
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Medicine Faculty Papers Department of Medicine 

5-3-2016 

Utilization of HIV-1 envelope V3 to identify X4- and R5-specific Tat Utilization of HIV-1 envelope V3 to identify X4- and R5-specific Tat 

and LTR sequence signatures. and LTR sequence signatures. 

Gregory C Antell 
Drexel University College of Medicine, Department of Microbiology and Immunology; Drexel University 
College of Medicine, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular 
Medicine and Infectious Disease; Drexel University, School of Biomedical Engineering, Science, and Health 
Systems 

Will Dampier 
Drexel University College of Medicine, Department of Microbiology and Immunology; Drexel University 
College of Medicine, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular 
Medicine and Infectious Disease; Drexel University, School of Biomedical Engineering, Science, and Health 
Systems 

Benjamas Aiamkitsumrit 
Drexel University College of Medicine, Department of Microbiology and Immunology; Drexel University 
College of Medicine, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular 
Medicine and Infectious Disease 

Michael R Nonnemacher 
Drexel University College of Medicine, Department of Microbiology and Immunology; Drexel University 
College of Medicine, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular 
Medicine and Infectious Disease 

Jeffrey M Jacobson 
Drexel University College of Medicine, Department of Microbiology and Immunology; Drexel University 
College of Medicine, Division of Infectious Diseases and HIV Medicine, Department of Medicine; Drexel 
University College of Medicine, Center for Clinical and Translational Medicine, Institute for Molecular 
Medicine and Infectious Disease 

See next page for additional authors 

Follow this and additional works at: https://jdc.jefferson.edu/medfp 

 Part of the Other Medical Specialties Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Antell, Gregory C; Dampier, Will; Aiamkitsumrit, Benjamas; Nonnemacher, Michael R; Jacobson, Jeffrey M; 
Pirrone, Vanessa; Zhong, Wen; Kercher, Katherine; Passic, Shendra; Williams, Jean W; Schwartz, Gregory; 
Hershberg, Uri; Krebs, Fred C; and Wigdahl, Brian, "Utilization of HIV-1 envelope V3 to identify X4- and 
R5-specific Tat and LTR sequence signatures." (2016). Department of Medicine Faculty Papers. Paper 
159. 
https://jdc.jefferson.edu/medfp/159 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Medicine Faculty Papers by an authorized administrator of the Jefferson 
Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/medfp
https://jdc.jefferson.edu/med
https://jdc.jefferson.edu/medfp?utm_source=jdc.jefferson.edu%2Fmedfp%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/708?utm_source=jdc.jefferson.edu%2Fmedfp%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Authors Authors 
Gregory C Antell, Will Dampier, Benjamas Aiamkitsumrit, Michael R Nonnemacher, Jeffrey M Jacobson, 
Vanessa Pirrone, Wen Zhong, Katherine Kercher, Shendra Passic, Jean W Williams, Gregory Schwartz, Uri 
Hershberg, Fred C Krebs, and Brian Wigdahl 

This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/medfp/159 

https://jdc.jefferson.edu/medfp/159


Antell et al. Retrovirology  (2016) 13:32 
DOI 10.1186/s12977-016-0266-9

RESEARCH

Utilization of HIV-1 envelope V3 
to identify X4- and R5-specific Tat and LTR 
sequence signatures
Gregory C. Antell1,2,3, Will Dampier1,2,3, Benjamas Aiamkitsumrit1,2, Michael R. Nonnemacher1,2, 
Jeffrey M. Jacobson1,4,5, Vanessa Pirrone1,2, Wen Zhong1,2, Katherine Kercher1,2, Shendra Passic1,2, 
Jean W. Williams1,2, Gregory Schwartz3, Uri Hershberg1,3, Fred C. Krebs1,2 and Brian Wigdahl1,2,6*

Abstract 

Background: HIV-1 entry is a receptor-mediated process directed by the interaction of the viral envelope with the 
host cell CD4 molecule and one of two co-receptors, CCR5 or CXCR4. The amino acid sequence of the third variable 
(V3) loop of the HIV-1 envelope is highly predictive of co-receptor utilization preference during entry, and machine 
learning predictive algorithms have been developed to characterize sequences as CCR5-utilizing (R5) or CXCR4-
utilizing (X4). It was hypothesized that while the V3 loop is predominantly responsible for determining co-receptor 
binding, additional components of the HIV-1 genome may contribute to overall viral tropism and display sequence 
signatures associated with co-receptor utilization.

Results: The accessory protein Tat and the HlV-1 long terminal repeat (LTR) were analyzed with respect to genetic 
diversity and compared by Jensen–Shannon divergence which resulted in a correlation with both mean genetic 
diversity as well as the absolute difference in genetic diversity between R5- and X4-genome specific trends. As 
expected, the V3 domain of the gp120 protein was enriched with statistically divergent positions. Statistically diver-
gent positions were also identified in Tat amino acid sequences within the transactivation and TAR-binding domains, 
and in nucleotide positions throughout the LTR. We further analyzed LTR sequences for putative transcription factor 
binding sites using the JASPAR transcription factor binding profile database and found several putative differences in 
transcription factor binding sites between R5 and X4 HIV-1 genomes, specifically identifying the C/EBP sites I and II, 
and Sp site III to differ with respect to sequence configuration for R5 and X4 LTRs.

Conclusion: These observations support the hypothesis that co-receptor utilization coincides with specific genetic 
signatures in HIV-1 Tat and the LTR, likely due to differing transcriptional regulatory mechanisms and selective pres-
sures applied within specific cellular targets during the course of productive HIV-1 infection.

Keywords: HIV-1, Co-receptor, Tropism, LTR, Tat, V3, gp120, Diversity, Divergence, Transcription factor

© 2016 Antell et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
HIV-1 entry is a receptor-mediated, pH-independent 
process occurring via the direct interaction between 
viral envelope glycoprotein (gp)120 and the host cell 
CD4 receptor molecule, as well as one of the two most 

commonly encountered co-receptor molecules, CCR5 
or CXCR4 [1]. The HIV-1 gp120 entry protein consists 
of five variable regions (V1–V5), which are highly modi-
fied by insertion, deletion, and substitution mutations, 
interspersed among five constant regions (C1–C5). 
Regardless of this sequence hypervariability, the overall 
structure and function of gp120 is highly conserved. Of 
particular importance to the HIV-1 entry mechanism is 
the third variable loop (V3), which has been shown to 
consist of 34–36 amino acid residues (most commonly 
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35 residues). The V3 domain has been extensively stud-
ied as it has been identified as the principal neutralizing 
domain (PND) on the viral envelope gp120 [2–4] and the 
viral partner in selective interactions with the different 
co-receptors [5].

