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Vedangi Hambardikar 1, Mariona Guitart-Mampel 1, Ernest R. Scoma 1, Pedro Urquiza 1, Gowda G. A. Nagana 2 ,
Daniel Raftery 2 , John A. Collins 3 and Maria E. Solesio 1,*

1 Department of Biology and Center for Computational and Integrative Biology (CCIB), College of Arts and
Sciences, Rutgers University, Camden, NJ 08103, USA; vdh15@rutgers.edu (V.H.);
mg1616@camden.rutgers.edu (M.G.-M.); ers115@camden.rutgers.edu (E.R.S.);
pu23@camden.rutgers.edu (P.U.)

2 Mitochondrial and Metabolism Center, University of Washington, Seattle, WA 98109, USA;
ngowda@uw.edu (G.G.A.N.); draftery@uw.edu (D.R.)

3 Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University,
Philadelphia, PA 19107, USA; john.collins2@jefferson.edu
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Abstract: Inorganic polyphosphate (polyP) is an ancient biopolymer that is well preserved throughout
evolution and present in all studied organisms. In mammals, it shows a high co-localization with
mitochondria, and it has been demonstrated to be involved in the homeostasis of key processes
within the organelle, including mitochondrial bioenergetics. However, the exact extent of the effects
of polyP on the regulation of cellular bioenergetics, as well as the mechanisms explaining these
effects, still remain poorly understood. Here, using HEK293 mammalian cells under Wild-type
(Wt) and MitoPPX (cells enzymatically depleted of mitochondrial polyP) conditions, we show that
depletion of polyP within mitochondria increased oxidative stress conditions. This is characterized
by enhanced mitochondrial O2

− and intracellular H2O2 levels, which may be a consequence of the
dysregulation of oxidative phosphorylation (OXPHOS) that we have demonstrated in MitoPPX cells
in our previous work. These findings were associated with an increase in basal peroxiredoxin-1 (Prx1),
superoxide dismutase-2 (SOD2), and thioredoxin (Trx) antioxidant protein levels. Using 13C-NMR
and immunoblotting, we assayed the status of glycolysis and the pentose phosphate pathway (PPP)
in Wt and MitoPPX cells. Our results show that MitoPPX cells display a significant increase in the
activity of the PPP and an increase in the protein levels of transaldolase (TAL), which is a crucial
component of the non-oxidative phase of the PPP and is involved in the regulation of oxidative stress.
In addition, we observed a trend towards increased glycolysis in MitoPPX cells, which corroborates
our prior work. Here, for the first time, we show the crucial role played by mitochondrial polyP in
the regulation of mammalian redox homeostasis. Moreover, we demonstrate a significant effect of
mitochondrial polyP on the regulation of global cellular bioenergetics in these cells.

Keywords: mitochondria; mitochondrial inorganic polyphosphate; polyP; ROS; antioxidants; pentose
phosphate pathway; mammalian bioenergetics

1. Introduction

Inorganic polyphosphate (polyP) is an ancient and ubiquitous molecule. It has been ex-
ceptionally well-conserved throughout evolution, and it is present in all studied organisms,
including mammals [1,2]. This highly negatively charged and multifunctional polymer is
composed of multiple orthophosphates bound together by high-energy phosphoanhydride
bonds, similar to those found in ATP [2–4]. In fact, the rapid inter-conversion of phosphoryl
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groups between ATP and polyP has already been demonstrated [5]. In mammalian cells,
polyP is usually comprised of a few hundred units of orthophosphate, and concentrations
are within the micromolar range [6,7]. Interestingly, the late Nobel Laureate Dr. A. Korn-
berg, who devoted the final years of his career to the study of polyP, reported that bacteria
with decreased levels of polyP show increased sensitivity to diverse stressors, including
specific chemicals and heat shock [2,8]. Recently, the crucial role played by polyP in the
regulation of bioenergetics in various organisms, including mammals, has been demon-
strated by ourselves and others [3,9–20]. Moreover, different authors have demonstrated
that polyP is involved in the regulation of many other physiological processes, which are
also closely related to bioenergetics (Table 1). However, the exact extent of these effects, as
well as the mechanism(s) underlying them, remain poorly understood [3,9–19].

Table 1. Effects of polyP on cellular physiology. Schematic representation containing some of the
main described effects of polyP on cellular physiology. Many of these affects are closely related to the
status of cellular bioenergetics in mammalian organisms.

