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ARTICLE

Medial temporal lobe functional connectivity
predicts stimulation-induced theta power
E.A. Solomon 1, J.E. Kragel2, R. Gross3, B. Lega4, M.R. Sperling5, G. Worrell6, S.A. Sheth7, K.A. Zaghloul 8,

B.C. Jobst9, J.M. Stein10, S. Das10, R. Gorniak11, C.S. Inman3, S. Seger4, D.S. Rizzuto2 & M.J. Kahana2

Focal electrical stimulation of the brain incites a cascade of neural activity that propagates

from the stimulated region to both nearby and remote areas, offering the potential to control

the activity of brain networks. Understanding how exogenous electrical signals perturb such

networks in humans is key to its clinical translation. To investigate this, we applied electrical

stimulation to subregions of the medial temporal lobe in 26 neurosurgical patients fitted with

indwelling electrodes. Networks of low-frequency (5–13 Hz) spectral coherence predicted

stimulation-evoked increases in theta (5–8 Hz) power, particularly when stimulation was

applied in or adjacent to white matter. Stimulation tended to decrease power in the high-

frequency broadband (HFB; 50–200 Hz) range, and these modulations were correlated with

HFB-based networks in a subset of subjects. Our results demonstrate that functional con-

nectivity is predictive of causal changes in the brain, capturing evoked activity across brain

regions and frequency bands.
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Intracranial brain stimulation is increasingly used to study
disorders of human behavior and cognition, but very little is
known about how these stimulation events affect neural

activity. Though several recent studies have demonstrated the
ability to modulate human memory with direct electrical stimu-
lation (DES) of the cortex1–7, none have described the mechanism
by which stimulation yields altered cognitive states. However,
understanding how the brain responds to these exogenous cur-
rents is necessary to ultimately develop therapeutic interventions
that rely on DES8,9.

Specifically, investigators have long asked whether the brain’s
intrinsic functional or anatomical architecture can predict how
mesoscale stimulation events propagate through the brain. Early
work focused on inferred connectivity through stimulation-
evoked behavior in rodents10,11. More recently, Logothetis and
colleagues demonstrated that the effects of electrical stimulation
propagated through known anatomical connections in the
macaque visual system12,13. In humans, corticocortical evoked
potentials (CCEPs), measured with intracranial electro-
encephalography (iEEG), have also been shown to propagate
through anatomical and functional connections14,15, as has the
functional magnetic resonance imaging (fMRI) BOLD (blood-
oxygen-level dependent) response to stimulation16. These studies
provide powerful evidence that the effects of stimulation are
determined by the connectivity profile of a targeted region. More
broadly, renewed interest in the idea of the brain as a controllable
network17–19 raises a testable hypothesis in need of empirical
validation: to what extent does a brain’s network architecture
predict the cascade of physiologic change that accompanies a
stimulation event?

In this study, we asked whether the functional connectivity of a
stimulated region predicts where we observe changes in neural
activity. To expand on prior work that has examined network
architecture and stimulation, we adopted a paradigm that (1)
focuses on stimulation’s effect on low-frequency (theta) power, a
cognitively relevant electrophysiological biomarker, and (2)
simultaneously considers the structural and functional con-
nectivity of a targeted region. In 26 neurosurgical patients with
indwelling electrodes, we stimulated different regions of the
medial temporal lobe (MTL) and asked whether low-frequency
coherence predicted modulations of theta power in distributed
cortical regions. We showed that coherence was mostly predictive
of theta modulation when stimulation occurred in or near a white
matter tract, but in those cases, stimulation could evoke sustained
increases in theta power even in distant regions. With this initial
finding in hand, we expanded our paradigm to consider addi-
tional measures of functional connectivity and evoked power at
higher frequencies. We principally considered the amplitude
envelope of the high-frequency broadband (HFB) signal
(50–200 Hz)20, shown to correlate with the resting-state fMRI
(rsfMRI) BOLD correlations that are widely used in network
neuroscience20–23. We demonstrated that while low-frequency
coherence accurately predicts increases in low-frequency power,
HFB-based networks can explain decreases of HFB power. Taken
together, functional connectivity can predict the widespread
changes in local spectral power induced by DES of the MTL.

Results
Calculating network-mediated activation. To determine how
direct cortical stimulation propagates through brain networks, we
collected iEEG data from 26 patients undergoing clinical mon-
itoring for seizures. Subjects rested passively in their hospital bed
while we applied bipolar macroelectrode stimulation at varying
frequencies (10–200 Hz) and amplitudes (0.25–1.5 mA) to MTL
depth electrodes (see online Methods for details). Rectangular

stimulation pulses were delivered for 500 ms, followed by a 3-s
inter-stimulation interval (Fig. 1a–d). Each subject received at
least 240 stimulation events (“trials”) at 1–7 distinct sites in MTL
gray or white matter (mean 2.7 sites; see Supplementary Table 2
for stimulation locations). During a separate recording session in
which no stimulation occurred, for each subject we computed
resting networks of low-frequency (5–13 Hz) coherence, moti-
vated by prior literature that shows robust iEEG functional
connectivity at low frequencies24–27. These networks reflect cor-
related low-frequency activity between all possible pairs of elec-
trodes in a subject, during a period when subjects are passively
waiting for a task to begin (Fig. 2a).