The V3 region is a major determinant in predicting 
HIV-1 entry phenotype, distinguishing non-syncytium 
inducing (NSI) from syncytium inducing (SI) strains and 
macrophage tropic from non-macrophage tropic strains 
[5–8]. In this regard, it was discovered that a T cell tropic 
(T-tropic) isolate, or SI virus, preferentially uses the co-
receptor CXCR4, and has consequently been referred to 
as an X4 virus. In contrast, a primary macrophage tropic 
(M-tropic) isolate, or NSI virus, was found to preferen-
tially use the co-receptor CCR5 for entry and therefore 
referred to as an R5 virus [9, 10]. Previously, viral tropism 
based on co-receptor usage was used interchangeably 
with tropism defined by cellular target; however, several 
studies have shown that while co-receptor usage can 
at times be linked with cellular tropism, it is important 
to discuss viral infection in terms of utilization of a co-
receptor in conjunction with the phenotype of the target 
cell [11, 12]. As an example, recent investigations have 
shown that HIV-1 infectious molecular clones contain-
ing transmitted/founder (T/F) genome sequences prefer-
entially utilized CCR5 as a co-receptor during entry and 
were able to replicate efficiently in primary CD4+ T cells 
[13, 14]. These molecular clones also exhibited reduced 
replication efficiency in monocyte-derived macrophages 
(MDMs), in contrast to the prototypic M-tropic strains of 
HIV-1 [13].

For high-throughput applications, co-receptor utiliza-
tion predictions can be performed on Env-V3 sequences 
computationally [15, 16]. To this end, the internet-based 
bioinformatic method, position-specific scoring matrices 
(Web-PSSM), utilizes sequences of known entry phe-
notype to determine if an Env-V3 sequence is CCR5- or 
CXCR4-utilizing (R5 or X4 Env-V3 sequences). This 
algorithm indicates the propensity of the virus to utilize 
CXCR4 at both high sensitivity (84  %) and specificity 
(96  %), with X4 virus sequences exhibiting high scores 
and R5 sequences exhibiting low scores, while interme-
diate Web-PSSM scores indicates both R5 and X4 virus 
sequences as well as dual tropic X4/R5 virus sequences 
[17]. Typically, X4 viruses emerge gradually in a subset 
of patients due to accumulation of amino acid changes 
within the V3 loop, particularly at positions 11 and 25. 
While HIV-1 co-receptor usage has been demonstrated 
to be directly associated with the genotype of V3 loop, 
as described above, other amino acid residues within 
gp120 V1, V2, C4, and a number of regions of gp41, have 
also been associated with co-receptor usage [18–27]. As 
conformational changes within the V3 loop occur upon 

the binding of gp120 and CD4, it is possible that the co-
receptor usage-associated amino acid residues within 
other regions of envelope participate in the structural 
rearrangement of gp120 [28].

The overall goal of this study was to identify and 
characterize genetic differences between CCR5- and 
CXCR4-utilizing HIV-1 sequences beyond the V3 loop 
of envelope as defined by genotypic prediction. Specifi-
cally, HIV-1 gp120 and Tat amino acid sequences and the 
HIV-1 long terminal repeat (LTR) nucleotide sequences 
were selected for this analysis. The HIV-1 Tat protein 
derives its name from the fact that its primary function 
during viral replication is to serve as the trans-activator 
of transcription. While not directly involved in HIV-1 
entry, Tat has a multitude of intracellular host bind-
ing partners and functions. The HIV-1 LTR contains an 
abundance of transcription factor binding sites upstream 
of the transcription start site that alter levels of HIV-1 
transcription, often in a cell type-dependent manner. 
Importantly, these binding sites can work independently, 
in concert, or antagonistically, with a single nucleotide 
polymorphism capable of producing dramatic changes in 
binding, including the complete abrogation of transcrip-
tion factor binding [29, 30].

We hypothesized that co-evolved R5- or X4-associated 
genetic signatures emerge in viral genes and proteins that 
are not directly associated with entry, and suggest that 
these differences are reflective of evolutionary constraints 
applied by different cellular milieus that associate, co-
evolve, or co-adapt with co-receptor usage and may col-
lectively guide tissue- and/or cell type-specific replication 
patterns, as well as organ-specific disease pathogenesis. 
The validity of this hypothesis is supported by the asso-
ciation of X4 virus with depleted CD4+ T-cell levels and 
enhanced disease progression, as well as the tendency 
of R5 virus to infect cells of the monocyte-macrophage 
lineage and to be found at the time of transmission [31]. 
However, the full extent of the underlying changes in the 
viral genome that could produce such a shift remains 
unknown.

To remedy this, we have taken a genetic approach with 
functional underpinnings that have centered on divid-
ing HIV-1 co-linear sequences (gp120, Tat, and LTR) 
into two co-receptor utilization groups using genotypic 
prediction methods. Subsequently, we used these two 
groups of sequences to explore the differences in the 
remainder of gp120 sequences outside of Env-V3 as well 
as co-linear Tat and LTR sequences (Table 1). Sequence 
alignments of each co-receptor usage-defined population 
of co-linear gp120, Tat, or LTR sequences were quanti-
tatively evaluated at each amino acid (gp120 and Tat) or 
nucleotide (LTR) position utilizing first-order diversity 
and Jensen–Shannon divergence. Together, diversity and 
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divergence provide metrics to characterize the position-
specific variation of amino acids or nucleotides, as well as 
provide a quantitative method to compare this informa-
tion between R5- and X4-defined sequences. This strat-
egy has provided a straightforward genetic approach to 
define specific sequences in Tat and the LTR, or poten-
tially any other HIV-1 sequence, that are co-selected with 
CXCR4- and CCR5-dependent entry.

Results and discussion
Given the goal of this research was to determine if 
genetic signatures co-evolved between different regions 
of the HIV genome, it was first necessary to find patients 
that had sequences from the genomic areas of interest. 
From the Los Alamos National Library (LANL) database, 
subtype B sequences derived from patient samples were 
downloaded and aligned to the HXB2 genome. In total, 
more than 2500 samples were isolated, which included a 
full V3 of 35 amino-acids and at least one other co-linear 
sequence in the Tat or LTR regions. This also included 
1730 full gp120 sequences. Table 1 shows the breakdown 
of sequences for each region and the selection criteria 
are further described in the Methods. For all results dis-
cussed below, we have analyzed the diversity/divergence 
of the amino acid sequences of gp120 and Tat proteins 
while the nucleotides of the LTR have been analyzed.