Effects of polyP on Cellular Physiology

Effect References

Bioenergetic buffer and/or direct regulation of bioenergetics [3,9–18,20]

Molecular chaperone [21–25]

Structural component and/or regulator of the mitochondrial
permeability transition pore [12,26–30]

Regulator of mitochondrial calcium homeostasis [9,10]

Stress response [2,8,31]

Mammalian bioenergetics is a complex set of processes. It encompasses diverse
mechanisms by which the demand and production of cellular ATP are matched and scaled
to meet the varying metabolic needs of the cell at each precise moment. These mechanisms
include, but are not limited to, oxidative phosphorylation (OXPHOS), glycolysis, and
the Pentose Phosphate Pathway (PPP). Mammalian bioenergetics is also closely related
to the regulation and the production of reactive oxygen species (ROS). For example, the
vast majority of ROS and its precursors in mammalian cells are produced in the electron
transfer chain (ETC) due to incomplete or dysfunctional OXPHOS [31,32]. Accordingly,
when OXPHOS is dysregulated, increased ROS are present in the cell, which contribute
to enhanced oxidative stress conditions which can lead to non-discriminatory damage
to proteins, lipids, and DNA, act as a transducer of catabolic redox signaling events,
and promote apoptotic cell death [33]. To counteract the increased generation of ROS
and prevent oxidative stress, mammalian cells contain a suite of antioxidant systems
that are responsible for the detoxification of ROS, including peroxiredoxins, thioredoxins,
superoxide dismutases, and catalases [34–37]. Moreover, the mammalian antioxidant
system is partially regulated by NADPH, which is mainly generated by the PPP since
NADPH is the donor of reductive potential to several antioxidant systems [38]. For example,
NADPH derived from the PPP is necessary for the reduction in oxidized glutathione (GSSG)
to its active form of reduced glutathione (GSH) [39,40]. The PPP is in tight equilibrium
with glycolysis [39], and both processes are closely related to the status of OXPHOS.

We have recently demonstrated the important regulatory effects of mitochondrial
polyP on mammalian OXPHOS and glycolysis in vitro [17]. Specifically, we showed de-
creased OXPHOS and increased glycolysis in cells enzymatically depleted of mitochondrial
polyP (MitoPPX), but we did not address the status of the PPP in our samples. Interest-
ingly, due to the potent regulatory effects of polyP on mammalian bioenergetics, polyP
could also play a role in the maintenance of redox homeostasis in these cells. In fact, the
protective effects of polyP against the increased generation of ROS have been described in
bacteria [41,42]. Moreover, recent data demonstrate that cells with altered levels of polyP,
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due to a modification of the enzyme Nudt3, display an increase in oxidative stress levels,
DNA damage, and enhanced cell death [43]. However, little is known about the exact
regulatory role of polyP on ROS generation in mammalian cells.

The metabolism of polyP is relatively well described in yeast and bacteria [44–54], but
it remains poorly understood in mammalian cells. A recently published study established
that the mammalian mitochondrial F0F1 ATPase can be stimulated by polyP, and that
this enzyme is involved in the metabolism of the polymer [55]. Since knocking down the
mammalian F0F1 ATPase is not feasible due to its direct effects on cell viability, we have
created HEK293 cells enzymatically-depleted of mitochondrial polyP (MitoPPX cells) [9,10].
Here, using Wild-type (Wt) and MitoPPX cells, we expand on our previous study to
demonstrate that the loss of mitochondrial polyP significantly increases the generation of
O2
− and H2O2, an effect that is associated with an increase in multiple antioxidant protein

levels. Additionally, we show that the PPP is upregulated in response to the depletion
of mitochondrial polyP. Lastly, our data show that the levels of the enzyme transaldolase
(TAL), which is a key rate-limiting enzyme of the non-oxidative phase of the PPP, are
increased in MitoPPX cells when compared to Wt controls. Similarly to polyP, TAL is also
well-conserved throughout evolution [56], and it plays an important role in the regulation
of cellular ROS [56].

Elucidating the exact regulatory role of mitochondrial polyP on cellular bioenergetics
could lead to the development of novel pharmacological and therapeutic strategies aimed
at targeting oxidative stress and dysregulated bioenergetics, which represent two key
features in the etiopathogenesis of some of the main aging-associated diseases, such as
neurodegenerative disorders. In fact, dysregulated bioenergetics, including alterations in
glycolysis and the PPP, have been broadly described in a wide variety of conditions and
pathologies, including Parkinson’s disease and Alzheimer’s disease [57–60].