For each stimulation trial, we computed theta power (5–8 Hz)
in 900 ms windows before and after each 500 ms stimulation
event, and compared the pre- vs. post-stimulation power across
all trials with a paired t-test (Fig. 1e-g). Next, we used linear
regression to correlate the strength of a stimulation site’s network
connectivity to a recording electrode with the power t-statistic at
that electrode (Fig. 2a–d). We included absolute distance as a
factor in our regression, to only consider how connectivity relates
to stimulation beyond the brain’s tendency to densely connect
nearby regions28. The result is a model coefficient that indicates,
independent of distance, the degree to which functional
connectivity predicts stimulation-induced change in theta power
at a recording site. The regression was repeated using permuted
connectivity/evoked power relationships to generate a null
distribution of model coefficients against which the true
coefficient is compared. We refer to the resulting z-score as the
“network-mediated activation (θ),” or NMAθ. High NMAθ

indicates functional network connectivity predicts observable
stimulation-related change in theta power at distant sites.

NMAθ is correlated with proximity to white matter. At a group
level of stimulation sites, NMAθ was significantly greater than
zero (one-sample t-test, t(71)= 4.18, P= 8.2 × 10–5; Fig. 3a),
indicating that stimulation in the MTL tends to evoke network-
driven change in theta power in distant regions. However, we
noted substantial heterogeneity between stimulation sites, with
some showing little or no ability to modulate network-wide
theta activity, as reflected by NMAθ near zero. To explain
this heterogeneity, we hypothesized that as earlier work
demonstrated13,15,29, structural connections (i.e. white matter
tracts) may be key to the propagation of electrical stimulation
throughout the brain.

To test whether structural connections play a role in
stimulation propagation, we asked whether NMAθ was correlated
with the proximity of a stimulation site to white matter. If these
measures are correlated, it would indicate that functional
connectivity is predictive of physiology only insofar as white
matter tracts are accessible. We binned stimulation sites
according to whether they were placed in gray matter (n= 32,
lower 50th percentile of distances to white matter), near white
matter (n= 33, upper 50th percentile of distances to white
matter), or within white matter (n= 7, manually identified by a
neuroradiologist; Fig. 3a; see Supplementary Figure 1 for
anatomical placement of each white matter target). We found
that NMAθ was significantly increasing with white matter
placement, relative to a permuted distribution (permuted P <
0.001; Fig. 3b). The NMAθ for gray matter sites was not
significantly different than zero (one-sample t-test, t(31)= 1.4,
P= 0.18), while NMAθ for sites near or in white matter was
significant (P < 0.05). This relationship holds in a Pearson
correlation agnostic to any electrode categorization (r= 0.33,
P= 0.005; Supplementary Figure 3). This finding does not mean
gray matter stimulation fails to induce theta activity, but it does
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suggest that stimulation far from white matter tracts may result in
theta activity that is uncorrelated with connectivity to remote
sites.

To account for the possibility that the theta response is
sensitive to the pulse frequency or amplitude of stimulation, we
asked whether NMAθ differed in accordance with stimulation
parameters. Across all stimulation sites, NMAθ was marginally
greater for trials delivered at a subject’s maximum vs. minimum
amplitude (paired t-test, t(71)= 1.91, P= 0.061; Supplementary
Figure 2A), but no difference was noted across pulse frequencies
delivered at 10, 50, and 200 Hz (repeated-measures analysis of

variance, F= 0.16, P= 0.85; Supplementary Figure 2B). Addi-
tionally, raw evoked power was significantly greater for maximum
amplitude stimulation (t(71)= 3.52, P= 0.0008), but did not
reliably differ across pulse frequencies (F= 0.26, P= 0.77;
Supplementary Figure 2B). For the remainder of this study, all
analyses consider stimulation events aggregated across ampli-
tudes and frequencies.

Taken together, these results show that DES of the MTL can
induce spectral power changes across a distributed network of
regions, particularly if stimulation occurs in or proximal to white
matter. When this occurred, we discovered that functional
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low-frequency coherence is predictive of where stimulation-
related modulations in theta power are observed.