Genetic diversity is correlated in R5‑ and X4‑classified 
HIV‑1 gp120, Tat, and LTR sequence populations
Spearman’s rank correlation was performed to 
assess the correlation between R5 and X4 diver-
sity for gp120 (ρ  =  0.8678, P  =  2.00  ×  10−156), Tat 
(ρ =  0.8873, P =  4.67 ×  10−35), and LTR (ρ =  0.7021, 
P = 4.06 × 10−78) (Fig. 1). In all cases, R5 and X4 diversity 
were well-correlated, with the P value indicating support 
for the alternative hypothesis that X4 and R5 diversity is 
unrelated. Because first-order diversity was utilized in 
this analysis rather than richness (order = 0), and further 
supported by rarefaction analysis of the sample sizes, it 

is unlikely that differences in diversity are a reflection 
of the differences in sample size between the R5 and X4 
sequence groups. This result indicates that, in general, 
corresponding amino acid (gp120 and Tat) or nucleotide 
(LTR) positions are similarly constrained in their usage 
with respect to R5 and X4 sequences.

Jensen–Shannon divergence correlates with differences 
in diversity in HIV‑1 gp120, Tat, and LTR sequences
Notably, Jensen–Shannon divergence correlates well with 
both mean diversity (ρ =  0.9226, 0.8552, and 0.9295 for 

Table 1 Identification of  HIV-1 Tat and  LTR sequences co-
linear to  CCR5- and  CXCR4-utilizing Env-V3 sequences 
defined by Web-PSSM scoring

HIV-1 amino acid sequences for gp120 and Tat and nucleotide sequences for 
LTR were classified as being derived from CCR5- or CXCR4-utilizing genomes 
according to Web-PSSM prediction scores utilizing the Env-V3 sequence. 
Sequences with intermediate scores PSSM scores are derived from R5, X4, or 
dual-tropic X4/R5 viruses and were not included in further analysis

Genomic region CCR5 CXCR4

gp120 1678 52

Tat 504 31

LTR 615 35

Fig. 1 HIV-1 genetic diversity is highly correlated between cor-
responding positions in R5- and X4-classified gp120, Tat, and LTR 
sequence populations. The genetic diversity (order = 1) of each 
position of gp120, Tat, and LTR was calculated according to Eq. 1. 
The positions were sorted across the x-axis according to the R5 
diversity values (red line), with the corresponding X4 positions 
plotted (blue dots). With this visualization, the vertical distance 
between the line and the corresponding dot represents the differ-
ence in diversity between the R5- and X4-classified sequences at 
each position. In general, the X4 values were found to cluster around 
the R5 values, with a slight skew towards less diversity within the X4 
population. Spearman’s rank correlation was performed to assess 
the correlation between R5 and X4 diversity for gp120 (ρ = 0.8678, 
P = 2.00 × 10−156), Tat (ρ = 0.8873, P = 4.67 × 10−35), and LTR 
(ρ = 0.7021, P = 4.06 × 10−78). In all cases, R5 and X4 diversity were 
well-correlated
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gp120, Tat, and LTR, respectively) and the absolute dif-
ference in diversity (ρ =  0.9005, 0.8852, and 0.9685 for 
gp120, Tat, and LTR, respectively) (Fig. 2). Together, these 
observations indicate that the gain or loss of diversity 
in one of the populations is closely associated with high 
Jensen–Shannon divergence.

Amino acid diversity and Jensen–Shannon divergence 
identified domains in gp120 responsible for CCR5 or 
CXCR4 co‑receptor utilization
The HIV-1 envelope protein gp120 was evaluated to 
detect the effectiveness of first-order sequence position 

diversity and Jensen–Shannon divergence with respect 
to identifying genetic signatures of co-receptor utiliza-
tion, with the expectation that the V3 domain exhibits 
higher Jensen–Shannon divergence between R5- and 
X4-associated gp120 sequences. Diversity analysis, which 
as stated above was highly correlated between R5 (red) 
and X4 (blue) sequence populations, confirmed that the 
variable loops of gp120 display the greatest amount of 
amino acid diversity (Fig.  3a). The V1 and V4 variable 
domains, in particular, contain several positions that dis-
play diversity of greater than 10 at order = 1, with a large 
proportion of positions having a diversity >3. Calculation 

Fig. 2 Jensen–Shannon divergence is correlated with both mean genetic diversity and the absolute difference in genetic diversity. The relationship 
between Jensen–Shannon divergence and genetic diversity (order = 1) in HIV-1 gp120, Tat, and LTR sequences was evaluated using Spearman’s 
rank correlation. Both the mean diversity of R5- and X4-classified sequences and the absolute difference between R5 and X4 diversity correlated 
with Jensen–Shannon divergence. This result indicates that large divergence can be a reflection of not only increased amounts of information (as 
indicated by high mean diversity), but also by the loss of information in one of the two groups (as indicated by the absolute difference in mean 
diversity)
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of Jensen–Shannon divergence between the R5 and X4 
populations identified 92 statistically significant posi-
tions throughout gp120 (Fig.  3b). A hypergeometric 
statistical test was used to determine if any domains of 
gp120 were enriched in statistically divergent positions, 
as opposed to the null hypothesis of equal distribution. 
Overall, the variable domains were enriched in diver-
gent positions when compared to the null model, while 
the conserved domains were depleted, although the C3 
and V5 domains were in slight opposition to this trend 
(Fig. 4). Specifically, the V3 loop was very highly enriched 
[log2(fold change) = 1.89, P = 1.74 × 10−11] while the C1 

domain [log2(fold change) = −1.09, P = 3.03 × 10−4] and 
C2 domain [log2(fold change) = −1.57, P = 1.28 × 10−4] 
were statistically depleted at P  <  0.01 using a Benja-
mini–Hochberg multiple testing correction. With the 
understanding that gp120 and V3 behaved as expected 
following the application of diversity and divergence in 
this study, Tat and the LTR were investigated for simi-
lar signatures that may co-evolve with alterations in co-
receptor utilization patterns exhibited by Env-V3.