2. Materials and Methods
2.1. Reagents

Dulbecco’s Modified Eagle medium (DMEM), DMEM no glucose, penicillin–streptomycin,
Hank’s Balanced Salt Solution (HBSS), G418 (Geneticin), trypsin, and heat-inactivated
fetal bovine serum (FBS) were purchased from Gibco-Invitrogen (Carlsbad, CA, USA).
Phosphate-Buffered Saline (PBS), poly-L-lysine, Tween-20, Dimethyl sulfoxide (DMSO),
2-vinyl pyridine, D-Glucose-1,2-13C2, Methanol, MTT, trimethylsilylpropionic acid-d4, and
sodium salt were purchased from Sigma-Aldrich (St. Louis, MI, USA). In addition, 4′-6-
diamino-2-phenylindole (DAPI), Pierce BCA Protein Assay kit, and Pierce ECL Western
Blotting Substrate were purchased from Thermo Fisher Scientific (Waltham, MA, USA).
Amplex Red Hydrogen Peroxide/Peroxidase Assay Kits and Glutathione Colorimetric
Detection Kits were purchased from Invitrogen (Carlsbad, CA, USA). Secondary antibod-
ies, trypan blue, and all the materials and reagents used in the immunoblotting exper-
iments were obtained from BioRad (Hercules, CA, USA). All the anti-rabbit secondary
antibodies were used at a 1:1000 dilution, while anti-mouse secondary antibodies were
used at 1:2000 dilution. ATP luminescent measurement kits were purchased from Ab-
cam (Cambridge, Cambridgeshire, UK); PolyP standards were a gift from Dr. Toshikazu
Shiba, from Kitasato University, Tokyo, Japan. The following antibodies were used for im-
munoblotting: anti-G6PD (anti-rabbit, Sigma-Aldrich, HPA000247), anti-PGD (anti-rabbit,
Sigma-Aldrich, HPA031314), anti-TK (anti-mouse, Santa Cruz Biotechnology, sc-390179),
anti-TAL (anti-mouse, Santa Cruz Biotechnology, sc-166230), anti-MnSOD (anti-rabbit, Mil-
lipore Sigma, 06-984-25UG), anti-Prx1 (anti-mouse, Abcam, ab106834), Anti-Trx (anti-rabbit,
Cell Signaling technology, 2429), anti-Nrx (anti-rabbit, Proteintech, 16128-1-AP), anti-Prx3
(anti-rabbit, Abcam, ab73349), anti-Nrf2 (anti-rabbit, Abcam, ab137550), and anti-β-actin
(anti-mouse, Abcam, ab8226). Anti-rabbit and anti-mouse secondary antibodies (1706516
and 1706515, respectively) were purchased from BioRad (Hercules, CA, USA).
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2.2. Cell Culture

HEK293 cells were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). MitoPPX cells (cells enzymatically depleted of mitochondrial polyP)
were created by stable transfection of HEK293 cells with a mammalian construct containing
a mitochondrial sequence for the expression of the yeast exopolyphosphatase enzyme, as
we have previously described [9,10]. Wt and MitoPPX cell cultures were grown following
the instructions of the ATCC. Specifically, we used DMEM supplemented with 10% (v/v)
FBS and 1% penicillin-streptomycin. In the case of the MitoPPX cells, geneticin was added
as the selection antibiotic (40 µg/mL) [61]. Cells were maintained in a humidified incubator
at 37 ◦C and 5% CO2 atmosphere.

2.3. Cell Viability Assay and Cell Growth Curve

To assay cell viability in Wt and MitoPPX HEK293 cells, we used the MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyletrazolium bromide) assay. Specifically, we plated
100,000 cells per well on a 96-well plate. After 24 h, we replaced the growing medium
with fresh medium containing 5 mg of MTT per each 10-mL medium. Cells were then
incubated for one hour in the humidified incubator. Subsequently, the medium containing
MTT was replaced by DMSO, the plate was gently shaken, and absorbance was measured
at 540 nm (alive cells) and 685 nm (background). Background was subtracted from the
value obtained from the measurement of alive cells. The experiment was conducted in
triplicate and experiments were conducted on three independent days.

To corroborate the cell viability results and to assay cell growth of the HEK293 Wt and
MitoPPX cells, we used trypan blue exclusion assay [62], and quantified cell viability. Using
this method and an automatic cell counter (TC20, Bio Rad, Hercules, CA, USA), we quanti-
fied the number of cells that were alive and dead. For these experiments, 300,000 HEK293
Wt and MitoPPX cells were plated in six-well culture plates. In the case of the cell viability
assay, it was assayed 48 h later, while, to conduct the growth curve, cells were collected
24 h, 48 h, and 72 h after seeding. Cells were collected for the assay by trypsinization and
the experiment was conducted following the indications of the manufacturer. Experiments
were conducted in triplicate.

2.4. Cell Imaging

First, 100,000 cells/well were plated in six-well plates. After 48 h, cells were incubated
in the dark for 15 min in the presence of 20 µM DAPI. Subsequently, cells were imaged using
transmitted light and a DAPI filter on an EVOS Cell Imaging System (Life Technologies,
Carlsbad, CA, USA). The contract and brightness of the images were then adjusted using
ImageJ software (NIH, Bethesda, MD, USA).