Network properties of MTL stimulation. Having shown that
stimulation in or near-white matter sites induces distributed
changes in theta power, we next sought to characterize the
directionality of change. Specifically, high NMAθ could be caused
by increases in theta power at electrodes with strong functional
connectivity to the stimulation target, or decreases in theta power
at electrodes with weak connectivity to the stimulation target. To
distinguish between these possibilities, we further examined theta
power changes among the 16 stimulation sites that exhibited
individually significant (P < 0.05) NMAθ (see Supplementary
Table 1 for statistics and anatomical placement of each significant
site). In this subset, we measured the average pre- vs. post-
stimulation theta power at the five electrodes with the strongest
functional connectivity to the stimulation site (controlled for
distance), and the five electrodes with the weakest functional
connectivity. At strongly connected sites, theta power change was
significantly positive (one-sample t-test, t(15)= 5.6, P= 4.0 ×
10–5) and significantly greater than power change at weakly
connected sites (paired t-test, t(15)= 6.03, P= 1.7 × 10–5;
Fig. 4b). No significant power change was observed at sites with
weak functional connectivity (one-sample t-test, t(15)= 1.5, P=
0.15). Notably, we observed that of the 16 significant sites ana-
lyzed here, 15 were placed in or near white matter. We conclude
that stimulation causes increased theta power at strongly

connected sites and little to no change in power at weakly con-
nected sites.

Principles of network control theory suggest a relation between the
connectivity profile—or network topology—of a stimulation site and
the ensuing change in brain activity. Network “hubs,” or regions with
strong connectivity to the rest of the brain, exert differential effects on
overall brain activity vs. non-hubs, or regions with strong connections
to only a few areas18,30. To directly test whether stimulation
propagates differently from hub regions, we asked whether
stimulation-induced theta power correlated with the functional
“hubness” of a stimulation site. We again took our measure of
stimulation-induced activity to be the theta power change at the five
recording sites with the strongest functional connectivity to the
stimulation site, and tested this metric against the node strength of a
stimulation site, an indicator of hubness. For this analysis, we
considered all stimulation sites in or near white matter (n= 40) as
these groups both exhibited significant NMAθ (Fig. 3b). When weak
hubs (lower tercile of hub scores; n= 13) were stimulated, power
change at connected recording sites was significantly greater than
zero (one-sample t-test, t(12)= 3.6, P= 0.003), but stimulation at
strong hubs (upper tercile; n= 14) evoked no significant power
modulation (t(13)= 0.15, P= 0.87; Fig. 4d). While counterintuitive,
this result could suggest that stimulation at a site with many
connections may disperse or blunt the effect of perturbation, yielding
lesser activation in downstream regions. Alternatively, hub stimula-
tion does evoke widespread changes in brain activity, but these
changes tend to be outside the theta band assessed here.
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Our choice of low-frequency (5–13 Hz) functional connectivity
as the basis for predicting distributed changes in theta power was
motivated by prior studies that have shown strong, cognitively
relevant connectivity at low frequencies, particularly the theta and
alpha bands24,25,27. However, others have noted significant inter-
regional connectivity in the beta and gamma bands31. As our
study presented a unique opportunity to examine the causal
nature of functional connectivity, we asked whether functional
connectivity in other frequency bands is also predictive of
downstream power modulations. Among all MTL electrodes
placed in or near white matter (n= 40), we asked whether NMA
was significant for networks constructed from any frequency to a
maximum of 50 Hz. No frequencies outside the alpha/theta bands
exhibited significant group-level NMAθ, after correction for
multiple comparisons (one-sample t-test, P < 0.05, Benjamini-
Hochberg correction; Fig. 4e). This demonstrates that functional
networks constructed from high frequencies (>13 Hz) are not
predictive of stimulation-induced theta activity.

Alternative measures of connectivity. Functional connectivity is
a broad domain, generally referring to an array of measures that
fundamentally reflect time-series correlations. In addition to the
phase-based measures (i.e. spectral coherence) used here, other
correlations have also been shown to robustly capture inter-
regional functional dynamics in the human brain. Of particular
utility in iEEG investigations is the amplitude envelope of HFB
(50–200 Hz), shown to reflect neuronal population spiking
activity32 and correlated with fMRI BOLD activation33. The slow
(<1 Hz) fluctuations of this signal have also been shown to cor-
relate with resting-state functional connectivity (rsfMRI)23,34,35.
It has recently been demonstrated that stimulation perturbs brain
networks in accordance with measures of functional connected-
ness, including a modulation of remote cortical excitability14,36.

We therefore sought to determine whether these established
measures of intrinsic functional connectivity—HFB amplitude
envelope correlation and rsfMRI connectivity—also predicted the
location of evoked theta power. To do this, we replicated our
procedure for computing NMAθ, but used HFB amplitude
envelope correlation or atlas-based rsfMRI connectivity as
predictor variables (see Methods for details; see Fig. 5a for
example adjacency matrices). As with the low-frequency
coherence networks, the result is a z-scored statistic (NMAθ)
that reflects the degree to which a functional network predicts

remote changes in theta power. We emphasize that HFB envelope
networks—though based on extracted high-frequency power—are
wholly distinct from 30+Hz coherence networks assessed earlier;
the former is a correlation of the slow variation in a power time
series, while the latter is a measure of high-frequency phase
consistency between two signals.