X4 Tat sequences demonstrate purifying selection in amino 
acid usage
In general, we observed an overall trend for Tat to have 
higher amino acid diversity in the fifth and sixth domains 
of both groups (Fig.  5a). When we considered Jensen–
Shannon divergence, positions 7, 23, 57, and 60 were 
found to be statistically divergent and P  <  0.01 when 
accounting for multiple testing with the Benjamini–
Hochberg procedure (Fig. 5b). For all four divergent posi-
tions, the set of amino acids used in each population was 
similar, both with regard to the amino acids observed 
as well as the physiochemical properties of these amino 
acids (Fig. 6; Table 2). In all cases, the amino acid diver-
sity of the X4 population was less than the diversity of 
the R5 population, demonstrating the qualitative trend 
that a subset of major variants become further enriched 
within the X4 population (Fig.  7). While there was no 
adequate statistical methodology to test the significance 

Fig. 3 HIV-1 gp120 demonstrates high Jensen–Shannon divergence 
in regions with high genetic diversity. HIV-1 gp120 sequences were 
classified as CCR5 (R5) (n = 1681) or CXCR4 (X4) (n = 52) according 
to the predicted co-receptor usage of the V3 domain Web-PSSM 
score [17]. a The diversity index at a Hill number of 1 was calculated 
for each position for both R5 (red) and X4 (blue) gp120 amino acid 
sequence populations. Diversity values range from 1 to greater 
than 10, with the variable domains of gp120 displaying the greatest 
diversity. b The Jensen–Shannon divergence between R5 and X4 
gp120 sequence populations was computed for each amino acid 
position and plotted with a diamond. Statistically divergent positions 
(P < 0.01) were plotted in red. A Monte Carlo permutation test was 
performed to iteratively group gp120 sequences into random groups 
and calculate a distribution of expected Jensen–Shannon divergence 
values. The full range of this distribution was plotted in light blue with 
the interquartile range plotted in dark blue. The full range of diver-
gence for randomly generated groups is in close agreement with the 
combined diversity of the R5 and X4 populations

Fig. 4 V3 domain of gp120 is enriched with statistically divergent 
positions. The 10 conserved and variable domains of gp120 were 
evaluated to determine if any regions were enriched in statistically 
divergent sites. A hypergeometric test was used to determine enrich-
ment and depletion of statistically divergent positions, using the null 
hypothesis of equal distribution amongst domains. The V3 loop was 
identified as being highly enriched (P = 1.74 × 10−11), while the C1 
domain (P = 3.03 × 10−4) and C2 domain (P = 1.28 × 10−4) were sta-
tistically depleted at P < 0.01 using a Benjamini–Hochberg multiple 
testing correction
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of the difference in diversity at a single position, a Fisher’s 
exact test was used to demonstrate the statistical enrich-
ment of the consensus variants R7 (P =  0.00053), T23 
(P = 0.0012), and Q60 (P = 0.0158) within the X4 group 
that is not a reflection of differences in R5 and X4 group 
sizes. In contrast, Tat variant R57 was not statistically 
enriched in the X4 population (P = 0.17). Regardless, this 
observation lends support to a mechanism in which the 
HIV-1 Tat X4 genotype undergoes purifying selection in 
concert with the change in V3 co-receptor usage from R5 
to X4, whereas R5 Tat may be able to persist within a less 

constrained sequence space that allows it to effectively 
drive HIV-1 transcription in both T cells and MDMs and 
perhaps other cell lineages.

The four Tat amino acid positions of interest are 
located within domains responsible for transactivation, 
cysteine-rich, TAR binding, and nuclear localization, 
respectively (Fig.  5). In order to further evaluate the 
amino acid usage of these positions, the relative abun-
dance of each variant was plotted (Fig. 6). In both R5 and 
X4 Tat, arginine is the most common variant at position 
7, although R7 is much more conserved within the X4 
population. Previous studies have shown that an R7G 
substitution has only 93.9 ± 6.5 % of the transactivation 
activity of R7 [32]. While this effect size is small, it may 
contribute to differences in the transactivation activ-
ity between R5 and X4 HIV-1. Position 23 of Tat also 
is likely to play an important role in robust transactiva-
tion. In our data set, threonine was the most common 
variant observed at position 23, although asparagine was 
a frequent variant in both the R5 (46 %) and X4 (16 %) 
sequences. The T23N substitution has been shown to 
increase transactivation of the HIV-1 LTR, as well as 
binding to P-TEFb [33]. Accordingly, Tat N23 has been 
suggested to confer an advantage to HIV-1 by compen-
sating for deleterious Tat mutations and supporting the 

Fig. 5 Jensen–Shannon divergence identifies positions of differential 
amino acid usage between R5 and X4 HIV-1 Tat sequences. HIV-1 Tat 
sequences were sorted into R5 (n = 504) and X4 (n = 31) popula-
tions according to the predicted co-receptor usage of the co-linear 
V3 domain as determined by Web-PSSM score. a The diversity index 
at order = 1 was calculated for each position for both R5 (red) and 
X4 (blue) Tat sequence populations. The diversity index between R5 
and X4 populations displayed high similarity at nearly all positions, 
with the second half of Tat displaying higher diversity values overall 
for both populations. b The Jensen–Shannon divergence between 
R5 and X4 Tat sequences was computed for each amino acid position 
and plotted with a diamond. Statistically divergent positions 7, 23, 57, 
and 60 (P < 0.01) were plotted in red and consensus changes, posi-
tions 40 and 67, were plotted in yellow. A Monte Carlo permutation 
test was performed to iteratively group Tat sequences into random 
groups and calculate a distribution of expected Jensen–Shannon 
divergence values. The full range of this distribution was plotted in 
light blue with the interquartile range plotted in dark blue

Fig. 6 Statistically divergent positions between X4 and R5 HIV-1 
Tat interchange amino acids for those with similar physiochemi-
cal properties. The amino acid usage in four HIV-1 Tat amino acid 
positions (7, 23, 57, and 60) was plotted for both R5 and X4 groups 
as a stacked bar chart representing the total genetic variation within 
each population at the respective positions. Amino acids were color 
coded according to physiochemical property using the following 
scheme: positively charged (red), negatively charged (blue), polar 
uncharged (purple), hydrophobic (green), and unclassified (glycine, 
proline, and cysteine, yellow). The amino acid positions 7, 23, 57, and 
60 were selected due to their statistically significant Jensen–Shannon 
divergence
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replication of less fit drug-resistant or immune-evasive 
quasispecies [33]. Furthermore, the enrichment of the 
T23N substitution in the R5 Tat population may relate 
to the ability of R5 HIV-1 to productively infect both T 
cells and monocytes and the selection of R5 HIV-1 at 
the time of transmission, as opposed to X4 HIV-1 which 
lacks a strong association with monocyte infection and 
is selected against at the time of transmission. The co-
selection and possible synergistic effect of these Tat vari-
ants remains an area of future investigation.