2.5. Quantification of Mitochondrial polyP

Mitochondria from Wt and MitoPPX cells were isolated as previously described [63–65].
After that, mitochondria-enriched fractions were lysed by three freeze/thaw cycles of
30 min each, at −80 ◦C and room temperature. To standardize the samples, protein quan-
tification was performed using BCA assay. Next, 20 µg of protein per sample was loaded
into a 96-well plate in triplicate and incubated with 10 µM of DAPI. PolyP shifts the fluo-
rescence emission of associated DAPI towards higher wavelengths (λex = 405 nM) [6,56,57].
After 15 min of incubation in the dark and at room temperature, plates were read at 525 nm,
with intermittent agitation after 20 s, using a BioTek spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Synthetic polyP was used to prepare the standards for
each assay. Concentration of polyP in the samples was extrapolated from the standard
curve readings.

2.6. Measurement of ATP Levels

Cellular levels of ATP were measured using the Luminescent ATP Detection Kit
(ab113849, AbCam, Cambridge, Cambridgeshire, UK) following the protocol indicated by
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the manufacturer. Briefly, 10,000 Wt and MitoPPX cells per well were plated in a white 96-
well plate. After a 48-h incubation period, cells were lysed and luminescence was measured
using a BioTek spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Each
experiment consisted of three technical replicates. Moreover, experiments were conducted
a minimum of three times on separate days.

2.7. Quantification of Mitochondrial O2
− Levels

Mitochondrial O2
− levels were measured in live cells using the MitoSOX Red mito-

chondrial O2
− indicator. Cells were plated 48 h prior to the experiment in sterile, poly-lysine

treated coverslips. On the day of the experiment, the coverslips containing the cells were
incubated for 10 min with 5 µM MitoSOX which was previously dissolved in 1× HBSS,
following the manufacturer’s protocol (MitoSOX, M36008, Invitrogen, Waltham, MA, USA).
Subsequently, fluorescence was visualized by confocal microscopy and a 40× oil-immersion
objective (SP8 Leica, Wetzlar, Germany). Five images per cover slip were captured from
biological replicates. Quantification of fluorescence intensity was performed using ImageJ
software (NIH, Bethesda, MD, USA).

2.8. Quantification of Intracellular H2O2 Levels

Intracellular H2O2 levels were assayed using Amplex Red Hydrogen Peroxide/
Peroxidase Assay kit, following the manufacturer’s instructions. In the presence of peroxi-
dase, the Amplex Red reagent reacts with H2O2 in a 1:1 stoichiometry to form resorufin,
which is a red-fluorescent oxidation product. Wt and MitoPPX cells were plated 48 h
before the assay and collected to be lysed in a detergent-free lysis buffer. Lysed samples,
normalized by protein content, were added in triplicate to a 96-well plate. Amplex Red
was subsequently added to each well and the mixture was incubated for 30 min at room
temperature. Fluorescence was then measured at λex 530–560 nm and λem 590 nm, us-
ing a BioTek spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Control
conditions were performed using blank readings obtained from wells containing culture
media and assay reagents, in the absence of cells, for each experiment. After background
correction, the obtained fluorescence values were normalized to the mean of the Wt control
fluorescence value. Every experiment included samples in triplicate, and the assay was
repeated on at least three independent days.

2.9. Preparation of the Cell Samples for NMR Analysis

To begin, 5 × 106 cells were seeded in p150 cell culture-treated plates for 24 h. Cells
were then treated with 4.5 mM D-glucose-1,2-13C2 in glucose-free media DMEM for addi-
tional 24 h. Subsequently, cells were harvested with ice cold 1× PBS and stored at −80 ◦C
prior to analysis.

2.10. NMR Analysis of the PPP

For extraction of metabolites, cellular pellets were mixed with methanol (800 µL),
vortexed for 60 s, and added with deionized water (400 µL). The solution was vortexed
again for 60 s and sonicated for 20 min on an ice bath. Subsequently, the solutions were
vortexed again for 60 s and centrifuged at 14,000× g for 30 min. The supernatant solutions
that contained water soluble metabolites were transferred to clean 2 mL Eppendorf tubes
and dried using nitrogen gas. Each dried residue was then dissolved in 200 µL phosphate
buffer prepared in deuterium oxide solvent (100 mM, pH 7.4) by dissolving 1124.0 mg
anhydrous Na2HPO4 and 249.9 mg anhydrous NaH2PO4 in 100 g D2O; sodium salt of
trimethylsilylpropionic acid-d4 (TSP, 4 mM) was added to the buffer to serve as the chemical
shift reference. The solutions were centrifuged for 1 min to sediment any particulate matter
and the supernatants were transferred to 3 mm NMR tubes for analysis. All chemicals were
obtained from Sigma-Aldrich (St. Louis, MI, USA).