Though rsfMRI and HFB connectivity measures qualitatively
recapitulated our earlier finding—NMAθ increases with closeness
to white matter—their ability to predict downstream changes in
evoked theta power was not significant across all stimulation sites
(HFB connectivity, t(71)= 1.07, P= 0.28; atlas rsfMRI, t(49)=
0.17, P= 0.87; Fig. 5b-c). We note that slightly fewer stimulation
sites were available for the rsfMRI analysis (n= 50), due to
subjects where atlas-based measures could not be estimated for a
sufficient number of electrodes (see Methods for details).

Though HFB envelope and rsfMRI connectivity did not
strongly replicate our finding of significant NMAθ using low-
frequency coherence, several factors could account for this
discrepancy. First, stimulation within the unique architecture of
the MTL may propagate differently than the cortical surface
stimulation used in many prior studies—it is possible that at the
cortical surface, HFB/rsfMRI connectivity is better predictive of
stimulation effects than low-frequency coherence. Second,
different measures of connectivity may differentially predict
different kinds of evoked responses. Low-frequency coherence
successfully predicts low-frequency power, but may fail to
accurately predict modulations at higher frequencies.

Evoked responses at higher frequencies. While our choice to
examine the effect of stimulation on theta frequencies was theo-
retically motivated by a vast literature implicating theta oscilla-
tions and cognition37, activity in the HFB range is a useful marker
of population neural activity38, and cognitively relevant oscilla-
tory dynamics are also observed in the alpha, beta, and gamma
bands (9–13, 15–25, 30–60 Hz, respectively). To account for the
possibility that stimulation evokes activity in these higher fre-
quency bands, we extended our analysis to consider the correla-
tion between low-frequency coherence and induced power in
alpha/beta, gamma, and HFB ranges. Furthermore, to address the
possibility that HFB-based connectivity networks (Fig. 5a) better
predict induced local HFB power, we asked about the correlation
between HFB envelope connectivity and induced power across
frequency ranges (see Methods for details).
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We first assessed whether stimulation evoked any detectable
modulation of power in the alpha/beta, gamma, and HFB bands,
regardless of relationship to connectivity. To do this, we averaged
the pre- vs. post-stimulation t-statistic across all electrodes in
each subject’s brain, for each frequency band. The result is an
average t-statistic reflecting the stimulation-evoked whole-brain
change in power at each frequency band. Across all stimulation
sites, stimulation significantly increased power in the theta, alpha/
beta, and gamma bands, but significantly decreased power in the
HFB range (one-sample t-test, false discovery rate (FDR)-
corrected P < 0.05; Fig. 6a–c). However, the power response to
stimulation was not uniform across electrodes within a subject;
for electrodes that exhibited a strong theta response, evoked
changes were weaker at higher frequencies (Fig. 6d), indicating a
theta-specific effect.

Given that stimulation evoked changes in spectral power
beyond the theta range, we next asked whether functional
connectivity networks predicted these changes (e.g. computing
NMAHFB). Corrected for multiple comparisons, low-frequency
(5–13 Hz) coherence networks only correlated with evoked power
in the theta range (one-sample t-test, t(71)= 4.18, FDR-corrected
P < 0.01; Fig. 7a). On average, HFB envelope connectivity did not
significantly predict power modulation at any frequency band.
However, given our earlier finding of decreases in power in the
HFB band (Fig. 6), we hypothesized that a null average effect was
obscuring heterogenous—but individually significant—responses
to stimulation. In other words, for specific subjects, HFB envelope
networks could predict increases or decreases in HFB power and
yield significant correlations in positive or negative directions.
Indeed, HFB functional connectivity significantly predicted HFB
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power decreases for seven stimulation sites and power increases
for three stimulation sites, a total count that significantly exceeds
the expected false positive rate (binomial test, FDR-corrected P=
0.009; Fig. 7b).

Taken together, functional connectivity measured by low-
frequency coherence significantly predicts stimulation-evoked
power in the theta band, but not induced power at higher
frequencies. On average, HFB envelope networks do not
significantly correlate with evoked changes in any frequency
band, even HFB power itself. However, the dynamics of

stimulation appear to be more complex in this high-frequency
band; HFB power is often decreased by stimulation—unlike the
theta response—and for a significant number of stimulation sites,
both low-frequency coherence and HFB functional connectivity
predict where in the brain such decreases are observed.

Discussion
We set out to test a fundamentally simple hypothesis: do func-
tional connections in the brain predict how focal electrical
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stimulation flows from one region to another? Though critical to
the future of brain stimulation and therapeutic development, this
hypothesis has not seen rigorous testing. Prior studies indicate
that connectivity plays a role in how stimulation events perturb
distant brain regions13,14,16,29, but fundamental assumptions of
graph-theoretic models remain untested17. More broadly, no
prior studies have addressed whether iEEG-based functional
connectivity indicates anything about causal relationships in the
brain, or whether is it merely a correlative measure. Here we
specifically tested a hypothesis about the effects of stimulation on
theta power, given an especially rich literature showing the cog-
nitive relevance of theta oscillations39–42. To account for possible
dynamics outside this range, we extended several key analyses to
alpha/beta, gamma, and HFB power, and further considered
whether functionally derived measures of connectivity better
capture the effects of stimulation-induced power.

