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Abstract

Study design: Narrative review.

Objectives: To provide an overview of contemporary therapies for the James Lind Alliance priority setting partnership for
degenerative cervical myelopathy (DCM) question: ‘Can novel therapies, including stem-cell, gene, pharmacological and
neuroprotective therapies, be identified to improve the health and wellbeing of people living with DCM and slow down disease
progression?’

Methods: A review of the literature was conducted to outline the pathophysiology of DCM and present contemporary
therapies that may hold therapeutic value in 3 broad categories of neuroprotection, neuroregeneration, and neuromodulation.

Results: Chronic spinal cord compression leads to ischaemia, neuroinflammation, demyelination, and neuronal loss. Surgical
intervention may halt progression and improve symptoms, though the majority do not make a full recovery leading to lifelong
disability. Neuroprotective agents disrupt deleterious secondary injury pathways, and one agent, Riluzole, has undergone Phase-
III investigation in DCM. Although it did not show efficacy on the primary outcome modified Japanese Orthopaedic Association
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scale, it showed promising results in pain reduction. Regenerative approaches are in the early stage, with one agent, Ibudilast,
currently in a phase-III investigation. Neuromodulation approaches aim to therapeutically alter the state of spinal cord excitation
by electrical stimulation with a variety of approaches. Case studies using electrical neuromuscular and spinal cord stimulation
have shown positive therapeutic utility.

Conclusion: There is limited research into interventions in the 3 broad areas of neuroprotection, neuroregeneration, and
neuromodulation for DCM. Contemporary and novel therapies for DCM are now a top 10 priority, and whilst research in these
areas is limited in DCM, it is hoped that this review will encourage research into this priority.

Keywords
degenerative cervical myelopathy, neuroprotection, neuromodulation, neuroregeneration, inflammation, demyelination,
electrical stimulation, spinal cord stimulation, neuromuscular electrical stimulation, functional electrical stimulation

Introduction

Individuals diagnosed with Degenerative Cervical Myelopa-
thy (DCM) may require surgical and/or non-surgical inter-
ventions depending on the severity of the disease and clinical
manifestations. Surgical intervention in the form of decom-
pressive surgery with or without fusion is the mainstay of
treatment for moderate to severe disease as assessed by
modified Japanese Orthopaedic Association (mJOA) scale.1,2

The optimal management of mild DCM, early in its course, is
unknown, as studies have not pointed towards a significant
benefit for prophylactic surgical intervention.3,4 However, this
opens a window for the possible application of non-surgical
interventions such as disease modifying therapeutics physical
therapy, cervical traction, collars and spinal injection.4,5

Despite the success of surgical decompression in halting
neurological decline and providing some recovery, myelop-
athy symptoms may reoccur,6 and full recovery is rarely seen,
with estimates suggesting less than 5%make a full recovery,7,8

with lower limb and sphincter function demonstrating the
slowest recovery responses.9 Ongoing myelopathy may affect
domains such as mobility, weakness, manual dexterity, pain
and bladder/bowel dysfunction resulting in a considerable
impact and decline in quality of life.10,11 Therefore, halting
neurological decline and improving rates of functional recovery
remain major priorities of patients and surgeons dealing with
DCM.12 The importance of this unmet need is further com-
pounded by the fact that DCM is one of the commonest causes
of spinal cord dysfunction worldwide, and the incidence is
expected to increase with an ageing population.1,13

This uncertainty was highlighted in the recent James Lind
Alliance12 (JLA) priority setting partnership, with one of the
top priorities and questions agreed upon being, ‘Can novel
therapies, including stem-cell, gene, pharmacological and
neuroprotective therapies, be identified to improve the health
and wellbeing of people living with DCM and slow down
disease progression?’. The objective of this narrative review is
to provide an overview of potential contemporary therapies
that may enhance recovery in DCM.Wewill briefly outline the
pathophysiology of DCM and then present contemporary

therapies in 3 main areas, namely, neuroprotection, neuro-
regeneration and neuromodulation, which may in the future
have a therapeutic role in DCM.