Using a Bruker AVANCE III 800 MHz spectrometer (Billerica, MA, USA) equipped
with a cryoprobe at 13C frequency of 201.21 MHz, 13C NMR spectra were obtained at 298 K
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temperature. One-dimensional NMR spectra were obtained using a one pulse sequence
with a power-gated decoupling of 1H nuclei using WALTZ-16 pulse sequence. For each
sample, 128,000 data points were acquired using a spectral width of 42,613 Hz, a relaxation
delay of 1.5 s, and 16,000 or 38,000 scans. The data were processed using a spectral size
of 131,072 points and by multiplying with an exponential window function using a line
broadening of 1.0 Hz. The spectra were phase and baseline corrected and referenced with
respect to the 13C signal from the reference compound, TSP. Bruker Topspin version 4.1.0
software package was used for NMR data acquisition and processing.

Quantitation of glucose flux through glycolysis and the PPP was based on lactate
peaks from the 13C NMR spectra, as lactate is an end product of both glycolysis and the
PPP. Treating cells with [1,2-13C2]-glucose enables distinguishing between lactate produced
by the glycolysis and that produced by the PPP [66]; glucose flux through glycolysis yields
[2,3-13C2]-lactate as an end product, while the flux through the PPP yields [3-13C1]-lactate
as an end product. Therefore, the area of the doublet peak from lactate C3 (22.928 ppm)
provided glucose flux through glycolysis, whereas the area of the single peak arising from
the same carbon provided the glucose flux through the PPP. The single peak area of lactate
C3 was corrected for the contribution from natural abundance 13C based on the singlet peak
area of lactate C2 (71.348 ppm), after accounting for the difference in nuclear Overhauser
enhancement between lactate C2 and lactate C3. The Bruker Topspin version 4.1.0 software
package was used for integration of the 13C NMR peaks.

2.11. Immunoblotting Assays

First, 2.5 × 106 cells were seeded in a Petri dish. Then, 48 h later, cells were harvested
and lysed at 4 ◦C for 30 min under gentle agitation in a standard lysis buffer containing
inhibitors of proteases and phosphatases [67]. Subsequently, the samples were centrifuged
at 12,000× g for 10 min to pellet insoluble proteins. The supernatants were collected and
protein was quantified using the BCA assay. Immunoblotting assays were conducted
on the cell lysates under reducing conditions, using 20 µg of protein and the specified
antibodies by following the protocol that we have previously used [67–71]. In all cases,
β-actin was used as a loading control. Primary antibodies were used at a 1:1000 dilution
unless otherwise stated. Densitometric analysis was performed using ImageJ software and
Graphpad Prism version 9 (NIH, Bethesda, MD, USA; San Diego, CA, USA; respectively).

2.12. Statistical Analysis

All data are presented as mean± SD. Statistical significance of the differences between
groups was determined by Student’s t-test. The level of statistical significance was set at
α = 0.05 (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). For the statistical analysis and graphical rep-
resentation, OriginLab software and GraphPad Prism version 9 were used (Northampton,
MA, USA; San Diego, CA, USA; respectively).

3. Results
3.1. Isolated Mitochondria from MitoPPX Cells Show Decreased Levels of polyP

We have already validated and utilized stable HEK293 MitoPPX cells [9,10]. More-
over, our previous study demonstrates dysregulated OXPHOS, increased glycolysis, and
decreased ATP production in response to depletion of mitochondrial polyP, using the same
cellular model that we have used in this study [17]. Here, we first corroborated our prior
findings and observed a significant decrease in ATP levels in MitoPPX cells, as compared to
Wt cells (Supplementary Figure S1A), as well as increased levels of glycolysis in our mutant
samples (Supplementary Figure S1B). These findings corroborate our previous data and
demonstrate that the HEK293 MitoPPX cells used in this paper have the same bioenergetic
phenotype as the one used in our previous work [17].