We discovered that (1) modulation of theta power is correlated
with functional connectivity, particularly if stimulation occurred
in or near white matter, (2) stronger functional connections yield
greater theta power increases, (3) low-frequency coherence better
predicts downstream increases in theta power than HFB envelope
or rsfMRI networks, and (4) in specific cases HFB envelope
networks do succeed in predicting modulations in HFB power.
These results suggest that stimulation evokes a heterogenous
mixture of effects across frequencies, and that functional net-
works may best predict the frequency on which they were based.

The meaning of functional connectivity is a subject of con-
siderable debate. Correlated activity between two parts of the

brain may reflect direct connection between the two, an indirect
connection through a third region, or the activity of a third region
independently driving activity in each43. Though most neu-
roscientists are aware of such limitations, functional connectivity
is often implicitly treated as a measure of causality nonetheless.
Our use of targeted stimulation allowed us to test whether this
implicit assumption is true. Our results generally support the idea
that functional connectivity indicates causal relations in the brain;
when stimulation occurs in or near white matter, we could predict
where power changes would occur based on distance-
independent measures of low-frequency functional connections.
This finding aligns with observations that intrinsic functional
connectivity in MRI is constrained by white matter anatomy44.
However, substantial variance in power modulation remained
unexplained by connectivity, and we also showed that propaga-
tion of gray matter stimulation—still rich with functional con-
nections—cannot be predicted in the same way.

HFB amplitude envelope networks and atlas-based rsfMRI
networks failed to strongly predict remote changes in theta
power. However, earlier reports suggest that these functionally
relevant measures do correlate with CCEPs and changes in
cortical excitability14,36. To explain this discrepancy, we note that
there are several key differences between those reports and the
present study. First, we solely examined the effect of MTL sti-
mulation, which has a distinct architecture that may affect how
stimulation propagates to other regions—effects of stimulation at
the cortical surface, as in prior studies, could differ markedly.
Relatedly, we used stimulation amplitudes that are lower than
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those typically used at the cortical surface (<2 vs. >4 mA).
Finally, while HFB envelop networks did not successfully predict
remote changes in theta power, they more accurately correlated
with remote decreases in HFB power—it is possible that net-
works based on measures of cortical activation are better pre-
dictors of how stimulation affects those same measures.

In this study, we also assessed the relationship between sti-
mulation and the network topology of a targeted region. Speci-
fically, we asked whether the downstream effects of stimulation
differed between hubs and non-hubs, reflecting regions that are
richly or sparsely connected. Counterintuitively, we found that
stimulation of non-hubs yielded greater increases in theta power
at downstream sites. It is possible that (1) hub stimulation does
result in greater distributed power changes, but outside the theta
band, or (2) hub stimulation results in a dispersal or blunting

effect, causing widespread change but limiting the magnitude of
the effect at any single downstream site. Such a result is plausible
if there is an interaction between the underlying brain structure
and the effect of stimulation—it has been demonstrated that
stimulation less effectively activates large-diameter axons, for
example45. Furthermore, principles of network control theory
postulate that stimulation of sparsely connected regions can be
efficacious for moving the brain to “difficult-to-reach” states, or
states that require significant cognitive effort to achieve17,18,30.
However, the mapping between spectral power and “brain states”
in a cognitive sense remains unclear; further empirical and the-
oretical work should aim to clarify how control theoretic pre-
dictions can be tested with common intracranial techniques.

The findings from this study could be extended in several ways.
A recent study by Keller et al.36 asked whether a multivariate
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model could predict how direct brain stimulation alters remote
cortical excitability. A similar approach could be adopted with
these data, wherein multimodal measures of connectivity—e.g.
coherence, HFB envelop, and white matter proximity—could be
used to predict the stimulation response across locations and
frequency ranges. Such an approach could reveal relationships
that were obscured by the univariate methods in this manuscript;
gray matter targets, for instance, may induce widespread,
connectivity-related changes in specific frequencies that are pre-
dictable by a weighted combination of functional networks.
Additionally, our study as designed was agnostic to the direc-
tionality of induced effects; especially, in the setting of direct
white matter stimulation, we expect that our results reflect a
combination of prodromic and antidromic propagation. In other
words, stimulation of MTL structures is potentially inducing
activity in input and output regions, though the undirected
measures of functional connectivity used here are unable to tease
those effects apart.

We solely analyzed stimulation through the lens of changes in
brain physiology. However, with an eye toward the eventual
therapeutic use of stimulation, the results here begin to bridge
prior studies of stimulation and behavior with underlying neural
mechanisms. A recent study reported decreases in episodic
memory performance during stimulation at certain times, asso-
ciated with increases in cortical theta power3. Additionally,
memory performance was noted to increase with theta-burst
stimulation of the perforant path, a major white matter tract of
the MTL4. Deep brain stimulation targeted to white matter tracts
has also been shown to improve outcomes in treatment-resistant
depression9. Collectively, these findings are supported by the
results here—white matter stimulation appears to evoke remote
increases in neural activity. Few studies have deeply examined
stimulation-induced changes in physiology with behavioral
enhancement, though our approach outlined here enables us to
do exactly that in future work.