Predicted transcription factor binding sites have 
statistically different binding affinity scores between X4 
and R5 LTR sequences
Genetic diversity and Jensen–Shannon divergence analy-
ses were performed on LTR nucleotide sequences. 518 
nucleotide positions spanning the HIV-1 U3, R, and 
U5 regions were evaluated. High levels of nucleotide 
diversity were present throughout the entire LTR and 
did not display a general pattern beyond being low, i.e. 
more highly conserved, in the approximately 50 nucleo-
tides immediately downstream of the transcription start 
site that correspond to the TAR region of the LTR. This 
observation translated to large numbers of statistically 
significant Jensen–Shannon divergence scores (n =  48) 
between the two populations (Fig. 8). A number of these 
statistically divergent positions were identified at nucle-
otide positions within the core enhancer domain, the 
region of the LTR spanning approximately 200 nucleo-
tides upstream of the transcription start site, while a 
high number of divergent positions were also identified 
in the less well characterized modulatory domain further 
upstream. Due to the high concentration of known tran-
scription factor binding sites within the core enhancer 
domain, this region of the LTR was the focus of further 
analysis.

Binding of cellular transcription factors to the LTR has 
been shown to be one of the most critical parts of the 
viral life cycle with respect to acute infection but also in 
controlling the initial phases of genomic activation from 
latency. Throughout the HIV-1 LTR, eight well-known 
transcription factor binding sites were evaluated to 
determine if differential nucleotide usage exists between 
R5 and X4 populations: C/EBP-II (HXB2 positions 
281–289), ATF-CREB (330–337), C/EBP-I (338–349), 
NF-κB-II (350–359), NF-κB-I (363–373), Sp-III (377–
386), Sp-II (388–398), and Sp-I (399–408). Additionally, 
the TAR stem-loop region (HXB2 positions 454–518) 
was similarly investigated for R5- and X4-associated 
differences.

The difference in nucleotide usage within known 
transcription factor binding sites was visualized using 
two-sequence logos (Fig.  9). This visualization creates 
a sequence logo for each transcription factor binding 
site that indicates nucleotides that are enriched within 
either the R5 or X4 populations, and scaled according 
to the maximum difference in relative abundance, such 
that nucleotides more frequently found in the R5 or X4 
population are displayed on the bottom or top partition 
of the two-sequence logo, respectively, while completely 
conserved nucleotides are displayed in the middle. This 
analysis demonstrated that the greatest relative abun-
dance differences in nucleotide usage occurred within 
sites C/EBP-I (54.7  %), C/EBP-II (34.8  %), and Sp-III 

Table 2 HIV-1 R5 and X4 Tat amino acid usage

The raw counts and relative abundance value of amino acids present in 
statistically divergent Tat positions for both the R5 and X4 sequence groups (7, 
23, 57 and 60)

Position AA R5 count R5 % X4 count X4 %

7 K 95 0.19 0 0.00

N 12 0.02 2 0.06

S 115 0.23 2 0.06

R 281 0.56 27 0.87

23 N 230 0.46 5 0.16

T 274 0.54 26 0.84

57 A 5 0.01 3 0.10

R 400 0.79 28 0.90

T 89 0.18 0 0.00

60 E 87 0.17 1 0.03

D 7 0.01 2 0.06

K 30 0.06 0 0.00

Q 242 0.48 22 0.71

P 35 0.07 5 0.16

R 86 0.17 0 0.00

Fig. 7 Statistically divergent Tat positions demonstrate reduced 
diversity within X4-classified sequences. Within HIV-1 Tat, four amino 
acid positions were identified as having statistically significant 
Jensen–Shannon divergence: 7, 23, 57, and 60. In all four cases, it was 
noted that X4-classified variants exhibited a lower overall genetic 
diversity at an order of 1, largely due to the enhanced presence 
of the most common variant in the X4 population. This pattern of 
diminished diversity within X4 in comparison to R5 suggests that a 
purifying selective force may be present, affecting a subset of HIV-1 
Tat variants
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(43.2 %), as well as in the TAR stem loop (31.1 %). In con-
trast, NF-κB-I (11.7  %), NF-κB-II (8.6  %), Sp-I (13.8  %), 
Sp-II (23.8  %), and ATF-CREB (11.8  %) showed rather 
modest differences between X4 and R5 in terms of nucle-
otide usage. Statistically divergent positions were identi-
fied within several of these transcription factor binding 
sites (Fig. 8), specifically sites C/EBP-I (position 346), C/
EBP-II (positions 281 and 284), and Sp-III (position 384), 
as well as position 477 of the TAR stem loop, in agree-
ment with the maximal differences observed in the two-
sequence logos. Specifically, when comparing R5 to X4 
sequences, the aforementioned positions demonstrated a 

propensity for an A-to-G (HXB2 position 346) mutation 
within C/EBP-I, an A/C-to-G (HXB2 position 281) and a 
T-to-C (HXB2 position 284) mutation within C/EBP-II, 
and a G-to-A (HXB2 position 384) mutation within Sp-
III. Finally, a large T-to-C (HXB2 position 477) mutation 
was observed within the bulge region of the TAR stem 
loop. The bulge region plays a crucial role in Tat recruit-
ment and binding to the transcription complex, raising 
the possibility that X4 HIV-1 may contain a large sub-
population of genomes that have altered Tat recruitment 
and binding relative to R5 HIV-1 [34].

Although R5- and X4-specific nucleotide positions 
were identified throughout the LTR, it was not clear if 
those changes would result in meaningful differences 
between R5 and X4 in terms of transcription factor 
binding affinity. In order to quantitatively evaluate the 

Fig. 8 HIV-1 LTR demonstrates high divergence both upstream and 
downstream of the transcription start site. HIV-1 long terminal repeat 
(LTR) sequences were sorted into R5 (n = 615) and X4 (n = 35) popu-
lations according to the predicted co-receptor usage of the co-linear 
V3 region. a The diversity index at order = 1 was calculated for each 
position for both R5 (red) and X4 (blue) LTR sequence populations, 
numbered according to the HXB2 reference sequence. b Following 
the same approach applied for amino acid analysis, Jensen–Shannon 
divergence between R5 and X4 LTR sequences was computed for 
each nucleotide position and plotted. Statistically divergent positions 
were plotted in red and identified throughout the LTR, both upstream 
and downstream of the transcriptional start site and within transcrip-
tion factor binding sites. A Monte Carlo permutation simulation was 
performed to randomly group LTR sequences and calculate a distri-
bution of expected Jensen–Shannon divergence values, with the full 
range (light blue) and interquartile range (dark blue) of the distribution 
plotted across each position of the LTR