Our data also show that the enzymatic depletion of mitochondrial polyP does not
have a deleterious effect on cell viability, measured by MTT assay and corroborated by
trypan blue assay (Figures 1A and S2A). Moreover, both Wt and MitoPPX cells showed a
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similar growth curve, specially 48 h after seeding them (Supplementary Figure S2B). This
is the time at which the experiments included in this manuscript were conducted. Cell
growth was assayed by measuring cell proliferation 24 h, 48 h, and 72 h after seeding
the same number of Wt and MitoPPX cells. We did not observe any differences in cell
morphology between Wt and MitoPPX HEK293 cells (Supplementary Figure S2C). Here,
for the first time, we measured the concentration of polyP within isolated mitochondria,
in both Wt and MitoPPX cells. Our data show that mitochondria isolated from MitoPPX
cells display a significant reduction in PolyP (55.7%), when compared with mitochondria
isolated from Wt cells (Figure 1B). Specifically, the concentration of polyP was 2.62 µM in
mitochondria isolated from MitoPPX cells and 4.70 µM in mitochondria isolated from Wt
samples. To quantify the amount of mitochondrial polyP, we used the measurement of the
DAPI-polyP fluorescence, which is a well-established method to assay the polymer [6,16,56].
This finding aligns with our previous work, which demonstrates the increased ability of
MitoPPX cells to degrade exogenous polyP, when compared with Wt cells [17].
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Figure 1. Mitochondria isolated from MitoPPX cells show decreased levels of polyP. However,
the enzymatical depletion of the polymer within the organelle does not have a deleterious effect
on cell viability in HEK293 cells. (A) Graph showing the results of the MTT cell viability assays.
Note that no significant differences in terms of cell viability were found between Wt and MitoPPX
cells in this experiment. (B) Graph showing the concentration of polyP in mitochondria isolated
from Wt and MitoPPX cells. To demonstrate the decreased levels of the polymer in mitochondria
isolated from MitoPPX cells, polyP was measured using DAPI fluorescence after the isolation of
the organelles. PolyP concentrations were determined based on extrapolation from the standard
curve, which was prepared with exogenous polyP. Data in the graph are shown as mean ± standard
deviation of triplicates obtained from at least three independent experiments (n = 3). Unpaired t-tests
were used to detect significant differences between Wt and MitoPPX cells. Abbreviations used in this
figure: MitoPPX: cells expressing the exopolyphosphatase enzyme in mitochondria; Wt: Wild-type
cells; PolyP: inorganic polyphosphate, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-dypheniyltretazolium
bromide, DAPI: 4′-6-diamidino-2-phenylindole.

3.2. MitoPPX Cells Display Increased Levels of O2
− and H2O2

A well-known consequence of dysregulated OXPHOS is the increased levels of ROS.
Here, we demonstrate that MitoPPX cells display a significant increase in the intracellular
levels of ROS when compared to Wt cells. Specifically, using MitoSOX Red to quantify
mitochondrial O2

− generation, we show that MitoPPX cells display a 37.7% increase in
O2
− levels, when compared to Wt controls (p ≤ 0.001) (Figure 2A,B). Furthermore, using

Amplex Red reagent to detect H2O2 levels, we also demonstrate that MitoPPX cells show a
92.8% increase in the levels of H2O2 when compared to Wt samples (Figure 2C). These data
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demonstrate that the enzymatic depletion of mitochondrial polyP significantly increases
intracellular ROS levels in HEK293 cells. This effect probably occurs through the regulatory
effects of polyP on OXPHOS that have already been demonstrated [17].
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species; MitoPPX: cells expressing the exopolyphosphatase enzyme in mitochondria; Wt: Wild-type
cells; O2

−: superoxide; H2O2: hydrogen peroxide.

3.3. MitoPPX Cells Show Increased Antioxidant Levels

A typical consequence of the increased presence of ROS is the upregulation and
activation of the intracellular antioxidant systems [50,64,65]. Here, we conducted a study of
the levels of antioxidants involved in O2

− and H2O2 detoxification in our cellular samples
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by immunoblotting. We observed a significant increase in the protein levels of superoxide
dismutase 2 (SOD2), peroxiredoxin 1 (Prx1), thioredoxin (Trx), and nuclear factor-erythroid
2-related factor 2 (Nrf2) in MitoPPX cells when compared to Wt cells. However, the protein
levels of peroxiredoxin 3 (Prx3) and nucleoredoxin (Nrx) showed no significant differences
between Wt and MitoPPX HEK293 cells (Figure 3).
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Figure 3. Antioxidant levels are increased in MitoPPX cells. (A) Non-reducing immunoblotting was
performed to detect the basal levels of SOD2, Prx1, Trx, Nrx, Prx3, and Nrf2 in MitoPPX and Wt
cells. Representative membranes are shown. β-actin was used as a loading control. (B) Densitometric
analysis of basal SOD2, Prx1, Trx, Nrx, Prx3, and Nrf2 protein levels. Data shown as mean ± standard
deviation from three independent experiments are presented. Unpaired t-tests were used to detect
significant differences between Wt and MitoPPX cells. Abbreviations used in this figure: SOD: superoxide
dismutase 2; Prx1: peroxiredoxine1; Trx: thioredoxin; Nrx: nucleoredoxin; Prx3: peroxiredoxine 3;
Nrf2: nuclear factor erythroid 2-related factor 2; MitoPPX: cells expressing the exopolyphosphatase
enzyme on mitochondria; Wt: Wild-type cells.
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3.4. MitoPPX Cells Show Increased Activation of the PPP