Here we demonstrated that functional connections in the
human brain inform how stimulation evokes remote changes in
neural activity. This is powerful new evidence that even in the
absence of knowledge about an individual’s structural con-
nectome, functional connectivity can reflect causality in the brain
—a finding with significant implications for how neuroscientists
interpret inter-regional correlations of neural activity. Further-
more, by showing that stimulation-evoked changes interact with
the functional hubness of a targeted site, we provided a critical
data point for the application of network control theory to real-
world brain dynamics.

Methods
Participants. Twenty-six patients with medication-resistant epilepsy underwent a
surgical procedure to implant subdural platinum recording contacts on the cortical
surface and within brain parenchyma. Contacts were placed so as to best localize
epileptic regions. Data reported were collected at eight hospitals over 4 years
(2015–2018): Thomas Jefferson University Hospital (Philadelphia, PA); University
of Texas Southwestern Medical Center (Dallas, TX); Emory University Hospital
(Atlanta, GA); Dartmouth-Hitchcock Medical Center (Lebanon, NH); Hospital of
the University of Pennsylvania (Philadelphia, PA); Mayo Clinic (Rochester, MN);
National Institutes of Health (Bethesda, MD); and Columbia University Hospital
(New York, NY). Prior to data collection, our research protocol was approved by
the Institutional Review Board at participating hospitals, and informed consent was
obtained from each participant.

Electrocorticographic recordings. iEEG signal was recorded using depth elec-
trodes (contacts spaced 3.5–10 mm apart) using recording systems at each clinical
site. iEEG systems included DeltaMed XlTek (Natus), Grass Telefactor, and Nihon-
Kohden EEG systems. Signals were sampled at 500, 1000, or 1600 Hz, depending
on hardware restrictions and considerations of clinical application. Signals recor-
ded at individual electrodes were first referenced to a common contact placed
intracranially, on the scalp, or mastoid process. To eliminate potentially con-
founding large-scale artifacts and noise on the reference channel, we next re-

referenced the data using a bipolar montage. Channels exhibiting highly non-
physiologic signal due to damage or misplacement were excluded prior to re-
referencing. The resulting bipolar time series was treated as a virtual electrode and
used in all subsequent analysis. Raw electrophysiogical data and analysis code used
in this study are freely available at http://memory.psych.upenn.edu/
Electrophysiological_Data.

Anatomical localization. To precisely localize MTL depth electrodes, hippocampal
subfields and MTL cortices were automatically labeled in a pre-implant, T2-
weighted MRI using the automatic segmentation of hippocampal subfields multi-
atlas segmentation method46. Post-implant computed tomography (CT) images
were coregistered with presurgical T1- and T2-weighted structural scans with
Advanced Normalization Tools47. MTL depth electrodes that were visible on CT
scans were then localized within MTL subregions (including white matter) by
neuroradiologists with expertise in MTL anatomy. All localizations in this manu-
script refer to the bipolar midpoint of two recording contacts or the anode/cathode
stimulation contacts.

Functional connectivity estimation. To obtain coherence values between elec-
trode pairs, we used the MNE Python software package48, a collection of tools and
processing pipelines for analyzing EEG data. The coherence (Cxy) between two
signals is the normalized cross-spectral density (Eq. 1); this can be thought of as the
consistency of phase differences between signals at two electrodes, weighted by the
correlated change in spectral power at both sites.

Cxy ¼
Sxy

SxxSyy

�
�
�
�
�

�
�
�
�
�

ð1Þ

Where Sxy is the cross-spectral density between signals at electrodes x and y; Sxx
and Syy are the auto-spectral densities at each electrode. Consistent with other
studies of EEG coherence49,50, we used the multitaper method to estimate spectral
density. We used a time-bandwidth product of 4 and a maximum of 8 tapers
(tapers with spectral energy < 0.9 were removed), computing coherence for fre-
quencies between 4 and 50 Hz, avoiding the 60 Hz frequency range that may be
contaminated by line noise. Inter-electrode coherences were computed for a series
of 1-s windows extracted sequentially from 10-s baseline periods of a non-
stimulation task, in which subjects wait passively before beginning a verbal free-
recall task. Each subject typically had 24–72 such baseline periods, but all had a
minimum of 10 (i.e. the minimum total number of windows used for network
estimation was 100). To construct the low-frequency networks used in the majority
of this paper, cross-spectra were first averaged across all baseline period windows,
normalized by the average power spectra, and then averaged between 5 and 13 Hz.
For the analysis in Fig. 4e, networks are constructed for each frequency between 4
and 50 Hz with no averaging over bands.