Pathophysiology of DCM

Degenerative cervical myelopathy is an umbrella term en-
compassing a number of degenerative processes and responses
in the cervical spine, which leads to progressive chronic spinal
cord compression.14,15 Osseous, ligamentous, and intervertebral
disc tissue undergo degenerative changes as part of normal
ageing and/or repetitive stress leading to structural changes
such as spondyloses, hypertrophy/ossification/calcification of
ligaments (e.g Ossification of the posterior longitudinal lig-
ament) and disc herniation/prolapse.1,16 Whilst these changes
lead to static compression and direct injury to the spinal cord,
they are it compounded by the mobility of the cervical spine,
causing further compression due to physiological or pathological
(ie spondylolisthesis) movements.1,16 Mechanical compression
leads to direct primary injury but also initiates a complex se-
quence of secondary injury processes in the spinal cord.17 These
include macro- andmicrovascular compromise causing hypoxia
and ischaemia18,19 and neuroinflammation.17,20 The consequence
of these processes include loss of neurons, oligodendrocytes,20

demyelination21 and axonal degeneration.17

Demyelination can act as a functional conduction block on
axons contributing to the sensorimotor deficits seen in DCM.
Post-mortem studies have found extensive thin myelinated
fibres in the spinal cord white matter suggestive of focal de-
myelination and remyelination.22 Studies have also found an
association between reduced myelin content on myelin water
imaging on MRI and impaired somatosensory evoked potential
in DCM, which demonstrates the impact of demyelination seen
on long tract axonal function in DCM.23 Therefore, strategies to
mitigate demyelination and stimulate endogenous mechanisms
of myelin repair may provide a viable therapeutic strategy.

The neuroinflammatory cascade resulting from chronic
compression is of interest as it can be both protective and
damaging. An increase in activated microglia and macro-
phages has been observed at the site of chronic spinal cord
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compression and are a source of pro-inflammatory cytokines
and can lead to further cell death by necrosis and apoptosis.24

Alternatively, Immune cells can also exhibit neuroprotective
effects such as releasing neuroprotective cytokines and growth
factors.25 This has created interest in immunomodulatory
strategies to alter this balance as a therapeutic strategy.

Neuroprotection

Neuroprotective agents prevent further cell death and dys-
function by altering secondary injury pathways. A notable
example is Riluzole, a benzothiazole sodium channel-blocker
developed in the mid-20th century as a muscle relaxant,26 with
later indications as an anticonvulsant27 and neuroprotective
agent to prolong survival in ALS.28 In the context of DCM,
animal studies have shown RIluzole can mitigate secondary
injury mechanisms related to sodium channels and glutamate
excitotoxicity thus resulting in functional improvements.29-31

These promising findings have led to a phase III randomized
placebo-controlled trial (CSM-PROTECT) to assess the ef-
ficacy of Riluzole as an adjunct to surgical decompression in
chronic cervical myelopathy to promote neurologic recov-
ery.32 The study was recently published and reported no
significant difference in the primary endpoint of mJOA at 6-
month follow-up. However, Riluzole was associated with
potentially promising reduction in neck pain at 6- and 12-
month follow-up compared to placebo.33 As pain is a major
patient priority, further investigations may be warranted into
which subgroups would benefit most. Inflammatory pathways
are implicated in the deleterious effects of chronic cord
compression and recent work in humans and animal models
has implicated microRNA21 (miR21) as a key mediator of the
inflammatory/ischemic cell injury in DCM. A prospective
cohort study of patients with DCM has identified a positive
correlation between miR21, initial symptom severity and poor
treatment outcomes, the findings of which were further cor-
roborated in mouse models of DCM. This work suggests the
possibility of miR21 as a possible biomarker of disease risk in
DCM and a potential therapeutic target for intervention.34

Anti-inflammatory agents such as corticosteroids are also
candidates for potential clinical translation as a neuro-
protective adjunct to surgery and have been extensively
studied in traumatic SCI.35-37 In a rodent study of DCM,
Methylprednisolone, an agent used in acute-onset traumatic
spinal cord injury,38 was used as a perioperative adjunct to
surgical decompression.39 Significant improvement was
found in the group treated by methylprednisolone when
compared to the control 2-weeks post decompression in
forepaw function. However, by 5-weeks, no significant dif-
ference was apparent between the groups.39 Few human
clinical studies have been conducted, though one retrospective
study of thoracic myelopathy used intraoperative methyl-
prednisolone found better neurological recovery at 2 weeks,
though no significant difference in neurological outcomes

between methylprednisolone and control group at long-term
follow-up.40 The use of corticosteroids perioperatively in
anterior cervical spine surgery has however shown benefit in
reducing post-operative complications with significant re-
duction in airway oedema, pain, hospital stay and improved
swallowing in Phase-III randomized controlled trials.41,42 This
surgical approach is used in the surgical management of DCM
and future studies should look into the potential functional
benefits of corticosteroids in these patients.