Glycolysis and the PPP are well-known extra-mitochondrial components of mam-
malian bioenergetics that contribute to maintaining appropriate intracellular bioenergetic
status. Here, using 13C-NMR spectroscopy, we measured the percentage of glucose flux
that was directed specifically towards glycolysis or the PPP in MitoPPX and Wt cells.
Our data show a ∼=50% increase in the PPP in MitoPPX cells when compared with the
Wt samples (p ≤ 0.05. Figure 4A). In addition, glycolysis trended towards an increase in
MitoPPX cells, which aligns with our previous observations in the same cell lines [17]
(Supplementary Figures S3 and S4). These results demonstrate that the enzymatical deple-
tion of mitochondrial polyP produces a global effect on mammalian cellular bioenergetics,
not only affecting mitochondrial OXPHOS but also the cytosolic pathways, such as PPP.
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Figure 4. Mitochondrial depletion of polyP increases the protein levels of TAL. (A) Graph showing
the percentage of glucose flux through the PPP, measured using NMR, in Wt and MitoPPX cells. Data
in all graphs are shown as average ± standard deviation of four independent NMR experiments,
which were conducted with samples obtained on four separate days. Unpaired t-tests were used
to detect significant differences between Wt and MitoPPX cells. (B) Non-reducing immunoblotting
was performed to detect the basal levels of G6PD and PGD (oxidative phase of the PPP) and TK and
TAL (non-oxidative phase of the PPP) in Wt and MitoPPX cells. Representative immunoblots are
shown. β-actin was used as a loading control. (C) Densitometric analysis of basal G6PD, PGD, TK,
and TAL protein levels. Data shown as mean ± standard deviation from n = 3 independent experi-
ments are presented. Unpaired t-tests were used to detect significant differences between Wt and
MitoPPX cells. Abbreviations used in this figure: TAL: transaldolase; PPP: pentose phosphate pathway;
NMR: nuclear magnetic resonance; G6PD: glucose-6-phosphate dehydrogenase; PGD: phosphoglu-
conate dehydrogenase; TK: transketolase; MitoPPX: cells expressing the exopolyphosphatase enzyme
in mitochondria; Wt: Wild-type cells.

3.5. The Enzymatic Depletion of Mitochondrial polyP Increases the Protein Levels of TAL

The PPP is a parallel pathway to glycolysis in the metabolism of glucose. The main
enzymes involved in this pathway are glucose-6-phosphate dehydrogenase (G6PD) and
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6-phosphoglutanate dehydrogenase (PGD) in the oxidative phase, along with transketolase
(TK) and transaldolase (TAL) in the non-oxidative phase.

To further analyze the status of the PPP pathway in our samples and corroborate the
data obtained by NMR showing an upregulation in the PPP, we analyzed the levels of the
above-mentioned enzymes by immunoblotting assays. While we observed no differences
between Wt and MitoPPX cells in the protein levels of G6PD, PGD, and TK, a significant
increase in the levels of TAL was evident in MitoPPX cells when compared to Wt samples
(p = 0.038; Figure 4B,C).

4. Discussion

Emerging evidence suggests that polyP is a crucial regulator of cellular bioenergetics
and redox balance. However, little is known about these effects on mammalian cells. Here,
we demonstrate that the enzymatic depletion of mitochondrial polyP increases oxidative
stress levels in HEK293 cells. This rise is characterized by a significantly increased presence
of O2

− and H2O2, which can be explained either by a rise in the generation of these
ROS or by a decrease in the mechanisms in charge of removing ROS in MitoPPX cells.
Our finding aligns with the research of others, who showed elevated oxidative stress
in bacteria lacking polyP [2,8]. Moreover, this effect was associated with a significant
increase in the protein levels of the antioxidants SOD2, Prx1, and Trx. The bibliography
also shows that increased generation of ROS is often associated with a rise in the levels of
antioxidants [72]. Additionally, using NMR spectroscopy, we show that the enzymatical
depletion of mitochondrial polyP increases the activity of glycolysis, which aligns with our
prior data [17] as well as the activity of the PPP. Of interest is the finding that the increase in
the PPP is of a higher magnitude than that of glycolysis. Immunoblotting results indicate
that the protein levels of TAL, a crucial enzyme in the non-oxidative branch of the PPP [73],
which also plays an important role in the regulation of cellular ROS [56], are increased in
MitoPPX HEK293 cells when compared to Wt controls.

Dysfunctional OXPHOS is well regarded as a key mechanism that increases ROS
generation and oxidative stress conditions in a wide range of human pathologies [60,74].
Our prior data demonstrate that MitoPPX cells, which have a mitochondrial membrane
potential comparable to Wt cells, are sensitive to FCCP treatment and do not show in-
creased levels of mitophagy, display a significant reduction in OXPHOS in MitoPPX cells
when compared to Wt cells [17]. This reduction in OXPHOS could be a consequence of
mitochondrial dysfunction at the level of the electron transport chain and it likely explains
the increased levels of O2