Stimulation paradigm. At the start of each session, we determined the safe
amplitude for stimulation using a mapping procedure in which stimulation was
applied at 0.5 mA, while a neurologist monitored for afterdischarges. This proce-
dure was repeated, incrementing the amplitude in steps of 0.5 mA, up to a max-
imum of 1.5 mA (chosen to be below the afterdischarge threshold and below
accepted safety limits for charge density51). For each stimulation session, we passed
electrical current through a single pair of adjacent electrode contacts in the MTL.
Stimulation was delivered using charge-balanced biphasic rectangular pulses (pulse
width= 300 μs) at (10, 25, 50, 100, or 200) Hz frequency and (0.25–2.00) mA
amplitude (0.25 mA steps) for 500 ms, with a minimum of 3 s between stimulation
events. During a session, subjects were instructed to sit quietly and did not perform
any task. An average of 2.7 stimulation sites were selected for each subject, with a
minimum of 240 trials delivered for each. In a typical stimulation session, a given
target would receive 360 total stimulation events, in blocks of 60 trials at each
amplitude, with 12 randomly spaced trials at each frequency within the block
(Fig. 1d). For all analyses in the main text, effects were aggregated across stimu-
lation parameters; see Supplementary Figure 2 for consideration of stimulation
frequency and amplitude.

In most subjects, a post-stimulation voltage deflection artifact briefly
contaminates a subset of recording contacts. To identify and remove channels
exhibiting this artifact, the average voltage in the 350 ms prior to stimulation is
compared with a paired t-test to the average voltage in the 350 ms after stimulation,
across all trials, for each channel. The same procedure is done with a levene test for
different variances. Any electrode with a significantly different pre- vs. post-mean
voltage or voltage variance (P < 0.01) is excluded from further analysis (see
“Estimating NMA”). On average, this procedure excludes 28% of channels.
Regardless of stimulation artifact, any bipolar pair is excluded from analysis if it
shares a common contact with the stimulated pair. See Supplementary Figure 4 for
a representative example of this artifact.

Spectral power analysis. We used the multitaper method to assess spectral power
in the pre- and post-stimulation intervals (−950 to −50 ms relative to stimulation
onset, and +50 to +950 ms after stimulation offset; Fig. 1b). We avoided the
Morlet wavelet method to obviate the need for buffer periods that extend into the
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stimulation window. As in “Functional connectivity estimation,” we used the MNE
Python software package. For each trial, theta power was taken as the average PSD
from 5–8 Hz, using a time-bandwith product of 4 and excluding tapers with <90%
spectral concentration. To compute a t-statistic at each electrode, the pre- vs. post-
log-transformed power values were compared with a paired t-test (Figs. 1g and 2b).
We avoid calculating significances for individual electrodes because sequential
trials are non-independent events; t-statistics are only used for later correlation
analysis (see “Estimating NMA”).

For analyses that considered spectral power at higher frequencies (Figs. 6 and
7), we used the following bands: alpha/beta (10–25 Hz), gamma (30–50 Hz), and
HFB (50–200 Hz). Power was otherwise computed exactly as described for theta.
To measure whole-brain evoked power (Fig. 6), we took the average t-statistic
across all electrodes in each subject’s brain, subject to the same exclusion criteria
described in “Estimating NMA.” Additionally, we excluded electrodes with t-
statistics > 10 from the whole-brain average, to account for raw power values that
are potentially corrupted by post-stimulation artifact, which survives our exclusion
procedure (their inclusion does not notably change the main results).

Estimating NMA. To examine the relationship between stimulation and functional
connectivity, we developed an index that reflects the correlation between theta
power modulation and connectivity, independent of distance. To do this, we first
construct low-frequency (5–13 Hz) networks as described in “Functional con-
nectivity estimation,” and take the logit transform to linearize coherence values that
fall between 0 and 1. We also construct adjacency matrices that reflect the nor-
malized Euclidean distance between all possible pairs of electrodes (Fig. 2a), and
linearize the distances by taking the reciprocal of their exponential (i.e. a Euclidean
distance of zero would correspond to 1.0). For each stimulated electrode, we take
that electrode’s distance and connectivity to all other electrodes as predictors of the
theta power t-statistic (see “Spectral power analysis”) in a multiple linear regres-
sion. This controls for the effect of distance from a stimulation target, which is
correlated with power and functional connectivity. Next, we permute the order of
the predictors 1000 times and re-run the regression for each. The true coefficient
for functional connectivity is compared to the distribution of null coefficients to
obtain a z-score and P-value for each stimulation site. The z-score is referred to as
the NMA.

Prior to computing NMAθ, we excluded electrodes placed in the seizure onset
zone or exhibiting significant inter-ictal spiking, as determined by a clinician.
Electrodes with high post-stimulation artifact (see “Stimulation paradigm”), and
stimulated electrodes themselves, were also excluded. Subjects were discarded if
<10 electrodes remained after all exclusions.