The perioperative period is a key time point in which
neuroprotective agents should be considered due to ischaemia-
reperfusion injury, but also due to axonal plasticity, which is
thought to emerge after decompression.43 Whilst no neuro-
protective agent has shown efficacy in Phase 3 clinical trials,
improved understanding of the pathophysiology of DCMmay
provide an avenue for the development of more targeted
neuroprotective therapies. Of note, neck and arm pain rep-
resent potentially important targets if intervention in DCM, as
suggested by the recent CSM-Protect trial.33 However, this
will require the design of trials which use more sensitive
outcomes to detect changes in neck and arm pain.

Regenerative Medicine

People with DCM often develop and then suffer from lifelong
disability, with less than 5% making a full recovery even
despite surgical decompression.7,8 This occurs due to failure to
recognize the clinical deterioration, delayed medical inter-
vention, the limited regenerative capacity of the spinal cord,
loss of local cellular structures and disruption of the spinal
cord architecture. Replacing lost tissue and enhancing intrinsic
recovery capacity is an area of interest in spinal cord injuries as
a means to enhance recovery. Attempts are being made to
achieve this through a number of different approaches, in-
cluding pharmacological and cell-based therapies.44-48

One potential beneficial pharmacological agent is Ibudilast,
which is currently licensed in Japan for the treatment of
asthma and post-stroke dizziness.49 The mechanisms by
which it exerts its effects for the aforementioned indications
have been attributed to its anti-inflammatory, bronchodilatory
and vasodilatory effects.50-55 More recently, it has been found
to exhibit central anti-inflammatory, neuroprotective and
neurotrophic/regenerative effects by its inhibition of
phosphodiesterase-4 (PDE-4 and -10) and macrophage mi-
gration inhibitory factor, leading to attenuation of activated
glial cells and enhancement of neurotrophic factors.49,50,56,57

This has generated interest in its application in a number of
neurological conditions. These include early-stage clinical
trials in progressive Multiple Sclerosis,58,59 ALS,60

alcoholism,61,62 drug addiction63,64 and pain.65,66 The combi-
nation of anti-inflammatory, neuroprotective and neuro-
regenerative properties has led to interest for its use in DCM
and is the basis for RECEDE-Myelopathy (NCT04631471), a
phase 3, double-blind, randomized controlled trial assessing the
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efficacy of Ibudilast as an adjuvant treatment to decompressive
surgery for DCM on mJOA score and neck pain.

Cell-based therapies have also gained considerable at-
tention over the last few decades. Stem cells possess the
ability to differentiate into a variety of cell types creating the
possibility of a potential therapeutic tool to repair and/or
replace damaged tissue.67 Challenges for cell-based thera-
pies include the cell type first surviving the transplantation,
then migrating appropriately to the site of therapeutic action,
differentiating into the correct lineage and finally to behave
physiologically in the manner intended.68 Currently, the most
widely applied clinical use of this therapy is haematopoietic
stem cell transplantation with research dating back to the 1950s
and indicated for conditions such as lymphoma, leukaemia and
anaplastic anaemia with curative potential.69,70Whilst there has
been little research for its application in DCM; specifically,
there is ongoing research to develop stem cell therapies for
traumatic spinal cord injury sharing pathophysiological
features.67,71 Several mechanisms by which stem cells can
promote recovery in spinal cord injuries can be applicable to
DCM. These include replacement of lost tissue (ie neuro-
nes72/glial precursors/oligodendrocytes73), integration into
host neuronal circuits,74,75 release of neurotrophic factors(e.g
BDNF, GDNF, NGF and VEGF),76-78 anti-apoptotic,79,80 anti-
inflammatory81,82 and immunomodulatory effects.83 Trials in
SCI are typically underpowered for efficacy and lack controls
as they are early-stage open-label trials.84,85 In addition, there
is considerable heterogeneity between cell-based interventions
such as type of cell utilized, source of stem cell (i.e embryonic
stem cells, adult stem cells and induced pluripotent stem cells;
autologous vs allogeneic), processing (i.e lab purification,
amplification, good manufacturing practice adherence and
quality control) and delivery of stem cells (i.e Intravenous,
intrathecal, direct intraspinal and impregnated tissue en-
gineered materials) highlighting uncertainty in optimal in-
tervention parameters.44,45,85 Further, adjuncts to enhance
cell-based therapies are undergoing investigation
to overcome some of the challenges faced such as poor cell
survival, migration and integration. These include co-
administration of growth factors, cell delivery and structural
support with biomaterials/scaffolds, guidance of migration and
differentiation by electric fields (galvanotaxis), degradation of
glial scar and self-assembling peptides to improve extracellular
matrix environment.45,71,86