− and H2O2 shown in this study. In fact, reduced OXPHOS has
been demonstrated to be a trigger of increased levels of ROS [75,76]. For example, it is
known that inhibition of Complex I and III of the ETC induces increased chronic generation
of H2O2 in HEK293 cells without substantially increasing the presence of oxidative stress
and cell death [77]. Our data also show that elevated ROS levels are associated with a
significant increase in the protein levels of mitochondrially-localized SOD2, as well as an
increase in the antioxidant transcription factor Nrf2 and the Nrf2-regulated antioxidants
Prx1 and Trx. These data suggest that the rise in ROS was sufficient to elicit a cellular
response (upregulated antioxidant status) which may have mitigated cell death in this
study. As mentioned above, several studies have demonstrated the effect of OXPHOS
inhibition to increase the production of mitochondrially derived ROS [75–77]. This effect
has been shown to increase the levels of mitochondrial SOD2, potentially as a compensatory
response to enhance O2

− detoxification [75,78–80]. O2
− would then be dismutated to form

H2O2, which is now regarded as a potent cell signaling mediator capable of regulating
diverse cellular processes [81–85]. One such process is an increase in Nrf2 levels and
activity, which in turn leads to an increase in Nrf2-regulated proteins, which include Prx1
and Trx [86,87]. Thus, we postulate that in cells lacking mitochondrial polyP, mitochondrial
dysfunction leads to an increase in ROS levels that serve as a signaling molecule that in-
creases Nrf2 and Nrf2-regulated antioxidant proteins. The observed increase in antioxidant
protein levels is consistent with our previous research, which shows that MitoPPX cells
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display a significant increase in reduced glutathione (mean ± stdev of the log2 abundance
of reduced glutathione in MitoPPX cells was 25.43± 0.35, while in Wt this was 24.50 ± 0.27.
p = 0.02), as well as increased levels of NADPH when compared to Wt cells [17]. In the same
manuscript, all the raw data, including the levels of NADP and other related metabolites,
are included.

In mammalian cells, NADPH is mostly produced in the PPP [88]. This led us to
hypothesize that the PPP might be regulated by the levels of polyP. In fact, the role of short
chain polyP (as a component of the xylulose-5-phosphate) in the regulation of PPP has
already been demonstrated in bacteria [89]. Therefore, we analyzed the PPP in response to
the enzymatic depletion of mitochondrial polyP, and we observed a significant increase
in the activity of this pathway measured by NMR technology in MitoPPX cells. While
glycolysis is also increased in MitoPPX cells, the increase in the PPP in relationship with that
of glycolysis is of a higher magnitude. These data build on our prior findings showing that
mitochondrial polyP depletion not only inhibits OXPHOS and increases glycolysis but also
leads to a significant increase in PPP activity. This further demonstrates the importance of
polyP on the maintenance of bioenergetic pathway homeostasis. Such a metabolic switch is
of significant importance as under pathological conditions, such as Alzheimer’s disease and
Parkinson’s disease; OXPHOS is dysregulated and the PPP is increased as a consequence
of a rise in the levels of oxidative stress [57,59]. Therefore, MitoPPX cells could be used as a
model of these pathologies to study bioenergetic metabolism, as our results suggest that
maintenance of PolyP may be integral to maintaining homeostatic bioenergetics and redox
homeostasis. In addition, our findings of increased PPP activity in MitoPPX cells could
represent an important compensatory cellular effect, aimed at increasing the production of
ATP when OXPHOS is dysfunctional or inhibited.

Our data also show that the metabolic enzyme TAL is significantly increased in
MitoPPX cells when compared with Wt samples. This suggests that the upregulation of
PPP activity in response to mitochondrial polyP depletion could be mediated through TAL,
which is a key rate-limiting enzyme in the non-oxidative branch of the PPP [90,91] and is
also critical in the regulation of metabolic flux through the PPP [73]. Furthermore, previous
studies have demonstrated the involvement of TAL in the production of NADPH in the
PPP [73]. Lastly, the overexpression of TAL has been already demonstrated as an extremely
powerful tool to increase the flux towards the PPP [39].

In summary, our findings show that the enzymatic depletion of mitochondrial polyP
significantly increases the levels of ROS and mitochondrial and cytosolic antioxidants
in mammalian cells. Moreover, the PPP displays enhanced activation in these samples,
which is associated with an increase in the protein levels of TAL. These results, alongside
our previous work, suggest that polyP significantly regulates cellular redox balance and
bioenergetics. Consequently, our findings could pave the way towards the development of
new pharmacological strategies that target mitochondrial polyP in disease states where
dysregulated bioenergetics and increased oxidative stress conditions are observed, such as
neurodegenerative disorders, many types of cancers, and diabetes [81,92–99].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
antiox11040685/s1, Figure S1: Corroborating our previous data, MitoPPX cells show decreased levels
of ATP and increased glycolysis, when compared with the Wt cells. Figure S2: Characterization of
the HEK293 MitoPPX cells. Figure S3: NMR Spectra. Figure S4: NMR Spectra.
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