Fig. 9 R5 and X4 LTR sequences demonstrate signature enriched 
nucleotide variants in transcription factor binding. HIV-1 transcription 
factors that have been confirmed in vitro, C/EBP-II (HXB2 positions 
281–289), ATF-CREB (330–337), C/EBP-I (338–349), NF-κB-II (350–
359), NF-κB-I (363–373), Sp-III (377–386), Sp-II (388–398), and Sp-I 
(399–408), as well as the TAR stem loop (454–518), were evaluated 
to detect enrichment and depletion of nucleotide variants in R5 and 
X4 sets of aligned LTR sequences using two sample logos. Enriched 
nucleotides were plotted proportional to the difference between the 
populations, with the sum of the most differential position plotted on 
the vertical axis
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difference between R5 and X4 LTR sequence groups, 
analysis was performed using the JASPAR database, a 
collection of transcription factor DNA-binding prefer-
ences modeled as matrices [35, 36]. Each LTR sequence 
was scanned for transcription factor binding sites by 
scoring against position weight matrices (PWMs), which 
were converted from JASPAR position frequency matri-
ces (PFMs) downloaded from the JASPAR vertebrate 
database for C/EBP, SP1, NF-κB, and CREB. Each score 
was then compared to the maximum possible score of the 
corresponding PWM in order to determine a percentile 
score. Only binding sites with a mean percentile score 
>0.30 in either the R5- or X4-classified LTR sequences 
were considered for statistical analysis (Table 3). The dis-
tribution of R5- and X4-binding scores was statistically 
compared using a Kolmogorov–Smirnov (KS) test to cal-
culate a P value.

Using the JASPAR matrices, we were able to correctly 
identify the locations of each of the eight known tran-
scription factor binding sites within the LTR when using 
a percentile scoring threshold of 0.3. At this threshold, 
the JASPAR matrices for C/EBP, Sp1, and CREB also 
identified several other potential novel binding locations 
(Table  3). Statistical analysis identified differential bind-
ing scores between the R5 and X4 populations at sites 
C/EBP-I, C/EBP-II, and Sp-III, but not at known tran-
scription factor binding sites Sp-I or Sp-II (Table 3). This 
result is in agreement with the positions identified using 
Jensen–Shannon divergence. Additionally, novel puta-
tive Sp1 and C/EBP binding sites with differential R5/
X4 JAPSAR scores were noted at positions 223 and 150, 
respectively.

Interestingly, the relative magnitude of R5 and X4 
mean binding scores of C/EBP-I and -II were opposite 
one another, with X4 LTRs having a greater mean bind-
ing score than R5 LTRs for C/EBP-I, whereas R5 LTRs 
have a greater mean binding score for C/EBP II. The 
novel putative C/EBP site followed the trend of C/EBP 
site I, and had a greater mean score among X4 LTRs. 
This relationship may be a compensatory effect by which 
the diminished binding affinity of C/EBP II, as the virus 
mutates from R5 to X4, leads to greater binding to C/
EBP I and perhaps other putative C/EBP sites. This over-
all trend is also reflected among Sp binding sites. As the 
binding affinity of Sp-III diminishes in X4 virus when 
compared to R5, a putative novel Sp site at position 223 
gains enhanced binding affinity as indicated by JASPAR 
scoring. Generally, Sp sites have been shown to be more 
important for LTR-driven transcription in T lymphocytes 
than cells of the monocyte-macrophage lineage [37]. Fur-
thermore, transcription factor binding at Sp-III varies 
with respect to the level of differentiation of monocytes 
[38]. Overall, we find that LTR-driven transcription is 

modulated by proteins of the Sp family in a manner that 
is specific to cell phenotype. As an important contrast, 
CREB and NF-κB binding sites did not demonstrate a dif-
ference in overall binding affinity between the R5 and X4 
groups, although the analysis identified all known bind-
ing sites in both R5 and X4 populations. This is likely due 
to the fact that these sites have been shown to be essen-
tial for both T-lymphocyte and monocyte-macrophage 
replication [39–42].

Conclusion
The V3 domain of the HIV-1 env gene evolves through-
out the course of infection, often resulting in a switch 
from an R5 to an X4 swarm. However, the characteriza-
tion of R5 and X4 HIV-1 has not been defined beyond the 
envelope, specifically with respect to the transcriptional 
regulation of HIV-1. Our findings indicate that when 
comparing X4 HIV-1 to R5 HIV-1 sequences, Tat amino 
acids variants are more strictly selected at several key 
positions and specific LTR nucleotide variants are prefer-
entially present in X4 HIV-1 sequences when compared 
to R5 HIV-1. One particular caveat of our analysis, and 
any that involves historical sequence review, is our choice 
of the functional annotation algorithm used in these 
studies. While the specific results may differ to some 
extent with the choice of computational tools used in a 
given study, the overall finding that there is co-evolution 
between gp120 and other regions of the HIV-1 genome 
remains consistent. These results are significant because 
they indicate that the transcriptional phenotype of HIV-1 
may diverge with respect to co-receptor utilization. 
Importantly, the HIV-1 amino acid positions identified 
in Tat as different between X4 and R5 play roles in sup-
porting robust transactivation, while the LTR nucleotide 
mutations associated with X4 and R5 strains are found 
within known and putative transcription factor binding 
sites and may affect their occupancy and contributions 
to the regulation of HIV-1 gene expression. We regard 
the genetic variation between X4 and R5 HIV-1 Tat and 
LTR sequences to be indicative of selection caused by 
the differential intracellular environments of cells pref-
erentially infected by X4 versus R5 HIV-1 quasispecies. 
Consequently, the evolution of HIV-1 from an R5 to an 
X4 swarm likely requires adaptation at the level of tran-
scriptional control in addition to co-receptor binding and 
entry.