One of the inciting factors for DCM is cervical spon-
dylosis and disc degeneration. Cell-based, growth-factor
based and small molecule-based therapies aiming to repair
or regenerate the degenerate intervertebral disc may offer an
opportunity to halt DCM progression or even reverse its
symptoms. This may be particularly important in patients
with mild DCM symptoms and in asymptomatic patients
with imaging evidence of cord compression. Several human
clinical trials using stem cells (autologous or allogenic; bone
marrow and adipose-derived mesenchymal, notochordal and
chondrocyte-like nucleus pulposus cells) for intervertebral

disc degeneration have been or are currently being under-
taken.87 While most studies report significant reduction in
pain, increase in disc height, improved patient mobility and
quality of life,88-91 concerns have been raised due to the poor
design of some studies and their low number of patients and
lack appropriate controls.

Due to the nature of DCM, the majority of patients are in an
older age category (>55 years), which presents a unique
challenge. The central nervous system undergoes structural
and functional changes as part of the normal ageing process.92

This includes reduced neuroplasticity, which could contribute
to post-decompression recovery,43 and strategies to enhance
endogenous regenerative processes may be confounded by
aging. Regenerative therapies provide prospects for new
treatments in DCM; however, it is currently a very young field
of research. Research in this field aiming to overcome some of
the current challenges and specific to its role in DCM are
warranted.

Gene therapy offers the prospect for sustained and localized
production of therapeutics that is particularly attractive for
‘biologics’ that are otherwise complex to deliver. One therapy
has been studied extensively for possible direct tissue ap-
plication in SCI with a lead strategy aimed at neuroplasticity
using an enzyme, chondroitinase, that remodels the basal
lamina of neuronal nets to enhance neuroplasticity.93,94 In
spinal muscular atrophy, a gene therapy (Zolgensma) that
restores a critical functional protein (SMN protein, important
in motor neurone survival) to motor neurons has been
approved for clinical use.95 Gene therapies such as myo-
statin inhibition are also under development for muscular
dystrophy,96 which aims to improve muscle function.
Whilst gene therapy is in its early stages of development for
many conditions, it offers the prospects for sustained
production of therapeutic molecules which remains to be
explored in DCM.

Neuromodulation

Neuromodulation is broadly defined by the International
Neuromodulation Society as ‘the alteration of nerve activity
through targeted delivery of a stimulus, such as electrical
stimulation or chemical agents, to specific neurological sites in
the body’.97 Electrical neuromodulation is used in the treat-
ment of conditions and symptoms including but not limited to
chronic pain,98,99 movement disorders,100-102 epilepsy,102-104

psychiatric disorders,105,106 stroke,107,108 traumatic brain
injury109,110 and sensory deficits.111,112 A variety of devices
have been developed to deliver stimulation to the target of
interest, with some being invasive such as deep brain stimu-
lation and spinal cord stimulation (SCS) and others noninvasive
such as transcranial Direct Current Stimulation (tcDCS), repet-
itive Transcranial Magnetic Stimulation (rTMS) and peripheral
surface electrode Neuromuscular Electrical Stimulation (NMES)
or Functional Electrical Stimulation (FES). The mechanism of
action of these devices in modulating the nervous system and
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pathways and is not fully understood, but here we will briefly
explore their application in related conditions.