To analyze the relationship between NMAθ and white matter category (Fig. 3),
we first binned electrodes according to their distance from nearest white matter.
Distance were measured as the linearized Euclidean distance from a stimulation
electrode (i.e. bipolar midpoint of the anode/cathode) to the nearest vertex of that
subject’s Freesurfer white matter segmentation52 based on T1 MRI. The 50th
percentile of white matter distances marked the division between stimulation
electrodes categorized as “near” white matter vs. in gray matter. Seven stimulation
electrodes were identified by expert neuroradiologists as being placed within white
matter (see Supplementary Figure 1 for exact placements). To ask whether NMAθ

increases with white matter category, we permuted the white matter labels for each
electrode 1000 times and took the minimum t-statistic between gray vs. near and
near vs. in-white categories at each permutation. We then compared the minimum
t-statistic in the true data to the distribution of null statistics to generate a P-value.

Network properties of stimulation. To determine how the network structure of a
stimulation site affected downstream alterations in theta power (Fig. 4), we first
analyzed the relationship between pre- vs. post-stimulation theta power and the
strength of functional connectivity to a stimulation site (Fig. 4a, b). For each
stimulation site with a significant NMAθ (P < 0.05), we ranked all other electrodes
by the strength of their functional connectivity to that site, residualized on
Euclidean distance (e−dist). We then took the average power t-statistic (see
“Spectral power analysis”) across the five strongest-connected sites and the five
weakest-connected sites, to assess whether theta power changes correlated with the
strength of a functional connection.

To assess whether the effects of stimulation differ between hubs and non-hubs
(Fig. 4c, d), we measured the node strength53 for each stimulation site in or near
white matter (n= 40), using our low-frequency coherence networks (see
“Functional connectivity estimation”). The node strength reflects the sum of all
connection strengths to a given node (for this paper, we normalized node strength
by the total number of possible connections for a given site, yielding strengths in
the range from 0 to 1). For all stimulation sites, we binned hub scores by tercile,
and took the highest tercile as “strong hubs,” the weakest tercile as “weak hubs”
(n= 13 for each). For stimulation at all strong and weak hubs, we took the average
power t-statistic for the five strongest-connected electrodes. These values were used
to assess whether hub stimulation tends to cause greater power changes in
connected regions. The relationship between coherence frequency and NMA
(Fig. 4e) was assessed by re-estimating the NMAθ (see “Estimating network-
mediated activation”) using spectral coherence networks observed for each
frequency between 4 and 50 Hz, spaced by 1 Hz, for all stimulation electrodes
placed within or near white matter. The average NMAθ across sites/subjects was

one-sample t-tested against zero and P-values were FDR-corrected for multiple
comparisons (corrected P < 0.05). For visualization purposes only, the displayed
NMAθ/frequency curve was smoothed with a three-point moving average window.

Alternative connectivity metrics. HFB amplitude envelop correlation: Networks
of correlated HFB (50–200 Hz in this manuscript) amplitude envelops were
computed in a manner similar to Foster et al.23. The general approach is to low-
pass filter HFB spectral power during a resting period, and the resulting time series
are correlated between recording electrodes to construct an adjacency matrix.
Specifically, in a non-stimulation memory task, we extracted 240-s (4 min) resting
periods between any task events. Resting periods were identified by searching for
the maximum amount of time between task events; in some subjects, 240-s
intervals were not available but time series were still extracted for that length in the
best-possible period. Signals were bipolar re-referenced and notch filtered,
sequentially band-passed in 10 Hz windows from 50 to 200 Hz, Hilbert trans-
formed and normalized to the mean amplitude, and then averaged across bands.
Finally, to estimate the slow variation in this signal as a basis for inter-regional
correlation, we low-pass filtered the HFB amplitude (<1 Hz), and computed the
Pearson correlation coefficient between the resulting signals between all possible
pairs of electrodes within a subject, yielding an adjacency matrix of correlations.
The resulting correlations were Fisher z-transformed and then used as predictors of
modulations in power (see “Estimating NMA”).

Atlas-based rsfMRI: We used an independent dataset of rsfMRI from the
Human Connectome Project (HCP)54 to estimate functional connectivity between
recording sites in each patient. For each patient, we mapped the location of
subdural and depth electrodes to the HCP grayordinate space55. For subdural
electrodes, we assigned vertices on the cortical surface mesh within 3 mm (geodesic
distance) of each recording site to a region of interest (ROI). The coordinates in the
native space of each subject were then mapped to the standard fs_LR mesh (i.e.,
HCP surface space). The location of subcortical contacts in native space were
transformed to MNI space using Advanced Normalizations Tools56, with spherical
ROIs centered at each bipolar midpoint. Adjacency matrices for each subject were
constructed by computing the average connectivity (Fisher-transformed time-series
correlations) between all grayordinates from each pairwise combination of ROIs,
provided by the group-averaged (n= 897 subjects) dense connectome. These
adjacency matrices were subsequently used to determine whether fMRI defined
networks provide a scaffold for the propagation of brain-wide theta power
following DES.

Data availability
Raw electrophysiogical data and analysis code used in this study are freely available
at http://memory.psych.upenn.edu/Electrophysiological_Data
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