Methods
HIV‑1 sequence collection
HIV-1 sequences containing the Env-V3 region in addi-
tion to a co-linear Tat or LTR were collected and anno-
tated from the Los Alamos National Laboratory (LANL) 
HIV Sequence Database as of October 2014, while 
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Table 3 Predicted transcription factor binding sites in the HIV-1 LTR

Transcription  
factor

JASPAR  
matrix

In vitro  
confirmed

HXB2  
index

Strand  
direction

X4 mean  
score

R5 mean  
score

P value

C/EBP MA0102.1-CEBPA 76 Reverse 4.55 4.06 0.3860

MA0102.2-CEBPA 79 Reverse 4.94 4.41 0.3860

MA0102.2-CEBPA 81 Forward 4.24 3.12 0.2304

MA0102.1-CEBPA 150 Reverse 5.16 3.39 <0.0001

MA0102.2-CEBPA 153 Reverse 6.35 4.58 <0.0001

MA0102.2-CEBPA 154 Forward 4.53 1.83 <0.0001

MA0102.1-CEBPA 197 Reverse 5.27 4.63 0.0092

MA0102.2-CEBPA 200 Reverse 4.33 4.34 0.0063

MA0102.1-CEBPA C/EBP II 278 Reverse 5.84 6.29 0.0005

MA0102.2-CEBPA C/EBP II 281 Reverse 5.26 5.70 0.0010

MA0102.3-CEBPA C/EBP II 281 Forward 7.65 9.67 0.0008

MA0102.2-CEBPA C/EBP I 342 Forward 5.26 4.65 <0.0001

CREB MA0018.2-CREB1 173 Forward 4.74 3.93 0.1020

MA0018.2-CREB1 ATF/CREB 330 Forward 5.25 5.63 0.4547

MA0018.2-CREB1 410 Reverse 4.43 4.68 0.8684

NF-kB MA0105.1-NFKB1 NF-kB II 350 Forward 13.66 14.52 0.9605

MA0105.1-NFKB1 NF-kB II 350 Reverse 7.43 8.30 0.9605

MA0105.2-NFKB1 NF-kB II 350 Forward 6.67 7.41 0.9605

MA0105.3-NFKB1 NF-kB II 350 Forward 12.37 13.41 0.9722

MA0105.1-NFKB1 NF-kB II 351 Reverse 4.85 5.31 0.9813

MA0105.1-NFKB1 NF-kB I 363 Forward 6.18 6.77 0.8062

MA0105.2-NFKB1 NF-kB I 363 Forward 8.20 8.62 0.8062

MA0105.2-NFKB1 NF-kB I 363 Reverse 7.60 7.88 0.8345

MA0105.1-NFKB1 NF-kB I 364 Forward 14.55 14.35 1.0000

MA0105.1-NFKB1 NF-kB I 364 Reverse 8.33 8.26 1.0000

MA0105.2-NFKB1 NF-kB I 364 Forward 7.44 7.29 1.0000

MA0105.3-NFKB1 NF-kB I 364 Forward 15.66 15.15 0.8907

MA0105.1-NFKB1 NF-kB I 365 Reverse 5.34 5.15 1.0000

MA0105.2-NFKB1 NF-kB 504 Forward 6.09 6.46 0.9850

MA0105.2-NFKB1 NF-kB 504 Reverse 8.56 8.83 0.9881

MA0105.1-NFKB1 NF-kB 505 Reverse 6.01 6.30 0.9850

Sp MA0079.2-SP1 98 Reverse 4.68 5.68 0.0093

MA0079.1-SP1 99 Forward 5.01 5.35 0.0093

MA0079.1-SP1 223 Forward 4.35 3.31 <0.0001

MA0079.1-SP1 224 Forward 4.57 2.05 <0.0001

MA0079.1-SP1 266 Reverse 4.36 3.37 0.1034

MA0079.2-SP1 Sp-III 373 Reverse 5.30 5.86 0.5696

MA0079.1-SP1 Sp-III 374 Forward 4.12 4.82 0.0755

MA0079.2-SP1 Sp-III 376 Reverse 5.22 6.46 <0.0001

MA0079.1-SP1 Sp-III 377 Forward 3.86 5.56 <0.0001

MA0079.2-SP1 Sp-III 382 Reverse 4.71 5.81 <0.0001

MA0079.2-SP1 Sp-II 387 Reverse 6.72 7.11 0.7894

MA0079.3-SP1 Sp-II 387 Reverse 10.11 10.46 0.6982

MA0079.1-SP1 Sp-II 388 Forward 5.78 6.14 0.2648

MA0079.2-SP1 Sp-II 392 Reverse 6.62 7.07 0.1179

MA0079.2-SP1 Sp-II 393 Reverse 5.51 6.81 0.0168

MA0079.1-SP1 Sp-I 398 Forward 4.35 4.35 0.6176

MA0079.2-SP1 Sp-I 398 Reverse 6.69 7.21 0.5383

MA0079.1-SP1 Sp-I 399 Forward 4.30 4.47 0.5539
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additional sequences from the Drexel Medicine CNS 
Research and AIDS Eradication Study (CARES) Cohort 
were added to supplement the total number of sequences 
publicly available. The Drexel Medicine CARES Cohort 
is a subtype B patient cohort from Philadelphia, Penn-
sylvania and has been previously described [43–46]. The 
sequences from the Drexel Medicine CARES Cohort 
have been submitted to Genbank under BioProject 
ID:  PRJNA319822. To reduce the effect of regional and 
subtype differences, the LANL database query was lim-
ited to include only subtype B sequences isolated from 
North America. The query was further limited to a single 
sequence per patient using the LANL query tool which 
specifically excludes laboratory strain sequences or those 
used for functional studies. Table 1 shows the breakdown 
of sequences for each region.

Co‑receptor usage classification
The in silico co-receptor usage prediction tool Web-
PSSM was used to classify all sequences as CCR5- or 
CXCR4-utilizing based on the score of the co-linear 
Env-V3 amino acid sequence [17]. Numerous exclusion 
methods were utilized to reduce noise introduced by 
Web-PSSM predictions as discussed previously [47]. 
Sequences were excluded from the study if the V3 region 
was not 35 amino acid residues in length, if the V3 per-
centile determined by Web-PSSM was greater than 
0.95 (indicating that a given sequence may not be a V3 
sequence), or if the V3 PSSM score was in the ‘indetermi-
nate range’ (using scoring cutoffs of >−2.88 and <−6.96 
for X4 and R5 Env-V3 sequences, respectively), which 
was defined as a scoring range consisting of sequences 
with R5 and/or X4 properties including sequences that 
are dual tropic (X4/R5). Using these cutoffs, this predic-
tor has an 84 % sensitivity and 96 % specificity indicating 
its ability to detect X4 binding sequences and non-bind-
ing sequences, respectively [17]. This filtering method 
allowed the genetic analysis to focus on sequences with 
the highest confidence classification in the PSSM-derived 
distribution, definitively signifying CCR5- or CXCR4-
utilizing Env-V3 sequences. Following classification as R5 
or X4, the co-linear gp120, Tat, and LTR sequences were 
aligned to the HXB2 reference sequence (K03455) using 
Multiple Sequence Comparison by Log-Expectation 

(MUSCLE), (version 5.05) [48] utilizing default param-
eters; insertions relative to the reference were removed 
to simplify the analysis. This pipeline resulted in R5- and 
X4-associated and multiple sequence alignments for each 
gp120, Tat, and LTR sequence (Table 1).