Spinal cord stimulation has become an established
therapeutic tool in the management of chronic neuropathic
and ischaemic pain syndromes, including Failed Back
Surgery Syndrome (FBSS),113,114 Complex Regional Pain
Syndrome Type 1115,116 and chronic leg ischaemia.117

Though the exact mechanism of its analgesic effects is
elusive, early proposals included the gate control theory of
pain, but more recent biochemical hypotheses propose SCS
works by enhancing GABAergic systems of dorsal horn cells
by stimulating their dendrites.118,119 There is limited evi-
dence for the use of SCS for pain in DCM but one case study
of a cervical spinal cord stimulator placed (C3-C6) for
significant post-operative pain following posterior decom-
pression (C5-C7), resulting in a significant reduction in
pain.120 Of note, the efficacy of SCS for SCI-induced pain
appears to be more limited when compared to the afore-
mentioned indications, such as FBSS, which may be due to
the significant damage to underlying neural circuits required
for the analgesic effects of SCS.121,122

Although the use in spinal cord–mediated pain has been
limited, epidural SCS has shown to be capable in restoring
motor and autonomic function in a small number of chronic
complete SCI patients.123-125 It is thought that epidural SCS
increases the excitability of the spared spinal cord circuitry
within the injury site, leading to enhancement of trans-
mission and volitional control.126 Whether this strategy
could be used for paralysis due to severe DCM remains to
be investigated.

Transcranial Magnetic Stimulation (TMS) allows painless,
noninvasive, cortical stimulation by means of electromagnetic
induction from a coil positioned over the scalp.127 It serves as
a useful electrophysiological diagnostic tool by measuring
parameters such as central motor conduction time (CMCT), a
sensitive measure to detect myelopathy.128-130 Repeated
stimulation in the form of rTMS has gained interest as a
method of neuromodulation to induce changes in brain ac-
tivity lasting beyond the duration of stimulation suggestive of
neuroplastic changes.131 In the clinical sphere, it has gained
FDA approval as a treatment for major depressive disorder,
obsessive-compulsive disorder and migraine,132-135 with on-
going research in a number of other psychiatric and neuro-
logical conditions.136 Early clinical studies in SCI have found
potential application of rTMS in the management of SCI-
related pain,137-139 spasticity,140,141 motor function141-143 and
autonomic function,144-146 albeit the outcomes across studies
were not consistent. This may be attributed to the heteroge-
neity in rTMS protocols used, and ongoing research is war-
ranted to further optimize existing protocols and to investigate
their potential application in DCM.130

Transcranial direct current stimulation modulates neural
activity non-invasively by surface electrodes, which are
placed over the scalp with low-intensity currents are passed

across them. In contrast to TMS, tcDCS does not induce action
potentials but modulates the resting membrane potentials to
alter excitability. There is ongoing research investigating its
role in a number of psychiatric and neurological conditions.147

A recent meta-analysis found tcDCS improves upper-limb
motor performance in healthy adults.148 Its utility in chronic
incomplete cervical SCI has been investigated in early-stage
studies and noted significant improvement in hand grasp149,150

which were synergistic when combined with physical
training.151

Neuromuscular electrical stimulation, also known as FES,
is a well-established tool in which surface electrodes are
placed over muscles and peripheral nerves to deliver electrical
stimulation and achieve muscle contraction. It is used rou-
tinely for motor retraining in conditions such as SCI and stroke
to restore motor functions such as standing or grasping.152,153

Whilst the artificial stimulus leading to muscle contraction
can lead to muscle strengthening, effects have also been
demonstrated in the central nervous system with modula-
tion of spinal reflex, corticospinal excitability and neuro-
physiological changes in the cortex.154 It is proposed that
the underlying mechanism stems not only from the prop-
agation of action potentials leading to muscle contraction
but also antidromic propagation of action potential across
motor axons and sensory afferents, which traverse to the
central nervous system.154,155 Despite extensive research
for its use for injuries to the CNS such as SCI, only case
reports have been published for its use in DCM, which
have demonstrated significant improvement in upper limb
function156 and gait.157 Whilst these case reports are en-
couraging, it presents low level of evidence and further
research is necessary, especially as NMES is a safe and less
inexpensive intervention.

An exciting new clinical trial in SCI is the Up-LIFT study
(NCT04697472) that employs transcutaneous spinal stimu-
lation over the injury region. In an open-label study, this
method of stimulation was been shown to increase arm and
hand function in subjects with chronic cervical SCI.158 Given
the similarities between chronic DCM and SCI, an effect of
this methodology might be observed.

