one

of the main promoters of NED in PrCa [62]. Since pAKT is not detectable in TKO prostate tissue

[39], we speculate that pAKT activated by αVβ3 primes the cells to stabilize N-MYC but is not

required for long-lasting NED. The RNA-seq analysis presented here highlights potential down-

stream effectors of αVβ3. For example, αVβ3 integrin might be able to induce NED in PrCa by

upregulating Trop2 expression, which is known to induce NEPrCa by upregulation of PARP1

[40]. Underlining the importance of targeting this pathway to prevent or delay the most aggres-

sive forms of PrCa, the U.S. Food and Drug Administration has recently approved olaparib, a

PARP1 inhibitor [63], for the treatment of metastatic CRPrCa. However, there are as yet no

reports on the safety or efficacy of olaparib for the treatment of NEPrCa.

Our previous study demonstrates that the dysregulated expression of the αVβ3 integrin in

small extracellular vesicles released by PrCa cells promotes a shift in lineage plasticity towards a

NE lineage [7]. Moreover, although our group has reported that the αVβ6 integrin, in small

extracellular vesicles released by cancer cells, induces M2 polarization in recipient monocytes

[64] and stimulates angiogenesis in endothelial cells during cancer progression [65], is absent in

NEPrCa. Here we show that the αVβ3 integrin is upregulated in tumor samples from patients

affected by NEPrCa and in corresponding NE murine models. Moreover, our findings demon-

strate that conversely, the expression of the αVβ6 integrin is upregulated in ADPrCa samples

from humans and mice. It is therefore reasonable to speculate that monitoring the expression of

these two integrins during PrCa progression will help to predict the potential for NED in PrCa

patients. Moreover, based on our emerging findings that NE metastatic lesions express relatively
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high levels of the αVβ3 integrin, targeted therapies directed against this integrin might prove to

be effective in preventing or delaying plasticity and metastasis in NEPrCa [56].

Supporting information

S1 Table. Raw data of the signature score used to generate the heatmap in Fig 4.

(TIF)

S1 Raw images.

(PDF)
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