Genetic diversity and rarefaction
The diversity of each amino acid or nucleotide position 
of the respective multiple sequence alignments was cal-
culated using a window length, w, of 1 and an order of 1 
[equivalent to exp(Shannon entropy with base e)] accord-
ing to Eq. 1 [49].

First-order genetic diversity

Diversity, D, weighs the abundance of all variants, p, at a 
given position, i, in the protein. A window length, w, is 
applied, with w = 1 used in order to independently assess 
the diversity of each position within a multiple sequence 
alignment. At an order, or Hill number, of q = 1, D does 
not exist; however, the limit as q approaches 1 can be 
computed as shown here.

Diversity at order  =  1 calculates the effective num-
ber of species (amino acids or nucleotides) in a popu-
lation while giving greater weight to neither rare nor 
abundant species. The maximum possible diversity 
is 20 for amino acid sequences (gp120 and Tat) and 4 
for nucleotide sequences (LTR), with gaps regarded as 
missing data. In general, positions of high structural or 
functional importance are evolutionarily constrained 
in their use of amino acids or nucleotides and therefore 
demonstrate low diversity, while positions more permis-
sive to variation in amino acid or nucleotide usage dis-
played higher genetic diversity [50]. Rarefaction curves 
for each position were generated in order to ensure 
that sufficient sample sizes existed for each comparison 
being made.

Jensen–Shannon divergence
Jensen–Shannon divergence is a measure of the simi-
larity between two probability distributions that can be 
applied to profile-to-profile multiple sequence alignment 

(1)Dw,p = exp
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LTR sequences classified as either R5 or X4 based on their co-linear Env-V3 sequence were scanned for potential transcription factor binding sites. All binding sites 
with a percentile score >0.3 in either of the two groups were included in this analysis. The overall score distribution of R5 and X4 binding sites was compared using a 
KS-test, and multiple testing was accounted for using the Benjamini–Hochberg procedure. Statistically significant sites (P < 0.01) are highlighted in italics

Table 3 continued

Transcription  
factor

JASPAR  
matrix

In vitro  
confirmed

HXB2  
index

Strand  
direction

X4 mean  
score

R5 mean  
score

P value

MA0079.2-SP1 Sp-I 400 Reverse 5.78 5.83 1.0000

MA0079.1-SP1 479 Forward 5.21 5.02 0.9279
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comparisons, with the divergence score bound by 0 
(similar) and 1 (dissimilar) [51, 52]. Multiple sequence 
alignments (MSA) generated from R5- and X4-classified 
sequence populations were used to generate position fre-
quency matrices (PFMs). Each PFM contains the relative 
abundance of each residue (amino acid or nucleotide) for 
each position (N) of the multiple sequence alignment, 
resulting in 20 × N or 4 × N matrices for amino acid or 
nucleotide sequences, respectively. Residues that are not 
present in any of the sequences at a particular position 
of the MSA were represented with a pseudo-count of 
1 × 10−7, equivalent to a relative abundance of 1 instance 
per ten million sequences, which ranges from approxi-
mately 1  ×  104-fold to 1  ×  106-fold lower abundance 
than being present in a single sequence. PFMs derived 
from R5- and X4-classified sequences were used to cal-
culate the Jensen–Shannon divergence between popula-
tions according to Eq. 2.

Jensen–Shannon divergence

where

Jensen–Shannon divergence, DJS, is determined accord-
ing to the abundance of each amino acid variant, Qa, in 
populations 1 and 2, using an information theory-based 
calculation. The value Q0 is calculated for each amino 
acid variant, and a pseudo-count is utilized for amino 
acid variants absent in both populations.

Statistically significant positions were identified by 
applying a Monte Carlo permutation test, which ran-
domly re-grouped the total pool of sequences into groups 
of size M and N iteratively (n = 1000), where M and N 
are equivalent to the number of sequences in the X4 and 
R5 groups, and generated a probability density function 
(PDF) of the Jensen–Shannon divergence values of the 
randomized model using a Gaussian kernel density esti-
mator implemented in SciPy. Numerical integration was 
used to determine the probability of finding a random 
value greater than or equal to the true Jensen–Shannon 
divergence.

Statistical analysis
Statistical analysis was performed in custom IPython 
Notebooks using the SciPy Python library (version 
0.14.0). Spearman’s rank correlation coefficient was used 
to evaluate the relationship between R5 and X4 diversity 
(Fig.  1), as well as the relationship of Jensen–Shannon 
divergence to mean genetic diversity and the absolute 
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difference in genetic diversity (Fig. 2), respectively. gp120 
domain enrichment analysis (Fig. 4) of statistically diver-
gent positions utilized a hypergeometric test, with a null 
hypothesis of equal distribution of divergent positions. 
Enrichment of consensus amino acids within statistically 
divergent Tat positions was performed using a Fisher’s 
exact test (Fig. 6).

Two sequence logos
Experimentally validated transcription factor bindings 
sites C/EBP-II (HXB2 positions 281–289), ATF-CREB 
(330–337), C/EBP-I (338–349), NF-κB-II (350–359), 
NF-κB-I (363–373), Sp-III (377–386), Sp-II (388–398), 
and Sp-I (399–408), as well as the RNA stem loop (454–
518), were evaluated using Two Sample Logo [53]. Two 
Sample Logo is a web-based application that calculates 
and visualizes the differences between two sets of aligned 
sequences. Each nucleotide was represented with a differ-
ent color, and the height of the one-letter nucleotide code 
was scaled according to the magnitude of the difference 
in abundance of the nucleotide at a given position, with 
the largest difference in each comparison represented by 
the maximum height in the logo.

Identification of putative transcription binding sites
Position frequency matrices (PFMs) were downloaded 
from the JASPAR redundant vertebrate database for C/
EBP, Sp, NFκB, and CREB. Each PFM was converted into 
a position weight matrix (PWM) as previously described 
[52]. Each LTR sequence was scanned along its entirety 
to score every potential binding site using each of the 
PWMs. Each score was then compared to the maximum 
possible score for the PWM being used in order to deter-
mine a percentile score. Only binding sites with a mean 
percentile score >0.30 in either the R5- or X4-classified 
LTR sequences were considered for statistical analysis 
(Table  3). Binding affinities as defined by PWM score 
show a non-Gaussian distribution (data not shown). As 
such, the Kolmogorov–Smirnov (KS) test was used to 
compare affinities between different groups. The PWM 
was applied to each LTR and then the R5 and X4 distri-
butions were compared. The P values were adjusted using 
the Benjamini–Hochberg procedure.
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