Implementation Strategies

A broad overview of contemporary interventions which may
have therapeutic utility in DCM is presented in the 3 broad
categories of neuroprotection, neuromodulation and neuro-
regeneration. Whilst specific interventions within these groups
may overlap between these broad categories (i.e interventions
with regenerative and neuroprotective properties), these cate-
gories also provide useful reference for when interventions
could be given in the natural course of the disease. Mild DCM
may benefit from neuroprotective agents to slow neurological
deterioration. In moderate to severe cases, patients may have
received surgical decompression and restorative therapies with
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Figure 1. Graph illustrating simplified natural history of degenerative cervical myelopathy with progressive deterioration of neurological
function including slow change phase and rapid functional decline phase with red line. Timepoints in natural history which neuroprotective
and neurorestorative intervention can be of therapeutic value in slowing neurological decline and regaining neurological function are
highlighted. Paler lines indicate differing natural history which may be experienced by people with degenerative cervical myelopathy, including
continuous slow decline with no rapid phase, rapid decline with no slow phase, and after intervention those with no significant improvement
in neurology or deterioration.

Figure 2. Timeline of potential application of contemporary interventions (neuroprotection, neuromodulation and neuroregeneration)
according to natural history and severity of degenerative cervical myelopathy. In mild-moderate degenerative cervical myelopathy,
neuroprotective strategies may prevent/slow down progression by interfering in pathological process. In severe degenerative cervical
myelopathy, it is likely that the spinal cord is too damaged for there to be significant improvement gained from neuroprotective strategies. In
moderate-severe cases, surgery will remove the focus of compression. At this stage, neuromodulatory strategies may enhance plasticity
implicated in the recovery process and neuroregenerative strategies can be considered after the spine has been decompressed if significant
neurological damage is present. Graphics produced with support of Myelopathy.org.
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neuromodulation or neuroregenrative strategies could be ben-
eficial. The effects of these categories of intervention on the
natural history of DCM are presented in Figures 1 and 2.
Combinations of interventions may also enhance recovery
as they can work on different aspects of the pathological
and regenerative process’ to reduce neurological injury
and enhance recovery. Combinatory strategies have been
gaining traction in SCI research and are useful to consider
in DCM.159

The interventions presented are at different stages of
development and readiness for clinical testing in ade-
quately powered efficacy studies. Some interventions are
quite mature and are currently undergoing phase-III trials
(e.g Ibudilast) or completed efficacy trials (e.g Riluzole),
whilst other are undergoing early stage pre-clinical in-
vestigation (e.g miR21 regulators). Neuroprotective and
neuroregenerative trials typically follow the more typical
drug development process, whilst neuromodulatory in-
terventions are devices, and are technologically mature and
developed, though ongoing research into optimal inter-
vention protocols and utilization in DCM are required.
DCM and chronic cervical SCI have considerable patho-
physiological overlap, and potential benefit of an inter-
vention in one can be used to gauge potential efficacy in the

other, though careful consideration of severity of cord
injury and pathophysiological/restorative targets of inter-
ventions are required. An example is acute intermittent
hypoxia, which has demonstrated efficacy as an adjunct to
rehabilitation in improving gait function in subacute in-
complete SCI, which may show similar benefit in DCM.160

Figure 3 demonstrates technological development and
readiness of potential interventions for DCM.

Conclusion

Therapeutic research in DCM over the last few decades has
predominantly focused on the role and timing of surgical de-
compression. Surgery has shown improved outcomes for DCM
patients; however, the majority do not make a full recovery and
have a subsequent lifelong disability. The impetus for this article
was the newly formed JLA priority setting partnership for DCM,
which has determined the research priority and question of
whether novel therapies can improve health and wellbeing in
people with DCM. We present contemporary therapies in the
broad domains of neuroprotection, neuroregeneration and neu-
romodulation, which may have potential therapeutic utility in
DCM. As research in this area has been limited, it is hoped that
this review will encourage research into this priority.

Figure 3. Technological readiness of a number of contemporary therapies in the 3 broad categories of neuroprotection, neuromodulation
and neuroregeneration. Stage 1 indicates therapies that are predominantly in preclinical developmental stage and will require further
research at this stage. Stage 2 shows technologies that are developed, though require further early stage testing and exploration of protocols
in degenerative cervical myelopathy prior to phase-III efficacy trials. These may have been investigated in chronic cervical SCI population. Stage
3 shows therapies which are mature in development and may be considered for investigation in degenerative cervical myelopathy at an
earlier timeframe. Graphics developed with the support of Myelopathy.org. *These therapies have undergone or are currently undergoing
phase-III trials.
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